
University of Nebraska at Omaha University of Nebraska at Omaha 

DigitalCommons@UNO DigitalCommons@UNO 

Mathematics Faculty Publications Department of Mathematics 

1998 

The Eigenfunctions of a Certain Composition Operator The Eigenfunctions of a Certain Composition Operator 

Valentin Matache 
University of Nebraska at Omaha, vmatache@unomaha.edu 

Follow this and additional works at: https://digitalcommons.unomaha.edu/mathfacpub 

 Part of the Mathematics Commons 

Please take our feedback survey at: https://unomaha.az1.qualtrics.com/jfe/form/

SV_8cchtFmpDyGfBLE 

Recommended Citation Recommended Citation 
Matache, Valentin The eigenfunctions of a certain composition operator. Studies on composition 
operators (Laramie, WY, 1996), 121–136, Contemp. Math., 213, Amer. Math. Soc., Providence, RI, 1998. 

This Article is brought to you for free and open access by 
the Department of Mathematics at 
DigitalCommons@UNO. It has been accepted for 
inclusion in Mathematics Faculty Publications by an 
authorized administrator of DigitalCommons@UNO. For 
more information, please contact 
unodigitalcommons@unomaha.edu. 

http://www.unomaha.edu/
http://www.unomaha.edu/
https://digitalcommons.unomaha.edu/
https://digitalcommons.unomaha.edu/mathfacpub
https://digitalcommons.unomaha.edu/math
https://digitalcommons.unomaha.edu/mathfacpub?utm_source=digitalcommons.unomaha.edu%2Fmathfacpub%2F73&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/174?utm_source=digitalcommons.unomaha.edu%2Fmathfacpub%2F73&utm_medium=PDF&utm_campaign=PDFCoverPages
https://unomaha.az1.qualtrics.com/jfe/form/SV_8cchtFmpDyGfBLE
https://unomaha.az1.qualtrics.com/jfe/form/SV_8cchtFmpDyGfBLE
mailto:unodigitalcommons@unomaha.edu
http://library.unomaha.edu/
http://library.unomaha.edu/


THE EIGENFUNCTIONS OF A

CERTAIN COMPOSITION OPERATOR

Valentin Matache

Abstract. The composition operator on the classical Hardy space H2, induced by

a hyperbolic disk automorphism is considered. It is investigated when a H2-function
induces under the given operator a minimal invariant cyclic subspace. Theorems

where we use the behaviour of this function in the neighbourhood of the fixed points

of the hyperbolic automorphism in order to decide if the cyclic subspace mentioned
above is minimal invariant or not, are obtained. The inner eigenfunctions of the
operator under consideration are characterized.

1. Introduction

We denote by H2 the classical Hardy space of all functions analytic on the open
unit disk D, having square summable Taylor coefficients. φ is the hyperbolic Möbius
transform

(1) φ(z) =
2z + 1
z + 2

z ∈ D

having fixed points 1 and −1. Cφ is the composition operator induced by φ on
H2. LatCφ denotes the invariant subspace lattice of Cφ. Subspace means always
closed, linear manifold. M ∈ LatCφ is minimal invariant for Cφ if M 6= 0 and
there is no nonzero N ∈ LatCφ, such that N ⊆ M, and N 6=M. It is important
to see if all the minimal invariant subspaces of Cφ are 1- dimensional. Clearly,
any minimal invariant subspace of Cφ is cyclic. In [8], this author’s main idea was
to choose some arbitrary u ∈ H2, consider the cyclic subspace in LatCφ spanned
by u, Ku = ∨∞n=0C

n
φu (that is the closure of the linear manifold spanned by the

functions {u, u ◦ φ, u ◦ φ(2), ..., u ◦ φ(n), ...} ), and deduce by the properties of u
if Ku is minimal invariant or not. By φ(n) we mean φ ◦ φ ◦ · · · ◦ φ, n times, for
each positive integer n. Clearly Ku is minimal invariant and finite dimensional if
and only if u is an eigenfunction of Cφ. Related to those u ∈ H2 such that Ku
is minimal invariant but dimKu > 1 we wish to point out that this means dimKu
is infinite. Indeed, if dimKu is finite, then the restriction Cφ|Ku has nonempty
point spectrum. Consequently we can choose f an eigenfunction in Ku, denote
by N the one dimensional subspace spanned by f and observe that N ⊆ Ku,
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2 VALENTIN MATACHE

N 6= 0, and N ∈ LatCφ. If dimKu > 1, then Ku is not minimal invariant. On
the other hand, finding Ku minimal invariant with infinite dimension is no easy job
because, if such Ku existed then T = Cφ|Ku would be an example of a Hilbert space
operator, acting on an infinitely-dimensional, complex space with trivial invariant
subspace lattice. It is unknown if such an operator exists. This problem is called
the invariant subspace problem and stays open for some decades now. The authors
of [12] observed that a Hilbert space operator (acting on a complex, separable space
of dimension bigger than 1), without proper invariant subspaces exists if and only if
LatCφ contains an infinitely-dimensional minimal invariant subspace. Since finding
such a Ku is not an easy job, our idea in [8], was to discard as many u as possible.
Theorem 2 in [8] is a result in this direction. it states that

Theorem 1.1 If α is 1 or −1, u(eiθ) is the radial limit function of u ∈ H2 ,
and if we can assign a nonzero value to u at α, u(α) 6= 0, such that the extension
of u(eiθ) we get in this manner is continuous, then Ku is nonminimal unless u is
constant.

To see in which way we can discard functions by using the previous result we
give the following

Example 1.2 Suppose (zn)n is a sequence in D, such that
∑∞
n=1(1− |zn|) <∞

and 1 or −1 is not an accumulation point of the set {zn : n ≥ 1}. Denote by B the
Blaschke product having zeros (zn)n. KB is not minimal invariant.

Proof. Indeed, since (zn)n do not cluster to 1 (or −1), B is continuously extendable
at this point (see [6]), and B(1) 6= 0 (respectively B(−1) 6= 0) because |B(eiθ)| = 1
a.e. on the unit circle. By Theorem 1.1 KB is nonminimal because B is not
constant.

Our first concern in this paper will be obtaining an improved version of Theorem
1.1. Before doing that we would like to recall for later reference a theorem obtained
by this author in [8].

Theorem 1.3 If u is an inner function and Ku is minimal invariant, then the
greatest common inner divisor of the following family of inner functions {u ◦ φ(n) :
n ≥ k}, must be an eigenfunction of Cφ, for each fixed integer k.

Recently, V. Chkliar answered in [2] a question raised by this author in [8] asking
if you can remove the restriction u(α) 6= 0 in Theorem 1.1. His result is as follows.

Theorem 1.4 If u ∈ H2, u 6= 0 satisfies the following conditions,

(a) lim
z→−1

|u(z)| <∞

(b) |u(z)| ≤ c|1− z|ε for some c, ε > 0 and each z in a neighbourhood of 1

then
∑∞
n=−∞ λn(u◦φ(n)) is an eigenfunction of Cφ associated to the eigenvalue λ−1

for each λ in the annulus {λ ∈ C : 1 < |λ| < 3min(ε, 12 )} except for some discrete
subset of points.
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This author observed in [8] that if Ku is minimal invariant, then Ku coincides
with the subspace ∨∞n=−∞C

n
φu, spanned by all the iterates of Cφ and its inverse

at u. Under the assumptions on u in Theorem 1.4, this last space is not minimal
invariant and hence neither is Ku. Clearly condition (b) tells us u is continuously
extendable by 0 at 1.

2. Minimal Invariant Subspaces

By φ(−n) we will denote φ−1◦φ−1◦· · ·◦φ−1, n times. Denote γ(z) = (1+z)/(1−z),
observe that γ maps the unit disk onto the right half-plane, and γ ◦ φ = 3γ, hence
γ ◦ φ(n) = 3nγ and γ ◦ φ(−n) = 3−nγ, n ≥ 1. This leads to

(2) φ(n)(z) =
(3n + 1)z + (3n − 1)
(3n + 1) + (3n − 1)z

and

(3) φ(−n)(z) =
(3n + 1)z − (3n − 1)
(3n + 1)− (3n − 1)z

for any positive integer n. We will need the following

Proposition 2.1 If z ∈ D, then φ(n)(z) → 1 and φ(−n)(z) → −1, nontangen-
tially.

Proof. Observe that φ(n)(z) = γ−1(3nγ(z)), n ≥ 1. 3nγ(z) → ∞ inside the right
half-plane, along the line through the origin having direction vector γ(z). But
γ−1(∞) = 1, so φ(n)(z) → 1. On the other hand, the line mentioned above is
transformed by γ−1 into either a circle through −1 and 1 (different from the unit
circle), or the real line (if z ∈ R). Therefore φ(n)(z) → 1 nontangentially. The
proof of φ(−n)(z)→ −1 nontangentially is identical.

We can use this fact now and pretty much the same idea as in [8], in order to
give an improved version of Theorem 1.1. For each u ∈ H2, denote by u(eiθ), the
nontangential limit function of u, which, as it is known, exists on the unit circle a.e.
with respect to the Lebesgue arc-length measure dθ. Observe that if eiθ = φ(n)(eit),
then

dt = |
(
φ(−n)(eiθ)

)′
|dθ i.e. dt = P (φ(n)(0), θ)dθ

where

(4) P (z, θ) =
1− r2

1− 2r cos(θ − t) + r2
, z = reit

is the usual Poisson kernel. In the sequel we shall often change the variables on the
unit circle T in this manner.

Theorem 2.2 If u ∈ H2, α is one of the fixed points of φ, the nontangential
limit of u exists at α and is nonzero, and u(eiθ) is essentially bounded on an open
arc containing α, then Ku is minimal invariant if and only if u is constant.
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Proof. Suppose α = 1. Chose δ > 0 such that there is some M > 0 such that
|u(eiθ)| ≤M a.e. for |θ| ≤ δ. Denote φ(n)(0) = 3n−1

3n+1 = an. We can write

||Cnφu||2 =
1

2π

∫ π

−π
|u(eiθ)|2P (an, θ)dθ =

=
1

2π

∫ δ

−δ
|u(eiθ)|2P (an, θ)dθ +

1
2π

∫
|θ|≥δ

|u(eiθ)|2P (an, θ)dθ ≤

≤M2 + P (an, δ)||u||2.

Since P (an, δ) → 0 as n → ∞, this proves that the sequence (u ◦ φ(n))n is a
norm bounded sequence. By Proposition 2.1, this sequence tends pointwise to
the nontangential limit of u at 1, u(1). These two facts prove that this sequence
converges weakly to u(1). See [11] for a motivation of this statement. The weak
closure and norm closure of Ku coincide, since this is a linear subspace, hence a
convex set. Thus Ku contains the subspace C of the constant functions because
u(1) is nonzero. Obviously C is invariant under Cφ. The conclusion of the theorem
follows. If the fixed point is −1, repeat the argument above with φ(−n) instead
of φ(n), and recall that a minimal invariant subspace of an invertible operator is
doubly invariant, that is invariant both under the operator and its inverse ([8]).

Proposition 2.3 If u is an eigenfunction of Cφ, and the nontangential limit of
u exists both at 1 and −1, then u is a constant function.

Proof. Since u is an eigenfunction, there is some z ∈ D such that u(z) 6= 0. Let
λ be the eigenvalue corresponding to u. We have that u(φ(n)(z)) = λnu(z). Let
now n tend to ∞ and use Proposition 2.1 to deduce that limn→∞ λn = u(1)/u(z).
Deduce that limn→∞ λ−n = u(−1)/u(z), by using the same proposition and the
equality u(φ(−n)(z)) = λ−nu(z). Since both these limits exist λ must be 1. Hence,
for each w ∈ D and each positive integer n, u(φ(n)(w)) = u(w). Let now n tend to
∞, and deduce u(w) = u(1) for each w ∈ D.

3. The Inner Eigenfunctions of Cφ

We define the orbit of each point in D under φ. For each λ ∈ D, the orbit of λ
under φ is the set Orb(λ) = {φ(n)(λ) : n ∈ Z}; Z denotes the set of all integers. If ν
is a positive, finite Borel measure on the unit circle T which is singular with respect
to the Lebesgue arc-length measure we denote by Sν the singular inner function
induced by ν, that is

Sν(z) = exp(−
∫
T

eiθ + z

eiθ − z
dν(θ)) z ∈ D.

If u and v are two inner functions which mutually divide each other we write u ∼ v.

Lemma 3.1 Suppose ν is a positive, finite Borel measure on T, singular with
respect to the Lebesgue arc-length measure; then there is a singular Borel measure
µ such that (Sν ◦ φ) ∼ Sµ and µ is determined by

(5) µ(φ−1(E)) =
∫
E

P (φ(0), θ)dν(θ)
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for each Borel subset E of T.

Proof. The support of ν, suppν can be identified as ”the set of all eiθ ∈ T where
Sν is not continuously extendable”. Sν ◦ φ is an inner function without zeros in D.
Thus there exists µ such that Sν ◦ φ and Sµ divide each other. We readily see that
suppµ = φ−1(suppν). We prove now (5) for Borel sets E which contain suppν. In
this case, suppµ ⊆ φ−1(E) and we can write

e−µ(φ−1(E)) = |Sµ(0)| = |Sν(φ(0))| = e−
∫
T
P (φ(0),θ)dν(θ) = e−

∫
E
P (φ(0),θ)dν(θ)

which takes care of (5). In all these computations we used the identity Re e
iθ+z
eiθ−z =

P (z, θ), θ ∈ R, z ∈ D. For an arbitrary Borel set E now, denote by νE the
measure νE(A) = ν(E∩A), for each Borel set A ⊆ T. We have that (SνE ◦φ) ∼ Sµ1

for some µ1, and suppµ1 ⊆ φ−1(E). On the other hand, Sµ ∼ ((Sµ1)(SνEc ◦ φ))
because ν = νE + νEc . Ec is the complement of E. So, if (SνEc ◦ φ) ∼ Sµ2 we have
µ = µ1 + µ2, suppµ1 ⊆ φ−1(E), suppµ2 ⊆ φ−1(Ec) i.e. µ1 ⊥ µ2. So µφ−1(E) = µ1

and µφ−1(Ec) = µ2. Thus

µ(φ−1(E)) = µ1(φ−1(E)) =
∫
E

P (φ(0), θ)dνE(θ)

by what has already been proved. Since
∫
E
P (φ(0), θ)dνE(θ) =

∫
E
P (φ(0), θ)dν(θ),

the desired conclusion follows.

Theorem 3.2 If ν is a positive, finite Borel measure on T, singular with respect
to the Lebesgue measure, then Sν is an eigenfunction of Cφ if and only if the measure
νφ−1 given by νφ−1(E) = ν(φ−1(E)), is absolutely continuous with respect to ν,
and its Radon-Nikodym derivative with respect to ν is P (φ(0), θ).

Proof. Sν is an eigenfunction of Cφ if and only if (Sν ◦ φ) ∼ Sν. By Lemma 3.1
this is equivalent to

ν(φ−1(E)) =
∫
E

P (φ(0), θ)dν(θ)

for each Borel set E ⊆ T, which means exactly that d(νφ−1)(θ) = P (φ(0), θ)dν(θ).

Corollary 3.3 If Sν is a nonconstant, singular, inner eigenfunction of Cφ, then
φ(suppν) = suppν, {−1, 1} ⊆ suppν, and ν({1}) = ν({−1}) = 0.

Proof. If K = suppν, since (Sν ◦φ) ∼ Sν , like in the proof of Lemma 3.1 we deduce
suppν = φ−1(suppν) i.e. φ(K) = K. If one of the fixed points of φ is not in K,
we can extend Sν(eiθ) continuously at that point by a nonzero value. According to
Theorem 1.1, KSν is nonminimal, which is a contradiction. Thus {−1, 1} ⊆ K. If we
suppose ν({1}) = a > 0, we have a = ν({φ−1(1)}) = P (φ(0), 0)ν({1}) = P ( 1

2 , 0)a,
according to (5) with µ = ν. We get P ( 1

2 , 0) = 1, which is false. We admit therefore
that ν({1}) = 0. Similarly ν({−1}) = 0.

To see that nonzero measures inducing singular, inner eigenfunctions of Cφ do
exist, we shall give the following
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Example 3.4 Choose λ ∈ T, λ 6= ±1. Set

wn =
a∏n

k=1 P (φ(0), arg(φ(k)(λ)))
, n ≥ 1

w−n = a
n−1∏
k=1

P (φ(0), arg(φ(−k)(λ))), n > 1

and w0 = a, where a is any fixed positive number, and arg designates the argument
of a complex number. For each Borel set A ⊆ T, if A ∩ Orb(λ) 6= ∅, denote
A∩Orb(λ) = {φ(j)(λ) : j ∈ J}, J ⊆ Z, and define ν(A) =

∑
j∈J wj , and ν(A) = 0

if A ∩ Orb(λ) = ∅. Obviously we obtain a singular, positive, Borel measure on T.
To see it is also finite, observe that

wn+1

wn
=

1
P (φ(0), arg(φ(n+1)(λ)))

→ 1
P (φ(0), 0)

=
1
3
.

Similarly w−n−1
w−n

→ 1
3 , and by the quotient test

∑∞
−∞ wn < ∞. Now, if µ is that

singular Borel measure for which Sµ ∼ (Sν◦φ), observe that suppµ = φ−1(suppν) =
φ−1(Orb(λ)) = Orb(λ), and we have by (5)

µ(φ−1({φ(n)(λ)}) = P (φ(0), arg(φ(n)(λ)))ν({φ(n)(λ)}), n ≥ 1

that is

µ({φ(n−1)(λ)}) = P (φ(0), arg(φ(n)(λ)))
a∏n

k=1 P (φ(0), arg(φ(k)(λ)))

hence
µ({φ(n−1)(λ)}) = ν({φ(n−1)(λ)}) n ≥ 1.

A similar computation shows that the equality above holds for each n ≤ 0. Thus
µ = ν, that is Sν is a nonconstant, singular, inner eigenfunction of Cφ.

Each inner function can be factored in an essentially unique way in a product
of a singular inner function and a Blaschke product. The natural question now is
which Blaschke products are eigenfunctions of Cφ. If B is a Blaschke product and
z a zero of B we denote by mult(z) the multiplicity of z.

Theorem 3.5 A Blaschke product B is an eigenfunction of Cφ if and only if,
either B is a unimodular constant, or B has the following properties. If Z(B)
denotes the set of all zeros of B, then for each λ ∈ Z(B) we have that Orb(λ) ⊆
Z(B) and for each z, w ∈ Orb(λ), mult(z) =mult(w).

Proof. Suppose B is a Blaschke product, having infinitely many zeros. If a ∈ D
denote b = φ−1(a) and

φa(z) =
a− z
1− āz

, z ∈ D.

Observe that
φa ◦ φ = eiθφb
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for some unimodular eiθ. We see that, if (zn)n is the sequence of the zeros of B, each
one repeated according to its multiplicity, then B ◦ φ is a Blaschke product having
zeros (φ−1(zn))n. B is an eigenfunction of Cφ if and only if the Blaschke products
B and B ◦φ mutually divide each other, as inner functions. This is equivalent with
the fact that, B and B ◦φ have the same zeros with exactly the same multiplicities
([1]). In this situation is plain to see that for each integer n, B ∼ B ◦ φ(n). The
desired conclusion is now immediate. Indeed, if λ ∈ Z(B) then Orb(λ) must be
contained by Z(B) because otherwise, for some n, B and B ◦ φ(n) would fail to
have the same zeros. Also, on each orbit Orb(λ) ⊆ Z(B), the multiplicity function
should be constant, since for each n, B and B ◦ φ(n) should have the same zeros
with the same multiplicities. Clearly Blaschke products whose set of zeros is a
union of full orbits and such that the zeros in each orbit have the same multiplicity
are eigenfunctions of Cφ. Observe that nonconstant Blaschke products with finitely
many factors cannot be eigenfunctions of Cφ by the same argument we use in the
proof of Example 1.2.

We wish to make the following coments here. Observe that the statement of this
theorem says that the set of all zeros of B must be a union of full orbits and the zeros
belonging to the same orbit should have the same multiplicity, i.e. the multiplicity
function must be constant on each orbit, which of course does not exclude the
possibility that the multiplicity function have distinct values on different orbits.
Also observe that distinct orbits must be disjoint sets. Can the situation described
in the theorem above occur frequently? Some examples might be in order here.

Remark 1. For each z ∈ D, we have that
∑
λ∈Orb(z)(1 − |λ|) is convergent,

that is the Blaschke product having zeros (φ(n)(z))n, each with multiplicity 1, is
convergent.

Proof. It is easy to verify that for each positive integer n we have that

(6) 1− |φ(n)(z)|2 =
4(1− |z|2)

(1− 1
3n )2|z|2 + 2(1− 1

32n )Rez + (1 + 1
3n )2

.
1
3n

and

(7) 1− |φ(−n)(z)|2 =
4(1− |z|2)

(1− 1
3n )2|z|2 − 2(1− 1

32n )Rez + (1 + 1
3n )2

.
1
3n
.

It is equally easy to deduce from (6) that the series
∑
n≥1(1 − |φ(n)(z)|2) is con-

vergent since
∑
n≥1

1
3n < ∞. For the same reason

∑
n≥1(1 − |φ(−n)(z)|2) < ∞.

Observe that, if (λn)n is a sequence in D, then
∑
n(1 − |λn|) < ∞ if and only if∑

n(1− |λn|2) <∞ because

1− |λn|2 ≤ 2(1− |λn|) ≤ 2(1− |λn|2).

We deduce
∑
n∈Z(1− |φ(n)(z)|) <∞ for each z ∈ D.

We have already observed that, if z, w ∈ D then Orb(z) and Orb(w) either
coincide or are disjoint. In connection with that we wish to make the following
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Remark 2. There exist convergent Blaschke products B such that B is an
eigenfunction of Cφ and Z(B) is an infinite union of distinct orbits.

Proof. Choose a sequence (zn)n in D such that for each i, j ≥ 0, i 6= j, we have
Orb(zi) 6= Orb(zj) and such that both 1 and −1 are not accumulation points for
the set {zj : j ≥ 1}. Taking into account this last condition and equalities (6) and
(7) we deduce that there exist c, c′ > 0 such that

(8) 1− |φ(n)(zj)|2 ≤ c
1
3n

(1− |zj |2) n ≥ 1, j ≥ 1

and

(9) 1− |φ(−n)(zj)|2 ≤ c′
1
3n

(1− |zj |2) n ≥ 1, j ≥ 1.

To see it is so, observe that

(3n + 1)± (3n − 1)zj = (3n − 1)(
3n + 1
3n − 1

± zj).

As n → ∞, 3n+1
3n−1 → 1, but the set {zj : j ≥ 1} is not arbitrarily close to 1 or

−1. Now, if we require that
∑
j≥1(1 − |zj |) < ∞, we deduce by (8) and (9) that

the Blaschke product having zeros (φ(n)(zj))n∈Z,j≥1 each with multiplicity 1, is
convergent and is, according to Theorem 3.5 an eigenfunction of Cφ

These two theorems completely characterize those inner functions which are
eigenfunctions of Cφ. Indeed, if u is inner, u = BSν where B is a (possibly constant)
Blaschke product and ν is a singular, positive, finite, Borel measure on T (see [5],
[6], [7], or [13]). This decomposition of u is unique up to multiplication with
a unimodular constant. u is an eigenfunction of Cφ if and only if u and u ◦ φ
mutually divide each other as inner functions. This is true if and only if the Blaschke
products, respectively the singular inner functions associated to u and u◦φ mutually
divide each other ([1]), i.e. if and only if both B and Sν are eigenfunctions of
Cφ. The description of the inner eigenfunctions of Cφ provided in this section
works for any composition operator induced by a disk automorphism since in the
proofs of the two theorems describing the singular inner eigenfunctions and the
Blaschke products which are eigenfunctions we only used the fact that φ is a disk
automorphism.

4. Some Applications

In this section we make use of the previously obtained results to decide if the
cyclic, invariant subspaces of Cφ are minimal invariant or not.

Proposition 4.1 If ν is a positive, finite, singular, Borel measure on T, and
ν({1}) 6= 0, then KSν is not minimal invariant.

Proof. If ν({1}) = a > 0, exp(−a 1+z
1−z ) is a common, inner divisor of the family of

inner functions {Sν ◦ φ(n) : n ≥ 1}, and consequently divides the greatest common
inner divisor Sµ, of the same family of inner functions. The fact that the greatest
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inner divisor referred above is a singular inner function is clear, since it is an inner
function without zeros in D. To see that exp(−a 1+z

1−z ) is a common divisor, observe
that exp(−a 1+z

1−z ) ◦ φ(n) = exp(−3na 1+z
1−z ). Therefore we have that µ({1}) ≥ a > 0,

(see [1]). By Corollary 3.3, Sµ cannot be an eigenfunction of Cφ, and by Theorem
1.3, KSν cannot be minimal invariant.

So if we need a minimal invariant cyclic subspace generated by a nonconstant,
singular inner function Sν , we should first make sure that 1 and −1 are in the
support of ν, and ν({1}) = 0. Nevertheless, this is not enough.

Proposition 4.2 Under the assumptions above on ν, if
∫
T

1
θ2 dν(θ) < ∞ then

KSν is not minimal invariant.

Proof. Consider z = r, for 0 < r < 1. We have

1− |Sν(z)|
1− |z|

=
1− e−

∫
T
P (z,θ)dν(θ)

1− |z|
≤
∫
T
P (z, θ)dν(θ)

1− |z|

because ex ≥ x+ 1, for each x ∈ R. So

1− |Sν(z)|
1− |z|

≤
∫
T

P (r, θ)
1− r

dν(θ)

and for 0 < |θ| ≤ π, we have that P (r, θ) ≤ π2

θ2 (1− r). Therefore

1− |Sν(z)|
1− |z|

≤ π2

∫
T

1
θ2
dν(θ) <∞

for each r, 0 < r < 1. Let now r → 1, and deduce lim infz→1
1−|Sν(z)|

1−|z| < ∞, so
by the Julia-Carathéodory theorem ([4], Theorem 2.44), the nontangential limit of
Sν at 1 exists and is unimodular, and hence nonzero. The conclusion follows by
Theorem 2.2.
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5. Bilateral Orbits of Invertible Operators

The purpose of this section is to generalize the main idea in [2] to a statement
valid for a larger class of invertible Banach space operators and then, use this result
to give a shorter proof to a more general version of Theorem 1.4. Throughout this
section X will denote a complex Banach space and T will be an invertible, bounded
operator acting on X . The bilateral orbit of x ∈ X under T is the set Orb(x) =
{Tnx : n ∈ Z}. We say that the bilateral orbit of x approaches 0 exponentially if
there exist constants M > 0 and a, 0 < a < 1 such that ||Tnx|| ≤ Man for each
n ≥ 1, or ||T−nx|| ≤ Man for each n ≥ 1. The main idea in [2] was constructing
eigenvectors of the form described in Theorem 1.4. This construction works in the
following general framework.

Theorem 5.1 If x 6= 0 and lim ||T−nx|| 1n lim ||Tnx|| 1n < 1, then the point spec-
trum of the restriction of T to the invariant subspace ∨∞n=−∞T

nx contains an open
annulus centered at 0.

Proof. Denote l = lim ||Tnx|| 1n < 1

lim ||T−nx|| 1n
= L. Consider the vector vλ =∑∞

n=−∞ λnT−nx. Observe that lim ||λnT−nx|| 1n = |λ| lim ||T−nx|| 1n < 1 if |λ| < L,
and lim ||λ−nTnx|| 1n = |λ|−1 lim ||Tnx|| 1n < 1 if l < |λ| so the series we considered
converges for each λ in the annulus A = {z ∈ C : l < |z| < L}. Clearly Tvλ = λvλ.
The only thing there is to prove now is that vλ 6= 0 for all λ in an open annulus.
Since x 6= 0 we can choose ϕ a bounded linear functional on X such that ϕ(x) 6= 0.
Therefore the function f(λ) =

∑∞
n=−∞ λnϕ(T−nx) = ϕ(vλ) is a nonzero function

analytic on A and therefore its set of zeros will be a discrete subset of A. This means
that vλ can be zero only if λ belongs to this discrete set so the point spectrum of
our operator will contain a full open annulus.

The statement in Theorem 1.4 can be generalized in this framework as follows.

Corollary 5.2 If x 6= 0, Orb(x) is bounded and approaches 0 exponentially, then
the point spectrum of the restriction of T to the invariant subspace ∨∞n=−∞T

nx
contains an open annulus centered at 0.

Proof. If ||Tnx|| ≤Man then lim ||Tnx|| 1n ≤ a. The fact that the bilateral orbit is
bounded implies that lim ||T−nx|| 1n ≤ 1. Hence

lim ||T−nx|| 1n lim ||Tnx|| 1n < 1.

If ||T−nx|| ≤Man replace T by T−1 in the argument above.

We return now to the hyperbolic composition operator and give a short proof to
a generalized version of Theorem 1.4.

Theorem 5.3 If u is a nonzero function in H2 such that there exist constants
ε and δ, − 1

2 < −δ < ε < 1
2 so that

(i)
|u(eiθ)|
|1− eiθ|ε

is essentially bounded on an open arc C1 containing 1
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(ii)
|u(eiθ)|
|1 + eiθ|δ

is essentially bounded on an open arc C−1 containing −1

then the point spectrum of the restriction of Cφ to the invariant subspace
∨∞n=−∞C

n
φu contains an open annulus centered at 0.

Proof. We shall prove lim ||C−nφ u|| 1n ≤ 3−δ < 3ε ≤ (lim ||Cnφu||
1
n )−1. Like in the

proof of Theorem 2.2 write

(10) ||Cnφu||2 =
1

2π

∫
φ(−n)(C1)

|u◦φ(n)(eiθ)|2dθ+
1

2π

∫
φ(−n)(T\C1)

|u◦φ(n)(eiθ)|2dθ =

=
1

2π

∫
φ(−n)(C1)

|u ◦ φ(n)(eiθ)|2dθ +
1

2π

∫
|θ|>c

|u(eiθ)|2P (φ(n)(0), θ)dθ ≤

≤ 1
2π

∫
φ(−n)(C1)

|u ◦ φ(n)(eiθ)|2dθ + P (φ(n)(0), c)||u||2

where −c and c are the arguments of the endpoints of C1. Solve now (2) for 3n and
get the identity

(11)
(1− z)(1 + φ(n)(z))
(1 + z)(1− φ(n)(z))

= 3n.

Use now (i) and (11) to obtain that

|u(φ(n)(eiθ))|2 =
1

32nε

(
|1− eiθ|
|1 + eiθ|

)2ε

|u(φ(n)(eiθ))|2
(
|1 + φ(n)(eiθ)|
|1− φ(n)(eiθ)|

)2ε

≤

≤ M

32nε

(
|1− eiθ|
|1 + eiθ|

)2ε

a.e. on φ(−n)(C1)

for some M > 0. Taking (10) and this last inequality into consideration and writing
the Poisson kernel explicitly we obtain

(12) ||Cnφu||
1
n ≤ 1

3ε

(
1

2π
M

∫ π

−π

(
|1− eiθ|
|1 + eiθ|

)2ε

dθ+

+4
32nε+n

(3n + 1)2(1− 2|φ(n)(0)| cos c+ |φ(n)(0)|2)
||u||2

) 1
2n

Observe now that
∫ π
−π(|1−eiθ|/|1+eiθ|)2εdθ is finite if and only if − 1

2 < ε < 1
2 and

lim
n→∞

32nε+n

(3n + 1)2(1− 2|φ(n)(0)| cos c+ |φ(n)(0)|2)
<∞

only if ε ≤ 1
2 . Now let n go to infinity in (12) and deduce lim ||Cnφu||

1
n ≤ 3−ε i.e.

3ε ≤ 1/ lim ||Cnφu||
1
n . To obtain lim ||C−nφ u|| 1n ≤ 3−δ repeat the same argument

with −1 instead of 1, C−nφ instead of Cnφ , C−1 instead of C1, and δ instead of ε.
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Remark 3. To get Theorem 1.4 choose ε > 0 and δ = 0 in Theorem 5.3. Also
observe that, by the proof of Theorem 2.2 condition (a) in Theorem 1.4 is sufficient
for (C−nφ u)n to be a norm-bounded sequence whereas, by the proof of Theorem 5.3,
condition (b) is sufficient for the sequence (Cnφu)n to approach exponentially 0 with
rate a = 3−ε.

The essential boundedness conditions (i) and (ii) can be replaced by more general
mean boundedness conditions.

Theorem 5.4 If u ∈ H2, u 6= 0 is such that there exist constants ε, δ, p1, p2, and
open arcs C1 and C−1 containing 1 and −1, respectively, such that

(i)′
∫
C1

|u(eiθ)|2p1

|1− eiθ|2p1ε
P (φ(n)(0), θ)dθ is bounded for n ≥ 1

(ii)′
∫
C−1

|u(eiθ)|2p2

|1 + eiθ|2p2δ
P (φ(−n)(0), θ)dθ is bounded for n ≥ 1

and if −δ < ε, − 1
2q1

< ε < 1
2q1

, − 1
2q2

< δ < 1
2q2

, where q1 = 1 − 1
p1

, q2 = 1 − 1
p2

,
1 < p1, 1 < p2, then the point spectrum of the restriction of Cφ to the invariant
subspace ∨∞n=−∞C

n
φu contains an open annulus centered at 0.

Proof. The only difference between the proof of Theorem 5.3 and this proof is that
here we use Hölder’s inequality for 1 < pi, qi < ∞, i = 1, 2 instead of using it for
1 and ∞ as we did in the other proof. Now we argue exactly as in the proof of
Theorem 5.3, until we obtain

|u(φ(n)(eiθ))|2 =
1

32nε

(
|1− eiθ|
|1 + eiθ|

)2ε

|u(φ(n)(eiθ))|2
(
|1 + φ(n)(eiθ)|
|1− φ(n)(eiθ)|

)2ε

≤

≤ M

32nε

(
|1− eiθ|
|1 + eiθ|

)2ε |u ◦ φ(n)(eiθ)|2

|1− φ(n)(eiθ)|2ε
a.e. on φ(−n)(C1)

for some M > 0. Integrate on φ(−n)(C1) and use Hölder’s inequality to get∫
φ(−n)(C1)

|u ◦ φ(n)(eiθ)|2 ≤

≤ M

32nε

(∫
φ(−n)(C1)

(
|1− eiθ|
|1 + eiθ|

)2q1ε

dθ

) 1
q1

(∫
φ(−n)(C1)

|u ◦ φ(n)(eiθ)|2p1

|1− φ(n)(eiθ)|2p1ε
dθ

) 1
p1

The last quantity is equal to

M

32nε

(∫
φ(−n)(C1)

(
|1− eiθ|
|1 + eiθ|

)2q1ε

dθ

) 1
q1
(∫

C1

|u(eiθ)|2p1

|1− eiθ|2p1ε
P (an, θ)dθ

) 1
p1

≤ M ′

32nε

(∫
φ(−n)(C1)

(
|1− eiθ|
|1 + eiθ|

)2q1ε

dθ

) 1
q1
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for some M ′ > 0, where an = φ(n)(0). We took of course condition (i)′ into
consideration. We continue now exactly as in the proof of Theorem 5.3 replacing in

(12) the integral
∫ π
−π

(
|1−eiθ|
|1+eiθ|

)2ε

dθ by the integral
(∫ π
−π

(
|1−eiθ|
|1+eiθ|

)2q1ε

dθ

) 1
q1

. This

last integral is finite only if − 1
2q1

< ε < 1
2q1

. Like in the proof of Theorem 5.3 we

get lim ||Cnφu||
1
n ≤ 3−ε and lim ||C−nφ u|| 1n ≤ 3−δ.

Let’s give an example where Theorem 5.4 can be applied. Suppose p > 2 and u
is analytic on D, such that

∫ π
−π |u(eiθ)|p/|1−eiθ|2dθ <∞. In this case u ∈ Hp(D) ⊆

H2. Furthermore, if P denotes the right open half-plane P = {z ∈ C : Rez > 0},
then the function v(w) = u((w−1)/(w+1)), w ∈ P, is in Hp(P) and the converse
is also true i.e. if v ∈ Hp(P) and we define u(z) = v((1 + z)/(1− z)), z ∈ D, then
u ∈ Hp(D) and

∫ π
−π |u(eiθ)|p/|1−eiθ|2dθ <∞. We refer to [7] for these statements.

Theorem 5.5 If for some p > 2 we have that
∫ π
−π |u(eiθ)|p/|1−eiθ|2dθ <∞, u 6=

0, and u(eiθ) is essentially bounded on an open arc containing −1, then the point
spectrum of the restriction of Cφ to the invariant subspace ∨∞n=−∞C

n
φu contains an

open annulus centered at 0.

Proof. The essential boundedness of u(eiθ) on an open arc containing −1 shows
that condition (ii)′ holds for δ = 0 for any p2 > 1. Choose now p1 > 1 and ε > 0
such that 2p1 < p and ε < min(1/p, 1/2q1) where as usual 1

q1
= 1 − 1

p1
. Clearly

−δ < ε. Consider now the sequence

(13)
∫ π

−π

|u(eiθ)|2p1

|1− eiθ|2p1ε
P (an, θ)dθ, n ≥ 1

where an = 3n−1
3n+1 = φ(n)(0). Set eiθ = it−1

it+1 , observe that dθ = 2
1+t2 dt, P (an, θ) is

transformed into 3n(1+t2)
32n+t2 , and hence the sequence in (13) is bounded if and only if

the following sequence is bounded.

(14)
∫ ∞
−∞

|v(it)|2p13n(1 + t2)p1ε

32n + t2
dt, n ≥ 1

where v ∈ Hp(P) is obtained from u by v(w) = u((w − 1)/(w + 1)), w ∈ P,
and v(it) is the limit function of v. Consider now M > 0 and set α = p/2p1,
1/β = 1− 1/α. Since 3n|t|

(32n+t2) ≤
1
2 for each n ≥ 1 and t ∈ R, we can write

∫
|t|≥M

|v(it)|2p13n(1 + t2)p1ε

32n + t2
dt ≤ 1

2

∫
|t|≥M

|v(it)|2p1(1 + t2)p1ε

|t|
dt ≤

1
2

(∫
|t|≥M

|v(it)|2p1αdt

) 1
α
(∫
|t|≥M

(1 + t2)βp1ε

|t|β
dt

) 1
β

≤

1
2

(∫
|t|≥M

|v(it)|pdt

) 1
α
(∫
|t|≥M

(1 + 1
t2 )βp1ε

|t|β−2βp1ε
dt

) 1
β

<∞
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if β − 2βp1ε > 1 which is equivalent to ε < 1
p . Of course, above we made use of

Hölder’s inequality and the fact that v ∈ Hp(P). So all there is to prove now in
order to show that p1 and ε satisfy condition (i)′ is that the following sequence is
bounded. ∫ M

−M

|v(it)|2p13n(1 + t2)p1ε

32n + t2
dt, n ≥ 1

There is no problem to see that there is some c > 0 such that

|v(it)|2p13n(1 + t2)p1ε

32n + t2
≤ c|v(it)|2p1 if |t| ≤M,n ≥ 1

and ∫ M

−M
|v(it)|pdt <∞ implies

∫ M

−M
|v(it)|2p1dt <∞

because 2p1 < p.

6. Final Comments

The following fact, probably known to many mathematicians is worth mentioning
here.

Proposition 6.1 If f ∈ H2 and u, F are the inner, respectively the outer part
of f then f is an eigenfunction of Cφ if and only if both u and F are eigenfunctions
of Cφ.

Proof. If ϕ is an inner function, we denote its radial limit also by ϕ. This function
naturally induces a measure mϕ−1 on T by

(15) mϕ−1(E) = m(ϕ−1(E))

where m is the normalized Lebesgue measure on T. It is proved in [10] that this
measure is absolutely continuous with respect to m. Consequently, if ϕ = φ and E
is a Borel subset of T such that m(E) = 0, then m(φ(E)) = 0. Suppose now g is any
H1-function such that |g(eiθ)| = |F ◦φ(eiθ)| a.e. on T, then |g ◦φ−1(eiθ)| = |F (eiθ)|
a.e. on T, and since h→ h ◦φ−1 is a bounded operator on H1 ([10]), g ◦φ−1 ∈ H1.
The fact that F is outer implies ([7], pag. 62), |g ◦φ−1(z)| ≤ |F (z)| for each z ∈ D,
so that |g(z)| ≤ |F ◦ φ(z)| for each z ∈ D. This means F ◦ φ is an outer function,
([7], pag. 62). u◦φ is obviously inner. So if f ◦φ = λf , then u(λF ) = (u◦φ)(F ◦φ),
and the unicity of the decomposition of an H2-function in the product of its inner
and outer factors implies that both u and F must be eigenfunctions of Cφ. The
converse of this implication is trivial.

To complete the characterization of the eigenfunctions of Cφ one should now
answer the following

Question Which outer functions are eigenfunctions of Cφ ?

Schroeder’s equation for our automorphism φ, that is the functional equation
u ◦ φ = λu was solved in [3], Proposition 4.4. The solution provided there doesn’t
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tell us though which of those functions are H2 functions i.e. eigenfunctions of
Cφ, which are inner or outer. Nevertheless one can use that characterization of
the solutions of Schroeder’s equation in order to realize there are lots of outer
eigenfunctions of Cφ and they can have a rather general form, as we can see in the
following

Example 6.2 For each function u analytic and bounded on the annulus

A = {z ∈ C : e−
π2

log 3 < |z| < e
π2

log 3 }

there is a constant c ∈ C, such that

v(z) = exp
{

α

log 3
log
(

1 + z

1− z

)}{
u

(
exp
{

2πi
log 3

log
(

1 + z

1− z

)})
+ c

}
, z ∈ D

is an outer eigenfunction of Cφ associated to the eigenvalue λ = eα, for each α,
− 1

2 log 3 < Reα < 1
2 log 3, where log denotes the principal branch of the logarithm

function acting on P.

Proof. Since 1+φ(z)
1−φ(z) = 3 1+z

1−z and c ◦ φ = c, it is easy to verify that Cφv = λv. It is

equally easy to verify that the function γ(z) = exp
{

α
log 3 log

(
1+z
1−z

)}
and its recipro-

cal 1
γ(z) are in H2 (see [10], proof of Theorem 6 for the details). Hence γ is an outer

H2 function. Choose c such that the function w(z) = u
(

exp
{

2πi
log 3 log

(
1+z
1−z

)})
+ c

be bounded bellow, which is possible since u is a bounded function. So w is an
analytic, bounded function on D and so is its reciprocal 1

w . Hence w is a bounded
outer function. The product of a bounded outer function and an H2 outer function
is an H2 outer function.

Remark 4. The spectrum of Cφ is the closed annulus A = {z ∈ C : 3−
1
2 ≤

|z| ≤ 3
1
2 }, ([10], Theorem 6). This author observed in [9] that the point spectrum

is the interior of this annulus. The outer eigenfunctions exhibited in Example 6.2
correspond to each eigenvalue in the point spectrum.
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