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Contemporary Mathematics

Nonminimal Cyclic Invariant Subspaces
of Hyperbolic Composition Operators

Valentin Matache

Abstract. Operators on function spaces acting by composition to the right

with a fixed self-map ϕ are called composition operators. We denote them Cϕ.

Given ϕ, a hyperbolic disc automorphism, the composition operator Cϕ on the
Hilbert Hardy space H2 is considered. The bilateral cyclic invariant subspaces

Kf , f ∈ H2, of Cϕ are studied, given their connection with the invariant

subspace problem, which is still open for Hilbert space operators. We prove
that nonconstant inner functions u induce non–minimal cyclic subspaces Ku

if they have unimodular, orbital, cluster points. Other results about Ku when
u is inner are obtained. If f ∈ H2 \ {0} has a bilateral orbit under Cϕ,

with Cesàro means satisfying certain boundedness conditions, we prove Kf is

non–minimal invariant under Cϕ. Other results proving the non–minimality
of invariant subspaces of Cϕ of type Kf when f is not an inner function are

obtained as well.

1. Introduction

In this section, we set up the notation, introduce terminology, and report on
the main results obtained in subsequent sections. We also give a brief survey of the
results related to solving the invariant subspace problem by the study of the cyclic
subspaces of a hyperbolic, automorphic, composition operator.

We call operator any bounded linear transformation of a Hilbert space into
itself. By invariant subspace of an operator T , we mean a closed, linear manifold,
left invariant by T . The collection LatT of all invariant subspaces of T is a lattice
(which is why we use notation LatT ). If T is an operator, then the trivial elements
of LatT are the null subspace and the whole space.

The following is a famous unsolved problem called the invariant subspace prob-
lem.

Problem 1. Does any Hilbert space operator acting on a complex, separable,
infinite dimensional space, always have nontrivial invariant subspaces?

This problem has multiple equivalent reformulations. One of them is in terms
of automorphic, hyperbolic, composition operators. To state it, denote by H2 the
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2 VALENTIN MATACHE

Hilbert Hardy space of all analytic functions on the unit disc U having square–
summable Maclaurin coefficients. For the basics of Hardy space theory, the reader
is referred to [3], [8], or [19]. It is known that any analytic self-map ϕ of U induces
the necessarily bounded operator Cϕ acting on H2:

Cϕf = f ◦ ϕ, f ∈ H2,

called the composition operator with symbol ϕ. If the symbol is a hyperbolic disc
automorphism (that is a conformal automorphism of U with 2 distinct fixed points
situated on the unit circle T = ∂U), we call Cϕ a hyperbolic automorphic composi-
tion operator or briefly, a hyperbolic composition operator.

Let Cϕ be such a composition operator. In [18], the following theorem was
proved.

Theorem 1 ([18]). The answer to Problem 1 is affirmative if and only if the
only atoms contained by LatCϕ are the 1–dimensional eigenspaces.

By an atom of LatT or minimal invariant subspace of T , one means any nonzero
subspace L ∈LatT so that the restriction T |L has trivial invariant subspace lattice,
that is Lat(T |L) = {0,L}.

Given T , a self-map of a set, and x an element of that set we call

OT (x) := {x, T (x), T (T (x)), T (T (T (x))), . . . }

the orbit of x under T . If T is invertible, then

BOT (x) := OT (x) ∪OT−1(x)

is called the bilateral orbit of x under T , (or under T−1). In [10], we made some
obvious remarks on the atoms in LatT when T is invertible (as is the operator
in Theorem 1). More exactly, it is easy to prove that an atom of LatT is doubly
invariant, that is, it is invariant under both T and T−1. Then, let us use the
notation

K+
x =

∞∨
n=0

Tnx K−x =

∞∨
n=0

T−nx, and Kx =

∞∨
n=−∞

Tnx

for the closed subspace spanned by OT (x), OT−1(x), respectively, BOT (x). If L is
an atom of LatT , then

(1) L = K+
x = K−x = Kx, x ∈ L \ {0}.

In particular, if L is an atom of LatT , then

(2)
∨
n≥k

Tnx =
∨
n≥m

T−nx = L, x ∈ L \ {0},m, k ∈ Z.

If T = Cϕ where ϕ is a hyperbolic automorphism, and x = f ∈ H2, denote
by Lf any of the spaces described in (1) or (2). This author raised in [10] the
following :

Problem 2. Given f ∈ H2 \ {0}, can one tell, by the properties of f , if Lf is
an atom of LatCϕ or not?

Since the only known atoms are, so far, the 1–dimensional eigenspaces, this led
to the characterization of eigenfunctions of Cϕ as follows: the inner eigenfunctions
were characterized in [11] (see also [15] for earlier partial characterizations) and
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the outer eigenfunctions in [6], (see also an alternative point of view on inner
eigenfunctions in [6]).

It should be recalled here that inner functions are bounded analytic functions
whose radial limit functions are unimodular a.e. with respect to the arc–length mea-
sure. There are two basic kinds: Blaschke products and singular inner functions.
Unimodular constants and products of finitely many disc automorphisms are called
finite Blaschke products. The infinite Blaschke products are the functions of type

B(z) = λzp
∞∏
k=1

|zk|
zk

zk − z
1− zkz

, z ∈ U,

where {zk} is a sequence of nonzero numbers in U with property

(3)

∞∑
k=1

(1− |zk|) <∞,

|λ| = 1, and p is a nonnegative integer.
For any fixed unimodular constant λ and any nonnegative, finite, Borel measure

µ, on the unit circle T, which is singular with respect to the arc–length measure
denote

(4) λSµ(z) = λe−
∫
T(u+z)/(u−z) dµ(u), z ∈ U.

Any function of type (4) is called a singular inner function. Any inner function
is known to be equal to the product of a singular inner function and a Blaschke
product, these factors being unique modulo unimodular coefficients. Given f ∈ H2,
the function

F (z) = e
∫
T

u+z
u−z log |f(u)| dm(u),

where dm is the normalized arc–length measure on T, is called an outer function,
or more specifically, the outer factor of f . It is well known that any f ∈ H2, f 6= 0,
is representable as a product of an inner function (called the inner factor of f) and
its outer factor, this factorization being unique. Again, we refer to [3], [8], or [19]
for all these notions which will be used in the sequel.

Now, as observed in [11], if ϕ is a disc automorphism, then f ∈ H2 is an
eigenfunction of Cϕ if and only if both the inner and the outer factor of f are
eigenfunctions of Cϕ. This property is not specific to automorphic composition
operators; it holds for composition operators with inner symbols, as we prove in
the second section of this paper (Proposition 1).

The first idea in [10] was “ruling out” classes of functions, in the quest for
functions which might induce an infinite–dimensional atom (if any). More formally,
we say f ∈ H2 \{0} belongs to Nϕ (where N stands for “nonminimal”) if Kf is not
an atom of LatCϕ. Clearly, Nϕ is absorbent in the following sense: if Kf ∩Nϕ 6= ∅
then Kf is nonminimal invariant under Cϕ, and hence, f ∈ Nϕ. Problem 1 has an
affirmative answer if and only if H2 \ {0} = Nϕ ∪ Eϕ, where Eϕ denotes the set of
all eigenfunctions of Cϕ, a hyperbolic composition operator.

The notation ϕ[n] designates the n-fold iterate of ϕ, that is, ϕ[n] = ϕ ◦ · · · ◦ ϕ,
n times, if n is a positive integer, respectively, the |n|–fold iterate of ϕ−1, when n
is negative, and we denote by ϕ[0], the identity function. Then Oϕ(z) = {ϕ[n](z) :

n = 0, 1, 2, 3, . . . } and BOϕ(z) = {ϕ[n](z) : n = 0,±1,±2,±3, . . . }. We use the
terminology c ∈ C is an orbital cluster point of f under ϕ if there is a sequence
{nk} of positive integers and some a ∈ U so that f ◦ ϕ[nk](a) → c. Below we
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list a collection of types of functions known to belong to Nϕ, reviewing the main
results known in that direction. We denote by α and β the attractive, respectively,
the repulsive, fixed point of the hyperbolic automorphism ϕ. The following sets of
functions, denoted Sk, k = 1, . . . , 8 are subsets of Nϕ:

(i) S1, the class of all nonconstant functions in H2 having a nonzero nontangen-
tial limit at one of the fixed points of ϕ which are essentially bounded on some open
arc containing that point; in particular, all nonconstant functions in H∞, the space
of bounded analytic functions, having nonzero nontangential limit at one of the
fixed points of ϕ, [15, Proposition 1.1] and [11, Theorem 2.2] (hence all Blaschke
products with zeros not clustering at one of the fixed points of ϕ, all singular inner
functions whose support does not contain set {α, β}).

(ii) S2, the class of all nonzero functions in SµH
2 if µ({α, β}) > 0, [15, Propo-

sition 2.1].

(iii) S3, the class of all nonzero functions in
√

(z − α)(z − β)H2, [21, Theo-
rem 3.5].

(iv) S4, the class of all functions f ∈ H2 \ {0} which belong to (z − α)
2
pHp \

{0}, for some 2 < p and are essentially bounded on some open arc about β([11,
Theorem 5.5]).

(v) S5, the class of all functions f ∈ H2 \ {0} which are null and Lipschitz
(or Hölder according to some) continuous of order p > 0 at a fixed point of ϕ
(that is, |f(z)| ≤ c|α− z|p for all z in a neighborhood of α) and are bounded on a
neigborhood of the other fixed point, [2].

(vi) S6, the class of all nonzero functions f in the unit ball of H∞, having
property

lim
n→∞

(
|f(zn)|2 + |f ′(zn)|(1− |zn|2)

)
= 1

where {zn} tends nontangentially to one of the fixed points of ϕ [16, Theorem 3.3].

In Section 2, Theorem 2, we add the following item to the list above:

(vii) S7, the class of all nonconstant inner functions with unimodular orbital
cluster points, (hence all thin interpolating Blaschke products [6, Proposition 2.2]).
Technically, we prove that S7 ⊆ S1

The proofs showing that Sk ⊆ Nϕ, k = 1, 4, 5, consist of establishing the
relation

(5) Sk ⊆ SC k = 1, 4, 5,

where SC is the class of all nonconstant functions f ∈ H2 with the property C ⊆ Kf ,
where C is the subspace of constant functions. The obvious relation Cϕ1 = 1 implies
that SC ⊆ Nϕ.

In Section 3, we add to the list above the class

(viii) S8 consisting of all nonzero H2–functions whose bilateral orbit under a
hyperbolic composition operator has associated Cesàro means which satisfy cer-
tain norm–boundedness conditions, (see Theorem 7 for an exact description of this
result, and Corollary 3 for examples).

Besides the aforementioned results, Sections 2 and 3 contain several stronger
versions of results originally obtained by this author or others, focusing on the min-
imality or non–minimality of cyclic invariant subspaces of hyperbolic composition
operators.
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2. Inner functions

This section is dedicated to the study of the cyclic spaces generated by inner
functions under hyperbolic composition operators and related results. We begin
by proving the announced property of composition operators with inner symbols,
namely, the one saying that f ∈ H2 is an eigenfunction of such a composition
operator Cϕ, if and only if both the inner and the outer factor of f are eigenfunctions
of Cϕ.

We prove first the principle “outer ◦ inner=outer”. More formally, in [1,
Lemma 2.9] an older formula of Nordgren [17] is presented in the form

(6)

∫
T
P (ϕ(z), u)f(u) dm(u) =

∫
T
P (z, u)f ◦ ϕ(u) dm(u) f ∈ L1

T,

where, P (z, u), z ∈ U, u ∈ T is the usual Poisson kernel. Formula (6) is valid for
any inner function ϕ.

Lemma 1. If F is an outer function in H2 and ϕ is an inner function, then
F ◦ ϕ is an outer function.

Proof. Let
F (z) = e

∫
T

u+z
u−z log |f(u)| dm(u).

Then

log |F ◦ ϕ(0)| =
∫
T

log |f(u)|P (ϕ(0), u) dm(u) =

∫
T

log |f ◦ ϕ(u)| dm(u),

by (6). This, according to [19, Theorem 17.17], ends the proof. �

The announced result can now be stated and proved.

Proposition 1. If Cϕ is a composition operator with inner symbol, then
f ∈ H2 is an eigenfunction of Cϕ if and only if both the inner and the outer
factor of f are eigenfunctions of Cϕ.

Proof. The statement in this proposition is an immediate consequence of
the well-known fact that a composite of two inner functions is an inner function,
Lemma 1, and the uniqueness of the inner-outer factorization of an H2–function.

�

It should be observed that if F in Lemma 1 is bounded, then the requirement
that ϕ be inner can be dropped:

Remark 1 ([20, Chapter III, Corollary of Proposition 3.3]). If the outer func-
tion F is bounded, then F ◦ ϕ is an outer function for all analytic self-maps ϕ
of U.

Next, we will prove that u ∈ Nϕ when u is a nonconstant inner function
with unimodular orbital cluster points. First, we develop some necessary technical
results. Recall that, as observed in [12, Lemmas 1 and 2]:

Lemma 2. In a Hilbert space, a sequence {vn} in the closed unit ball of that
space, tends weakly to a norm–one vector v if and only if that sequence is norm
convergent to v. Therefore, a sequence of inner functions {un} is convergent weakly
in H2 to a norm–one function u if and only if ‖un − u‖2 → 0 and, in that case, u
is also an inner function.
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Above and throughout this paper, the notation ‖ ‖2 designates the norm of
H2. A first application of Lemma 2 is the following:

Proposition 2. The set I of all inner functions is a norm–closed subset of
H2. If u is inner, ϕ is an inner self-map of U, and {λn} is a sequence in T such that
the sequence {λnu ◦ϕ[n]} is ‖ ‖2–convergent, then Ku is not a minimal invariant
subspace of Cϕ, unless u is an eigenfunction of Cϕ.

Proof. Indeed, assume that {vn} is a sequence of inner functions and ‖vn −
v‖2 → 0. Then ‖v‖2 = 1 and hence, v ∈ I by Lemma 2. Assume that the sequence
{λnu◦ϕ[n]} tends to some f ∈ H2. Then f must be an inner function, hence f 6= 0.
Also, there is some c ∈ T, so that Cϕf = cf , that is, f is an eigenfunction of Cϕ.
Indeed,

(7) Cϕλnu ◦ ϕ[n] =
λn
λn+1

(
λn+1u ◦ ϕ[n+1]

)
n = 1, 2, 3, . . .

and one can find a sequence {nk} of distinct positive integers so that {λnk
/λnk+1}

converges to some c, substitute n by nk in (7), then let k →∞. One gets f ◦ ϕ =
cf . �

Recall that the space H2 is a RKHS (Reproducing Kernel Hilbert Space) where
the kernel functions are uniformly bounded on compacts. In a RKHS, a sequence
of functions is weakly convergent if and only if it is norm–bounded and pointwise
convergent (a well-known fact). If that space consists of analytic functions and
the kernel functions are uniformly bounded on compacts, then a normal family
argument can be used to show that actually, any weakly convergent sequence is not
just pointwise convergent, but even uniformly convergent on compacts to its limit
(see [14]).

Proposition 3. If {un} is a sequence of inner functions and λ ∈ T, then the
following statements are equivalent:

(8) ‖un − λ‖2 → 0.

(9) un → λ weakly in H2.

(10) un → λ uniformly on compacts.

(11) un → λ pointwise.

(12) un(a)→ λ for some a ∈ U.

Proof. It is well known that (8)=⇒ (9) =⇒ (10) =⇒ (11) =⇒ (12). Assume
first that a = 0 and (12) holds. Then

‖un − λ‖22 = 2
(
1−<(λun(0))

)
→ 0.

This ends the proof if a = 0. If a 6= 0, let αa(z) = (a − z)/(1 − az), z ∈ U.
The condition un(a) → λ can be written as un ◦ αa(0) → λ, and so one
deduces, by what we have already proved, that ‖Cαaun − λ‖2 → 0. Therefore,
‖CαaCαaun − Cαaλ‖2 → 0. Given that CαaCαa = I and Cαaλ = λ, the conclusion
follows. �

Proposition 3 extends and completes a result in [7] (see also [4]). Based on it,
we can write a very short proof for the following:
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Theorem 2. Let u and ϕ be inner functions. If, for some a ∈ U, one has that

(13) lim sup
n→∞

|u ◦ ϕ[n](a)| = 1,

then C ⊆ Ku and so Ku is minimal invariant if and only if u is constant.

Proof. Condition (13) and the compactness of T imply the fact that there is
some subsequence {u ◦ϕ[nk](a)} and a constant λ ∈ T so that u ◦ϕ[nk](a)→ λ. By
Proposition 3, one gets that ‖u ◦ ϕ[nk] − λ‖2 → 0, which implies C ⊆ Ku. �

Theorem 2 extends results in [10] and [15]. It is worth noting the following:

Corollary 1. Let u and ϕ be inner functions. If, for some a ∈ U, one has
that

∞∑
n=1

(
1− |u(ϕ[n](a))|)

)
<∞ or, (if Cϕ is invertible),

∞∑
n=1

(
1− |u(ϕ[−n](a))|)

)
<∞,

then Ku is not minimal invariant for Cϕ. Hence, if u is an inner eigenfunction of
Cϕ, then ∑

n=1

(
1− |u(ϕ[n](a))|)

)
=∞ and, (if Cϕ is invertible),

∞∑
n=1

(
1− |u(ϕ[−n](a))|)

)
=∞.

It is known that several kinds of inner functions ϕ, (hyperbolic automorphisms
included), have Blaschke summable orbits [9], that is, for all a ∈ U, the sequence
{zn = ϕ[n](a)} satisfies condition (3). Also, the orbit of any point in U under
a hyperbolic disc automorphism is a sequence which tends to the attractive fixed
point α of that automorphism through a Stolz angle with vertex at α. Therefore,
it is worth raising the following:

Problem 3. Can one describe in easier terms, the set Sα consisting of all inner
functions which transform Blaschke summable sequences which converge to α ∈ T
through some Stolz angle with vertex at α, into Blaschke summable sequences?

What we mean is, given α ∈ T, for what kind of inner functions u is it true
that, if {zn} is a sequence in U, which satisfies (3) and zn → α through some Stolz
angle with vertex at α, it follows that sequence {u(zn)} satisfies

∞∑
n=1

(1− |u(zn)|) <∞?

Remark 2. If ϕ is a hyperbolic disc automorphism with attractive fixed point
α, then Sα ⊆ S7 ⊆ SC ⊆ Nϕ.

It is beyond the scope of this paper to solve Problem 3. However, let us give
examples of functions in Sα.

Example 1. If u is an inner function so that there is a Stolz angle Γ with
vertex at α ∈ T and some C > 0 so that

(14) 1− |u(z)| ≤ C(1− |z|), z ∈ Γ,

then u ∈ S1 ∩ Sα.
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It is evident that u ∈ Sα if (14) holds. Also, by condition (14),

lim inf
z→α

1− |u(z)|
1− |z|

<∞

which, by the well-known Julia–Carathéodory theorem, implies the fact that u has
a finite angular derivative at α and hence a unimodular nontangential limit at α.
Therefore, one has that u ∈ S1.

In the following, we will use the terminology “the greatest common inner divi-
sor” of a family of inner functions, rather than “a greatest common inner divisor”,
recalling that any two greatest common inner divisors of that family of functions are
unimodular scalar multiples of each other. In [10], the author proved the following
theorem about the minimality of Ku when u is inner:

Theorem 3 ([10, Theorem 3]). If u is inner and Ku a minimal invariant
subspace for Cϕ, a hyperbolic composition operator, then for all n, the greatest

common inner divisor of the functions in {u ◦ ϕ[k] : k ≥ n}, respectively, in {u ◦
ϕ[−k] : k ≥ n} must be an eigenfunction of Cϕ.

Theorem 3 is not specific to cyclic subspaces induced by inner functions, as we
prove in the following. First let us introduce some terminology and needed notation.
If two inner functions u and v divide each other, that is, if u|v and v|u, we denote
this fact by u ∼ v. As is well known, u ∼ v if and only if u is a unimodular multiple
of v, that is, if and only if there is some λ ∈ T, so that u = λv. Given f ∈ H2 \ {0}
and some fixed n ∈ Z, we denote by v+n the greatest common inner divisor of the
inner factors of f ◦ϕ[k], k ≥ n, and by v−n the greatest common inner divisor of the
inner factors of f ◦ ϕ[k], k ≤ n. By v we denote the greatest common inner divisor
of the inner factors of f ◦ ϕ[k], k ∈ Z. With this notation, Theorem 3 upgrades to:

Theorem 4. If f ∈ H2 \ {0} induces the minimal invariant subspace Kf , of
Cϕ an automorphic composition operator, then

(15) v ∼ v+n ∼ v−k n, k ∈ Z.
Whether, Kf is minimal or not, v is an eigenfunction of Cϕ.

Proof. Clearly, one has that v|v+n and v|v−k , for all n, k ∈ Z. On the other
hand, if Kf is minimal, then Kf =

∨
j≥n C

j
ϕf ⊆ v+nH

2, so v+n |v, n ∈ Z. Thus

v ∼ v+n , n ∈ Z. By a similar argument, one gets v ∼ v−k , k ∈ Z. The only thing
left is to show v ∼ v ◦ ϕ, which means v is an eigenfunction of Cϕ associated to a
unimodular eigenvalue.

To that aim, for u inner and f in H2 \ {0}, we will write u|f and mean that u
divides the inner factor of f . Note that, in that case, it follows that u◦ϕ[k]|f ◦ϕ[k],
k ∈ Z. Our proof will be over as soon as we prove v ◦ ϕ|v and v ◦ ϕ−1|v, since
one gets immediately v ◦ ϕ−1 ◦ ϕ|v ◦ ϕ, that is, v ∼ v ◦ ϕ. Whether Kf is minimal
invariant or not, one has that

v|f ◦ ϕ[n−k] n, k ∈ Z;

hence
v ◦ ϕ[k]|f ◦ ϕ[n] n, k ∈ Z

which implies that
v ◦ ϕ[k]|v ◦ ϕ[n] n, k ∈ Z.

�
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It should be added here that the fact that the function v in Theorem 4 is an
eigenfunction was initially obtained for the case when f is inner in [15, Proposi-
tion 2.2]. It is true whether f is inner or not. Relative to Theorem 4, we prove:

Proposition 4. If v is an inner eigenfunction of Cϕ, a composition operator,
and f ∈ H2, then K+

f is a minimal invariant subspace of Cϕ if K+
vf is minimal

invariant.

Proof. Let V = Mv be the multiplication operator with symbol v. Clearly
V is isometric, so V ∗V = I. Since v is an eigenfunction of Cϕ, K+

vf = V K+
f .

Therefore, if S is a closed subspace of K+
f left invariant by Cϕ, then V S is a closed

subspace of K+
vf , invariant under Cϕ. If K+

vf is a minimal invariant and S 6= 0,

then V S = K+
vf = V K+

f , hence S = K+
f , so K+

f is also minimal invariant. �

By Theorem 4, one gets the following:

Corollary 2. If f ∈ H2 \ {0}, K+
f is a minimal invariant subspace of Cϕ,

a hyperbolic composition operator, and v is the greatest common inner divisor of
the inner factors of the functions in {f ◦ ϕ[n] : n ≥ 0}, then K+

g is also minimal

invariant, where g = f/v. Thus, if one studies if K+
f can be an infinite–dimensional

atom in LatCϕ (which of course happens if and only if Kf is such an atom), one
can assume without loss of generality that the greatest common inner divisor of the
inner factors of the functions in {f ◦ ϕ[n] : n ≥ 0} is 1.

By Proposition 2, if for some inner u the sequence {u◦ϕ[n]} is norm convergent
to the greatest common inner divisor of the functions {u ◦ ϕ[n]}, then Ku is not
a minimal invariant subspace of Cϕ, unless u is an eigenfunction of Cϕ. Here is a
characterization of when a sequence of inner functions tends to the greatest common
inner divisor of those functions.

Proposition 5. If v denotes a common inner divisor of the sequence {un} of
inner functions, and we denote vn = un/v, n = 1, 2, 3, . . . , then

(16) ‖un − v‖2 → 0

if and only if

(17) vn(0)→ 1.

If any of the conditions (16) and (17) holds, then v is necessarily the greatest com-
mon inner divisor of the sequence {un}.

Proof. Indeed ‖un − v‖2 = ‖v(vn − 1)‖2 = ‖vn − 1‖2, n = 1, 2, 3, . . . . This
equality combines with Proposition 3 into establishing the equivalence of conditions
(16) and (17). In order to prove now that if any of those conditions holds, then v
must be the greatest common inner divisor of the sequence {un}, begin by assuming
that v = 1. If, arguing by contradiction, one assumes that the greatest common
inner divisor of the sequence {un} is a nonconstant inner function u, then |u(0)| < 1,
and, since for all n = 1, 2, 3 . . . , un = uwn, where wn is inner, n = 1, 2, 3 . . . , one
gets that

|un(0)| ≤ |u(0)| n = 1, 2, 3 . . . .

By letting n → ∞, one gets the contradictory relation 1 ≤ |u(0)|. In general, if
v is a common inner divisor of the sequence {un} of inner functions, then it is
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elementary to prove that v is the greatest common inner divisor of the sequence
{un} if and only if the greatest common inner divisor of the sequence {vn} is 1. �

The problem we want to pose here is:

Problem 4. If ϕ is a hyperbolic automorphism and u is inner, then Ku is
minimal invariant if and only if u is an eigenfunction of Cϕ. True or false?

It is very likely that the answer is: TRUE.

3. Non–inner functions

Relative to functions with nontangential limit at each of the fixed points of a
hyperbolic automorphism, the author proved:

Proposition 6 ([11, Proposition 2.3]). If ϕ is a hyperbolic automorphism and
f is an eigenfunction of Cϕ having finite nontangential limits at the fixed points of
ϕ, then f is constant.

Thus, if f is an eigenfunction in the disc algebra A then f is constant. Given
that 1–dimensional subspaces spanned by eigenvectors are the only minimal invari-
ant subspaces known so far, it makes sense to conjecture that the following problem
has a POSITIVE answer:

Problem 5. If ϕ is a hyperbolic automorphism and f ∈ A, then Kf is a
minimal invariant subspace of Cϕ if and only if f is a nonzero constant function.
True or false?

Relative to the above problem, it is worth noting that:

Remark 3. The only kind of nonconstant functions f ∈ A, which might dis-
prove the conjecture in Problem 5 are those with property f(α) = f(β) = 0, where
α and β are the fixed points of ϕ.

Indeed, this is an immediate consequence of [10, Theorem 2], a theorem where
it is shown that ‖f ◦ ϕ[n] − f(α)‖2 → 0 if α is the attractive fixed point of ϕ,
provided that f is continuously extensible at α (see also [5, Lemma 1.1]). Based
on the previous statements, one can prove:

Lemma 3. If f ∈ H2 \ {0} has a norm–bounded bilateral orbit under Cϕ, a
hyperbolic composition operator, (in particular, if f is continuously extendable at
the fixed points of ϕ), and

(18) lim sup
n→∞

n

√
‖Cnϕf‖2 < 1

or

(19) lim sup
n→∞

n

√
‖C−nϕ f‖2 < 1,

then the restriction Cϕ|Kf has a point spectrum containing a nonempty open an-
nulus centered at the origin.

Proof. If the bilateral orbit of f under Cϕ is norm–bounded, then

(20) lim sup
n→∞

n

√
‖Cnϕf‖2 ≤ 1 and lim sup

n→∞

n

√
‖C−nϕ f‖2 ≤ 1.
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By (20), it follows that, if lim sup
n→∞

n

√
‖Cnϕf‖2 < 1 or lim sup

n→∞

n

√
‖C−nϕ f‖2 < 1, then

(21) lim sup
n→∞

n

√
‖Cnϕf‖2 · lim sup

n→∞

n

√
‖C−nϕ f‖2 < 1

and so, the restriction Cϕ|Kf has a point spectrum containing a nonempty open
annulus centered at the origin, by [11, Theorem 5.1] �

For each arbitrary analytic self-map ϕ of U, other than the identity or an
elliptic automorphism, there is a remarkable point α ∈ U (called the Denjoy–Wolff
point of ϕ), with property ϕ[n] → α uniformly on compacts. For a hyperbolic
automorphism, the Denjoy–Wolff point is, of course, the attractive fixed point of
that map. Whether ϕ is automorphic or not, it is known that 0 < ϕ′(α) ≤ 1,
if α ∈ T, where ϕ′(α) denotes the angular derivative of ϕ at α. Maps ϕ with the
property ϕ′(α) < 1 are called maps of hyperbolic type, whereas those with property
ϕ′(α) = 1 are called maps of parabolic type. With this terminology, we note that:

Lemma 4. If ϕ is a map of parabolic or hyperbolic type with Denjoy–Wolff point
α and f ∈ H2 \ {0} satisfies condition

(22) lim sup
n→∞

‖f ◦ ϕ[n]‖2
‖α− ϕ[n]‖p2

<∞

for some p > 0 then

(23) lim sup
n→∞

n

√
‖Cnϕf‖2 ≤ (ϕ′(α))

p/2
.

Proof. Observe that condition (22) is equivalent to the existence of some
c > 0 so that

(24) ‖f ◦ ϕ[n]‖2 ≤ c ‖α− ϕ[n]‖p2 n = 1, 2, 3, . . . .

On the other hand, according to [13, Proposition 1],

(25) lim sup
n→∞

n

√
‖α− ϕ[n]‖2 ≤

(√
ϕ′(α)

)
.

�

The immediate consequence of the above two lemmas is the following.

Theorem 5. Assume ϕ is a hyperbolic automorphism with attractive fixed point
α and repulsive fixed point β. If f ∈ H2 \ {0} has a norm–bounded bilateral orbit
under Cϕ, and

(26) lim sup
n→∞

‖f ◦ ϕ[n]‖2
‖α− ϕ[n]‖p2

<∞

or

(27) lim sup
n→∞

‖f ◦ ϕ[−n]‖2
‖β − ϕ[−n]‖p2

<∞,

for some p > 0, then the point spectrum of the restriction of Cϕ to Kf contains a
nonempty open annulus about the origin and hence, Kf is not minimal invariant.

Proof. If condition (26) holds, then the desired result follows by Lemmas 3

and 4, since
(√

ϕ′(α)
)p

< 1. If (27) holds, just recall that β is the attractive fixed

point of ϕ−1. �
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One method to produce eigenfunctions of a hyperbolic composition operator
was first given in [2] by V. Chkliar, who considered a formal series of form

(28) Fλ :=

∞∑
n=−∞

λnf ◦ ϕ[n]

where λ is a scalar. If series (28) is weakly convergent, then CϕFλ = λ−1Fλ and so,
if Fλ is a nonzero function and f is not an eigenfunction of Cϕ, then Kf is not a
minimal invariant subspace of Cϕ. V. Chkliar in [2] used that idea and a complex
analytic argument to prove that S5 ⊆ Nϕ. Others [11], [21] followed in his steps.
An interesting idea in [21, Theorem 3.5] is to try a Fourier analysis argument and
so, the main message of [21, Theorem 3.5] is to use Hilbert space Fourier series in
order to prove:

Theorem 6. If ϕ is a hyperbolic disc automorphism and the bilateral orbit of
f ∈ H2 \ {0} is square summable, that is, if

(29)

∞∑
n=−∞

‖f ◦ ϕ[n]‖22 <∞,

then f is not an eigenfunction of Cϕ and σp(Cϕ|Kf ) ∩ T 6= ∅, where σp(Cϕ|Kf ) is
the point spectrum the restriction of Cϕ to Kf . Hence, Kf is not minimal invariant
under Cϕ.

The proof of the above principle is implicit in [21, Theorem 3.5], a theorem
where more than the relation σp(Cϕ|Kf )∩T 6= ∅ is proved, namely, it is proven that
σp(Cϕ|Kf ) ∩ T contains a set of positive Lebesgue measure. Also, J.H. Shapiro in
[21] preferred to state his theorem by exhibiting a class of functions with property
(29), namely, the following:

Example 2. If f is in
√

(z − α)(z − β)H2 \ {0}, then the bilateral orbit of f
under Cϕ, a hyperbolic composition operator with fixed points α and β, is square
summable and hence Kf is not minimal invariant under Cϕ.

It should be observed that:

Remark 4. A function f ∈ H2\{0} has square summable bilateral orbits under
Cϕ, a hyperbolic composition operator, if and only if the outer factor of f has that
property.

The fact that such a function cannot be an eigenfunction of Cϕ is rather obvious
since, if arguing by contradiction, one assumes that f 6= 0 has property (29) and is
an eigenfunction of Cϕ associated to an eigenvalue λ, then the orbit of f under Cϕ
is not square summable if |λ| ≥ 1, which is a contradiction. If |λ| < 1, then note
that λ 6= 0, since Cϕ is invertible, and f being an eigenfunction of C−1ϕ associated

to eigenvalue λ−1, one gets that the orbit of f under C−1ϕ is not square summable.
All the above leads to the question: Exactly when is the bilateral orbit of a

function under a hyperbolic composition operator square summable? Here is a
quick answer. Let us consider hyperbolic disc automorphisms with fixed points ±1,
the attractive fixed point being 1: ϕ(z) = (r+ z)/(1 + rz) for some fixed 0 < r < 1.
Denote µ = (1+r)/(1−r). Then, by using formula (6) and the Lebsegue monotone
convergence theorem, one gets:
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Proposition 7. If f ∈ H2 and ϕ is as above, then

(30)

∞∑
n=0

‖f ◦ ϕ[n]‖22 =

∫ π

−π
|f(eiθ)|2ψ+(eiθ) dθ/2π

where

ψ+(eiθ) :=

∞∑
n=0

4µn

4 + (µ2n − 1)|1− eiθ|2
=

∞∑
n=0

µn

1 + (µ2n − 1) sin2(θ/2)
.

and

(31)

∞∑
n=1

‖f ◦ ϕ[−n]‖22 =

∫ π

−π
|f(eiθ)|2ψ−(eiθ) dθ/2π

where

ψ−(eiθ) :=

∞∑
n=1

4µn

4 + (µ2n − 1)|1 + eiθ|2
=

∞∑
n=0

µn

1 + (µ2n − 1) cos2(θ/2)
.

Above we denoted the normalized arc–length measure dθ/2π instead of dm.

Proof. By formula (6) one has:

‖f ◦ ϕ[n]‖22 =

∫ π

−π
|f(eiθ)|2P (ϕ[n](0), eiθ) dθ/2π, n ∈ Z,

and it is easy to check the identity

ϕ[n](z) =
z + rn
1 + rnz

rn =
µn − 1

µn + 1
, n = 1, 2, 3, . . . .

Combining the above equality with Lebesgue’s monotone convergence theorem,
one gets equalities (30) and (31). �

Our last result is in the spirit of Theorem 6. Given the formal series (28), we
denote by Sn(λ, z) the symmetric partial sums of that series, that is,

Sn(λ, z) =

n∑
k=−n

λkf ◦ ϕ[k](z), z ∈ U, λ ∈ T, n = 1, 2, 3, . . .

Also we introduce

σn(λ, z) = (1/n)

n−1∑
k=0

Sk(λ, z), λ ∈ T, z ∈ U, n = 1, 2, 3, . . . .

With this notation, we can state and prove the following:

Theorem 7. Assume ϕ is a hyperbolic automorphism, f ∈ H2\{0}, for almost
all fixed λ ∈ T, sequence {σn(λ, z)} is pointwise convergent on U to some σ(λ, z),
and is ‖ ‖2–bounded, that is, there is some Mλ > 0 such that

(32) ‖σn(λ, z)‖2 ≤Mλ, n = 1, 2, 3, . . . .

Assume further that, for all fixed z ∈ U, there is some Mz > 0 so that

(33)

∫
T
|σn(λ, z)| dm(λ) ≤Mz, n = 1, 2, 3 . . .

Then the space Kf is not a minimal invariant subspace of Cϕ because the point
spectrum of Cϕ|Kf contains a measurable subset E ⊆ T with property m(E) > 0.
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Proof. For all considerations on Cesàro means contained in this proof, the
reader is referred to [8, Ch. 2]. Observe that σ(λ, z), the weak limit of σn(λ, z) is
an element of Kf for almost all λ in T, according to our hypothesis. We claim that
for almost all λ ∈ T, one has that Cϕσ(λ, z) = λ−1σ(λ, z) and so, if for some λ ∈ T,
the function σ(λ, z) exists and is not the null function, then it is an eigenfunction
of Cϕ|Kf associated to the eigenvalue λ−1.

We turn now to property (33). It says that for all z ∈ U fixed, the sequence
{σn(λ, z)|} is the sequence of Cesàro means of an L1

T–function Gz, namely, of that

function whose sequence of Fourier coefficients is {f ◦ ϕ[n](z)}∞n=−∞ and so, by
Lebesgue’s theorem on the Fourier coefficients of such a function, one has that
f ◦ ϕ[n](z)→ 0 as n→∞. Thus, one has

(34)
1

n

n−1∑
j=1

(
λj−1f ◦ ϕ[j](z) + λjf ◦ ϕ[j+1](z)

)
→ 0 when n→∞.

Relation (34) combines with the equality

σn(λ, z) ◦ ϕ(z)

= λ−1σn−1(λ, z) ◦ ϕ(z) +
1

n

n−1∑
j=1

(
λj−1f ◦ ϕ[j](z) + λjf ◦ ϕ[j+1](z)

)
+
f ◦ ϕ(z)

n

to prove that Cϕσ(λ, z) = λ−1σ(λ, z), for almost all λ ∈ T. On the other hand, the
Cesàro means of an L1

T–function, are ‖ ‖1–convergent to that function, that is,
‖σn(λ, z)−Gz‖1 → 0, so, as is well known, a subsequence of {σn(λ, z)} is convergent
a.e. to Gz. Thus Gz(λ) = σ(λ, z)) a.e. That is, for all fixed z, the function σ(λ, z)
is in L1

T, and therefore that function is not null a.e. when f(z) 6= 0, since f(z) is a
Fourier coefficient of σ(λ, z). This means that if f(z) 6= 0, then σ(λ, z) 6= 0 for all
λ ∈ E where E ⊆ T is measurable with property m(E) > 0. Now choose any fixed
λ ∈ E and observe that the H2–function σ(λ, z), z ∈ H2 is not the null function,
which proves that E is a subset of the point spectrum of Cϕ|Kf , by our previous
considerations. �

Corollary 3. If ϕ is a hyperbolic automorphism, f ∈ H2 \ {0}, condition
(32) holds and

(35)

∞∑
n=−∞

|f ◦ ϕ[n](z)| <∞, z ∈ U,

then the hypothesis of Theorem 7 is satisfied.

Indeed, by condition (35), series (28) is convergent for all λ ∈ T and z ∈ U.
Denote by F (λ, z) its sum and observe that σn(λ, z) → F (λ, z), λ ∈ T and z ∈ U.
Also, for all fixed z ∈ U, the function F (λ, z), λ ∈ T, is continuous on T, for which
reason, condition (33) must hold.

As a final remark, nonzero functions with norm summable bilateral orbits sat-
isfy the assumptions in both Theorem 6 and 7. More formally:

Remark 5. If f ∈ H2 \ {0} has the property

(36)

∞∑
n=−∞

‖f ◦ ϕ[n]‖2 <∞,

then f satisfies the assumptions in Theorems 6 and 7.
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The fact that the assumptions in Theorem 6 are satisfied is pretty obvious.
Also observe that the assumptions in Corollary 3 hold as well, since in H2 a norm
convergent sequence is necessarily weakly convergent hence pointwise convergent,
so (35) holds if (36) holds. Finally, condition (32) holds as well since for all n =
1, 2, 3, . . . , one has the estimate

‖Sn(λ, z)‖2 ≤
n∑

k=−n

‖f ◦ ϕ[k]‖2 ≤
∞∑

k=−∞

‖f ◦ ϕ[k]‖2 <∞, λ ∈ T,

which implies the fact that

‖σn(λ, z)‖2 ≤
∞∑

k=−∞

‖f ◦ ϕ[k]‖2 <∞, λ ∈ T, n = 1, 2, 3, . . . .
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