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We present a novel technique for transcribing crowds in video scenes that allows extracting the

positions of moving objects in video frames. The technique can be used as a more precise

alternative to image processing methods, such as background-removal or automated pedestrian
detection based on feature extraction and classi¯cation. By manually projecting pedestrian

actors on a two-dimensional plane and translating screen coordinates to absolute real-world

positions using the cross ratio, we provide highly accurate and complete results at the cost of
increased processing time. We are able to completely avoid most errors found in other auto-

mated annotation techniques, resulting from sources such as noise, occlusion, shadows, view

angle or the density of pedestrians. It is further possible to process scenes that are di±cult or

impossible to transcribe by automated image processing methods, such as low-contrast or low-
light environments. We validate our model by comparing it to the results of both background-

removal and feature extraction and classi¯cation in a variety of scenes.

Keywords: Motion capture; pedestrian detection; agent/discrete models; real-time simulation.

1. Introduction

In computer animation, virtual reality and safety, models that simulate crowd

behavior are increasingly used to provide a realistic representation of moving

pedestrians and other types of crowds. Applications are manifold. Predictive sce-

narios for public building evacuations can lead to the design of safer and more
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e±cient layouts. Video games and movies sell better if crowds appear to be dynamic,

realistic and immersive. In general, higher realism in crowd simulations translates to

more trust and adaption in the industry.

A variety of models for creating synthetic crowd behavior have been investigated

in recent years. Due to the dynamic and uncontrolled nature of crowds, it is, however,

di±cult to evaluate such models. An obvious choice is to compare synthetic motion

data to original reference data. For a synthetic crowd to look realistic, it must ade-

quately resemble the motion of real pedestrian crowds. While others have provided a

means to evaluate or compare synthetic crowd data,1 we demonstrate the production

of authentic, realistic reference data that can then be used for such approaches.

Multiple models have addressed the problem of crowd segmentation and tracking,

ranging from image processing techniques, such as background-removal (bg-

removal) or sampling-based pedestrian detection, to sensor tracking in controlled

environments. Experimental data acquisition from sensors is often not feasible to

capture large crowds (> 50 actors), while current image processing techniques still

su®er from issues such as occlusion or distortions through perspective, view angle and

distance. Therefore, these methods often work well for low-density crowds, but fail in

more dense or otherwise obscured scenes.

There are two current main thrusts in the area of automatic trajectory detection:

. Automated bg-removal techniques can be used to identify moving objects such as

pedestrians in front of static backgrounds. These approaches are good at tracking

moving objects but often fail when the crowd becomes denser and occlusion starts

to appear.

. Automated feature extraction and classi¯cation models can be trained to detect

pedestrians, using agent-based algorithms.2 Although these approaches have

several advantages (e.g. real-time detection, automation, or mobile camera

deployment), they still su®er from severe limitations: Re¯ning the classi¯cation

process is nontrivial and speci¯c to the features of a given scene. Some scenes may

never produce satisfactory results as features to describe objects are simply lacking

or inconsistent in di®erent areas of the video frame.

Unfortunately, even the most up-to-date methods2–5 do have considerable error

ratios. While bg-removal algorithms have to deal mostly with noise (false positives),

feature extraction and classi¯cation methods often cannot identify pedestrians if

they are distant to the camera or lighting/contrast or occlusion in the scene do not

allow them to separate objects from the background (false negatives). Our research is

motivated by the goal to provide a means to achieve the highest possible detection

accuracy, until a time comes when automated detection methods catch up and

produce similar or superior results.

We present a technique that can avoid or minimize these issues by manually

annotating (transcribing) video scenes. Against the trend of automation, we in-source

the process of ¯nding the accurate position of a person back into the human brain.

A. Fuchsberger, B. Ricks & Z. Chen
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This allows us to make full use of superior cognitive abilities. The presented approach

requires only a stationary video of the crowd that is to be transcribed. After the

annotation process, the position of pedestrians in the scene at any given time during

the clip (relative to the video frame) can be determined both relative to the screen

(input) and absolute on a two-dimensional plane in the real world (output).

Unlike other methods, we intelligently place location markers not where pedes-

trians appear to be, but rather where they should be, based on visual clues and

motion trajectories, interpreted by the person transcribing the scene.

We demonstrate the accuracy of our approach in four distinct scenes of pedestrian

crowds. These scenes contain most of the previously mentioned issues such as low-

contrast or occlusion, where existing image processing methods fail to produce solid

results. We validate our results by applying a range of bg-removal techniques to our

dataset and measuring missed agents, occluded agents and faulty artifacts. The

comparison to our manual annotation technique with a zero-error tolerance

shows how signi¯cantly bg-removal algorithms are actually failing in nonideal

circumstances.

2. Related Work

In recent years, researchers have developed a variety of models for simulating real-

istic crowd motion.6–9 Realism is hereby de¯ned as the quality of motion, or how

similar a computationally produced (synthetic) crowd looks to an outside observer

compared to an original, human crowd. The majority of approaches are based on

multiagent models, where each pedestrian is represented by a self-contained pro-

cessing unit, called an agent. There are also macroscopic approaches that address

crowds as single units. These are typically used in predictive analysis.10

Since the early multiagent models for simulating crowds,11 agent behavior has

been extensively re¯ned. In addition to collision avoidance and basic path-¯nding

capabilities, agents can now interact with and react to both their immediate and

distant environments. Some models feature agents that diverge from another by

using cultural or psychological factors, and others produce highly realistic behavior

in speci¯c scenarios, such as walking around corners,12 or animating characters along

a given trajectory line.7

Due to the di±culty in comparing such diversity, the ¯eld of crowd simulation

research has traditionally lacked some sort of unifying standard. Researchers have

attempted to generalize their research in form of frameworks.1,13 While the industry

heavily focuses on providing realism through the animation and visual appearance of

characters, scienti¯c research is primarily concerned with realism through the

creation of authentic motion behavior.13

2.1. Realism in crowd simulations

In crowd simulation research, creating realistic looking crowds is a core objective.

Much work has addressed the proper selection of parameters that de¯ne realism and

A Semi-Automated Technique for Transcribing Accurate Crowd Motions
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techniques for generating and simulating synthetic crowds. However, in comparison,

little research has been conducted on the generation of original crowd data. As a

result, the majority of works demonstrating new or enhanced methods for simulating

crowds validate realism of synthetically created crowds by comparison to preexisting

models. We argue that the realism of synthetic crowds is best validated by tran-

scribing and analyzing a real human crowd in a speci¯c scene and then replacing the

agents derived from the original crowd with synthetic versions produced by a crowd

algorithm. Parameter estimation and optimization can then be used to select the best

¯tting crowd algorithm for a given scenario.1

Comparing synthetically produced crowds to original crowds has a signi¯cant

advantage: parameters that describe and evaluate a crowd can be equally applied to

both the original and the product, resulting in an objective evaluation criteria for the

realism of a crowd. Thus, unless a comparison is impossible, such as in predictive

scenarios, we recommend building a crowd scenario on a real-world example. Future

researchers can then base their new or enhanced algorithms on the original dataset

and thus avoid a comparison between two arti¯cial products that may not e®ectively

be compared to each other. Many crowd simulation papers introduce algorithms that

compare only to preceding works and are therefore left pointing out superiority in

computational e±ciency.

2.2. Pedestrian detection and annotating crowds

Identifying and segmenting moving objects in videos of dense crowds has been

addressed and demonstrated in a variety of models. Typically, pedestrian motion

data are generated from one of the following two sources:

. Through sensor data (experimental setting);

. Through video data (image processing).

Sensors can enable highly accurate motion tracking, but are costly to deploy and

may alter pedestrian motion behavior. While micro behavior, such as collision

avoidance, may not be a®ected, an experimental setting can make participants

more determined in pursuing their objectives or altering behavior according to a

given set of instructions. Because sensors are not a native part of a crowd and have

to be deployed manually, they are e®ectively not a suitable tool for annotating

crowds outside an experimental setting. Further, sensor detection is limited in

scope and therefore unsuitable to capture large crowds of hundreds of people in

places like airports, concerts or gatherings. Such experimental settings can be

used to generate a data source for our transcription technique, but are not a

requirement.

With the advancing possibilities in machine learning and a variety of applications,

image processing is the primary focus in recent crowd simulation research. Source

materials are signi¯cantly less expensive to acquire and produce, since they mostly

consist only of video material. Detailed information can be extracted from videos.

A. Fuchsberger, B. Ricks & Z. Chen
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In one study, the heart rate of people was accurately estimated solely based on videos

of head motions.14 In another study, the interaction of people and objects has been

explored using a iteratively improving feature descriptor.15 Collaborative represen-

tation classi¯cation has been used to improve classi¯ers for face-recognition.16

Because of emerging topics like self-driving cars, automated pedestrian detection is

an obvious area of interest.

Automated pedestrian detection methods are usually based on background-

subtraction (bg-subtraction) techniques or use pre-trained models that can detect

features in the video frame such as the shape of a person, even if it is partially

obscured.17–20 Because both methods are error prone to some degree we explored the

idea of a semi-automated annotation technique that allows maximum accuracy,

avoids errors, and is feasible to deploy on shorter video clips. It is semi-automated

because only a part of the scene needs to be annotated while the missing information

(agent positions) can be estimated and simulated automatically.

In bg-subtraction methods, colors and contrast for each pixel in subsequent

frames are averaged to determine areas in the frame with activity. A binary mask is

then applied that shows moving objects in white and the static background in black.

This has several shortcomings: First, and foremost, bg-removal, despite signi¯cant

advancements in recent years, remains noisy. Moving objects may not be identi¯ed in

low-contrast areas of a video. Shadows can distort shapes or become new objects. For

a computer, it may be hard to di®erentiate moving objects that are not part of the

analysis, such as plants moving in the wind or cars in a crossing where pedestrians are

subjects of the scene. Also, perspective becomes an issue since objects look di®erent in

size and shape, depending on distance and angle to the camera lens. Even from top–

down angles with adequate viewing distance, an object's center may never resemble

the actual position. Although tracking head positions is popular, we suggest that

tracking pedestrians' positions at the center on the °oor between their feet is a more

precise estimation of their locations. Dense crowds become even more problematic

because agents are likely obscuring each other.

Clustering rich sets o® tracked features, such as heads, has been demonstrated

as an alternative method to bg-subtraction, with decent success in handling

occlusion.21 However, the method is designed to count moving objects, rather than

pinning down their exact locations. Using a tweaked body part detector that is

capable of identifying only partially visible pedestrians has been proposed as an

alternative means to deal with occlusion.22 Following recent publications, we feel

that deep-learning methods for automated pedestrian detection are increasingly

replacing bg-removal techniques, as they allow for more than just the recognition of

movement.2–5,23–26

In automated pedestrian detection research, popular source material often

comes from stationary mounted cameras. Popular datasets, such as Caltech27 or

Kaist,28 are typically reused to benchmark pedestrian detection algorithms. Video

results in deep-learning techniques typically feature boundary boxes that show the

size and position of pedestrians in the video frame. Bg-removal techniques show

A Semi-Automated Technique for Transcribing Accurate Crowd Motions
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moving objects in white, while the static background of the scene is colored in

black. More sophisticated algorithms can ¯lter noise, identify separate objects, and

display them in di®erent colors. In a ¯nal step, the center of such objects needs to

be estimated and adjusted based on proximity to the camera, video angle and size

of the object.

3. Research Method

In this section, we provide the details on how our video overlay method can be used

to transcribe crowd motions. We address design choices and considerations and how

limitations that occur in other methods can be avoided. We also brie°y address the

implementation and technical aspects of the technique. We conclude by describing

the features of several scenes that were used as representative examples.

3.1. Overview

In Eq. (1), a given crowd C is de¯ned as a collection of markers M . Each marker is a

quadruple containing an agent identi¯er i, and a two-dimensional coordinate (x, y)

that describes the position of that marker in the video at a given time t. More

precisely, x and y are relative coordinates on the video frame and t is measured in

milliseconds since the ¯rst frame.

M ¼ ði; t;x; yÞ 2 C: ð1Þ

This data representation is suitable for data storage in any relational database

system. Agent-based crowd simulations, however, operate on a per-agent basis.

Thus, markers have to be grouped by agent identi¯ers and sorted by time. In Eq. (2),

an agent (Aj) is described as follows:

Aj ¼ fM0; . . . ;Mng $ M:i ¼ j: ð2Þ

The two nearest markers of an agent j at any given time can then be determined by

looping through all markers that belong to the agent Aj (Algorithm 1):

Algorithm 1. GetClosest(Markers, time)
1: n ← length of agent
2: if n < 2 then return false
3: for i < n do
4: M0 ← Markers[i]
5: if time <= M0.t then return GetPos(time, M0)
6: M1 ← Markers[i + 1]
7: if ¬M1 then return false
8: if time < M1.t then return GetPos(time, M0, M1)

A. Fuchsberger, B. Ricks & Z. Chen
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The estimated position can then be calculated using the vector between the two

marker positions, their time di®erence and the time of the current video frame

(Algorithm 2):

We tested Catmull–Rom splining to smooth out trajectory paths between

markers.29 In practice, however, the distortion of a basic linear path between two

markers was not noticeable if the time interval between two consecutive markers was

small enough. We found that a threshold of 800 milliseconds between two consecu-

tive markers was su±cient enough to rule out any potentially noticeable visual

di®erence in all scenes. If a pedestrian would, however, move with a speed of more

than 100 pixel/second on the screen, a smaller threshold may improve localization

accuracy. Accuracy improves with shorter intervals between agent markers. None of

our scenes had a time gap of more than 1200ms between two consecutive agent

markers. By providing a °exible marker interval, it is possible to dynamically alter

marker frequencies depending on the scene and movement paths of pedestrians. For

example, agents that stand still in the video or agents that move in straight lines may

require fewer markers without impacting accuracy.

3.2. Transforming screen position into absolute position

Calibrating screen position with the three-dimensional position on a world frame has

been addressed in previous research.30,31 The basic idea is that the screen position

(PS) can be derived from the real Position (P ) by multiplying it with a perspective

projection matrix (Mproj).

In our approach, we assume that all objects are moving on a two-dimensional

plane, which simpli¯es the model for coordinate translation to a basic, geometric

approach that does not require variables such as the ¯eld-of-view angle or camera

position related to the frame. It is also assumed that a possible ¯sh-eye e®ect was

eliminated in a pre-processing step so that the video shows a pure perspective pro-

jection of the scene. Given enough distance from the camera to the pedestrians

(> 3m) a distortion of a remaining e®ect can be neglected. We examined a potential

distortion in (Fig. 2(d)), which had the highest potential for a remaining ¯sh-eye

e®ect due to its top–down perspective of the area. We found that the inaccuracy of an

Algorithm 2. GetPos (time, Marker0, Marker1)
1: relx ← Marker0.x
2: rely ← Marker0.y
3: if Marker1 then
4: reltime ← (time − Marker0.t)/(Marker1.t − Marker0.t)
5: relx ← Marker0.x + (Marker1.x − Marker0.x) ∗ reltime

6: rely ← Marker0.y + (Marker1.y − Marker0.y) ∗ reltime
return relx, rely

A Semi-Automated Technique for Transcribing Accurate Crowd Motions

2050012-7

In
t. 

J.
 I

m
ag

e 
G

ra
p.

 2
02

0.
20

. D
ow

nl
oa

de
d 

fr
om

 w
w

w
.w

or
ld

sc
ie

nt
if

ic
.c

om
by

 9
7.

11
9.

13
4.

18
5 

on
 0

5/
13

/2
0.

 R
e-

us
e 

an
d 

di
st

ri
bu

tio
n 

is
 s

tr
ic

tly
 n

ot
 p

er
m

itt
ed

, e
xc

ep
t f

or
 O

pe
n 

A
cc

es
s 

ar
tic

le
s.



absolute position resulting from a misplaced marker (e.g. placing a pixel too far to

the right) was more signi¯cant than a distortion from a perspective e®ect.

Given a rectangle on the screen (M0;Mx;My;M4) with a known height and width

in the real world, it is possible to translate any screen coordinate into a real-world

coordinate usings the cross ratio (Fig. 1).

To be able to calculate the screen positions of two vanishing points (A, B), the

projected rectangle in the real world cannot also be a rectangle on screen. For sim-

plicity, we lock the ¯rst anchor of the rectangle as the point of origin (M0) in the

Cartesian coordinate system. The second (Mx) and third (My) anchor markers in-

dicate the direction of x- and y-axis. Both width and length of the rectangle must be

known (in meters). We can then calculate the coordinates of two points (A;B) that

mark the crossing point of the natural extensions, where an axis meets with its

parallel side (Fig. 1).

To get the absolute position of any point (P ) on the screen, we can then draw a

line to A and one to B and calculate the intersection where PA meets y-axis (Py) and

PB meets x-axis (Px). By comparing the length of the rectangle side (M0;My) to

the intersection point (M0;Py) and (M0;Mx) to (M0;Px), we can derive the

Cartesian x- and y-coordinates of P (Fig. 1).

This approach only works with su±cient accuracy if a rectangle can be chosen,

such that A and B are located well outside the screen frame and every screen

coordinate within the frame therefore has a valid real-world coordinate equivalent.

3.3. Implementation

Our application, labeled CrowdCrush, runs on a Ubuntu Linux server (16.04) in the

Elixir language that is based on Erlang. Elixir was selected because it excels as a

functional language for I/O intense web applications. As a code basis, we used an

Model-View-Controller framework Phoenix. To ensure °uid animations while run-

ning simulations and instant user interface updates, we added the React.js front-end

Fig. 1. Coordinate Translation. The real location of any given point (P ) on the screen can be calculated,

given a rectangle in the real scene (M0, Mx, My, M4) and its width and height (left). Demonstrated on the
low-angle scene in Fig. 2(c) (right).

A. Fuchsberger, B. Ricks & Z. Chen
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framework. All simulations are conducted in real-time inside the client browser.

Videos are loaded and integrated via API from YouTube to ensure that moving

markers synchronize with the video frames in the background. For user authenti-

cation and session management, we utilized the Coherence framework. The project is

released as open source under the MIT license and can be found on GitHub, https://

github.com/fuchsberger/crowd-crush.

A video is transcribed in the following procedure:

. The raw ¯lm material is ideally cropped and pre-processed using a video editing

software such as Adobe Premiere CC. We ¯lmed all our scenes using GoPro 4

cameras. When ¯lming a crowd from a birds-eye perspective through GoPro

cameras, this can result in a distortion known as the ¯sh-eye e®ect.32 One of our

sample scenes (Fig. 2(d) was a®ected by this distortion. We were able to signi¯-

cantly reduce this e®ect through the application of a post-processing ¯lter onto the

video track. Where appropriate, we applied this ¯lter. We then searched the video

material for scenes showing signi¯cant crowd motion or scenes including inter-

esting crowd phenomena, such as the formation of waiting lines (Fig. 2(a)).

(a) Parallel waiting lines. (b) Crowd in front of shop and escalator.

(c) Low-angle perspective. (d) Partially obscured entrance.

Fig. 2. Sample scenes ¯lmed at a stadium in a mid-sized city in the USA: (a) depicts a crowd lining up for a

concert, ¯lmed from a distant camera in a low-contrast environment (top side of frame); (b) children and
parents lining up at a gift shop while others use an escalator; (c) event visitors outside the arena from a

low-angle perspective; (d) pedestrians appear through glass doors inside the video frame.
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We then cut a 2min sample and rendered our output video using a dynamic frame

rate @ 3 Mb/s in full HD resolution (1920� 1080 px), or a custom resolution,

resulting from the amount of cropped borders.

. In a second step, the pre-processed video clips were uploaded online. Videos can

then be managed and imported on CrowdCrush. The simulation can be played,

forwarded and reversed, in synchronicity with any agent markers already tran-

scribed. The tracked locations (markers) of pedestrians are then visualized as

yellow dots. A coder transcribing a video may click on the screen at the current

position of a pedestrian. This will drop a marker, and the video jumps forward in

time by a pre-set time interval. Clicking again would repeat the process of drop-

ping a marker and jumping forward in time. This way an agent can be followed

through its life cycle without losing focus. We have implemented keyboard con-

trols that speed up the transcription process, such as moving forward and back-

ward by a single time interval, or selecting, de-selecting or deleting agents. Once a

video transcription is complete, it can be locked to prevent further editing.

3.4. Scenes

We chose four distinct scenes to show the °exibility of the approach (Fig. 2). All

scenes were ¯lmed at a stadium in a mid-sized urban area in the USA. We ¯lmed at

four di®erent events with varying types of crowds. We noticed a predominantly male

crowd at a wrestling match, and a younger, female crowd at a concert. One event

featured a Disney show, targeting children; consequently, many single parents

attended with small children. Motion behavior in those varying crowds di®ered

signi¯cantly. Naturally, children with parents had generally slower motion and more

frequent stops. At each event, we ¯lmed crowds at the same ¯ve spots, shortly before

entering the arena area. We started ¯lming 90min before the start of the event and

continued until 30min after the event start. From the raw material, we purposely

selected scenes that included most of the common issues that image processing

cannot deal with e®ectively.

Figure 2(a) shows the waiting lines in front of the main entrance from a top–down

perspective. The camera is located about 15m above the crowd. In this scene, it can

be observed how three parallel waiting lines split at four security check points and

then merge back together for the entrance gates. This scene was selected because

people in the top third of the video are almost invisible because of the dark °oor. The

shape of pedestrians also looks signi¯cantly di®erent in the top compared to the

bottom of the video frame. This scene is also a good example for strong occlusion

because of the density of the crowd, especially in the top of the video frame.

Figure 2(b) shows the formation of a crowd in front of a market stand. It also

features a partially obstructed escalator where people move with constant speed out

of the frame. This scene was selected because people in the crowd are moving on

either a very dark or very bright background. This scene also shows how people move

around obstacles and how the average closeness intensi¯es with proximity to the

shop counter.
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Figure 2(c) depicts a crowd ¯lmed from an unusual angle. This scene was selected

because the size of persons would signi¯cantly vary depending on closeness to the

camera. It also shows that our model can directly locate the position of a person

where their feet touch the °oor, in contrast to the center of the moving object as it is

calculated in most of the image processing variants.

Figure 2(d) shows a crowd that has passed the security check and enters the area

from a top-down perspective. It was chosen because people do not enter the video

frame from a border, as shown in all other scenes, but through glass doors within the

video frame. Additionally, because of the transparency of the doors, the direction of

approaching pedestrians can be tracked before they actually appear in the door. As a

result, motion trajectories can start smoothly with an approaching pedestrian rather

than just popping into the screen.

4. Results

To show the superiority of the approach, we compared the manually transcribed

localization data with those produced by several bg-removal algorithms and histo-

grams of an oriented gradients (HOG) feature extraction/support vector machines

(SVM) classi¯cation. Speci¯cally, we counted missed agents due to low contrast

(MALC), missed agents because of occlusion overlaps (MAOC) and the size of the

video frame that was unable to identify agents reliably. We assigned each correctly

detected agent a value indicating how close its shape in the bg-removal result

matches the real shape observed in the original video. We further measured the

processing time it took to generate an output (T P ) using a variety of bg-removal

techniques. This includes running the bg-subtraction algorithm and merging the

frames into a video. The time for automated processing ranged between 12 and

47min per scene and mostly depended on the video frame size. Our method required

between 85 and 234min per scene, and mostly depended on the number of pedes-

trians visible in the scenes.

4.1. Comparison to bg-removal techniques

We used the BGSLibrary by Andrews Sobral.33 The resulting output ¯les of the

binary foreground masks were uploaded on CrowdCrush and overlaid over the

original video. This allowed us to inspect and compare the position and frequency of

manually created agent markers with those visible in the synthetic data. Running the

simulation showed that, in most cases, individuals and entire groups were not

detected correctly due to noise, incompleteness, occlusion, or distortion.

To select the best available bg-removal algorithms for the given set of scenes, we

applied each of the 40 available bg-removal algorithms from the BGSLibrary tool on

the scene in Fig. 2(d). This test was performed to rule out algorithms that did not

perform at all or were designed for a di®erent purpose. Out of the remaining algo-

rithms, we selected nine that had the strongest potential to identify moving pedes-

trians with as little noise as possible for all four scenes. Figure 3 depicts a side by side
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comparison of moving pedestrians in Scene D. We also ensured that at least one

algorithm of each base type was present. These types included Fuzzy Algorithm,

Gaussian, Frame Di®erence, Multimodal, and MultiLayer. Our selection included

the following algorithms: MultiLayer, Static Frame Di®erence, LB Adaptive SOM,

LG Mixture of Gaussian, Sigma Delta, KNN, Grimson GMM, and Independent

Multimodal. We processed all four scenes for each of the nine algorithms and then

selected the best four algorithms over all four scenes for a more detailed analysis.

We uploaded the overlays to CrowdCrush and overlayed our manual transcrip-

tion on each matching bg-removal result. This revealed many encounters of missed,

inaccurate or false positive agents. In our attempt to quantify these errors, we cre-

ated three measures that were taken every 20 s and then averaged (six times per

video and bg-algorithm):

. Missed Agents (E�): This measure counts agent markers that are present in the

manual transcription but missed by the bg-removal algorithm. This is usually due

to low contrast to the background and/or frame issues in the algorithm to detect

moving objects in time. If an object was present, but too small (less than 10% of

the agent size), we considered this detection not as an agent, but noise, and

therefore ignored it and counted the marker as a missed agent.

. Additional Artifacts (Eþ): This measure counts objects detected by the bg-

removal algorithm that are not actually agents. The reasons for such unwanted

artifacts are primarily noise and other moving objects, such as the escalator in

Fig. 2(b).

. Missed agents due occlusion (E 0): This measure counts agent markers that were

detected in the same object by the bg-removal algorithm. Pedestrians too close to

each other or partially hidden in the frame are lost and di±cult to recover. There

are approaches to separate such connected components.18,22

All measures are relative to the average number of visible agents per frame (AF ). We

calculated an overall error ratio that sums all three measures and can be used as an

Fig. 3. Post-processing with bg-removal algorithms.

A. Fuchsberger, B. Ricks & Z. Chen

2050012-12

In
t. 

J.
 I

m
ag

e 
G

ra
p.

 2
02

0.
20

. D
ow

nl
oa

de
d 

fr
om

 w
w

w
.w

or
ld

sc
ie

nt
if

ic
.c

om
by

 9
7.

11
9.

13
4.

18
5 

on
 0

5/
13

/2
0.

 R
e-

us
e 

an
d 

di
st

ri
bu

tio
n 

is
 s

tr
ic

tly
 n

ot
 p

er
m

itt
ed

, e
xc

ep
t f

or
 O

pe
n 

A
cc

es
s 

ar
tic

le
s.



overall indicator for the reliability of a given bg-removal algorithm. We also mea-

sured the time it took for the computer to transcribe and produce the binary mask

video of the scenes (T A), as well as the time it took for us to manually transcribe the

videos (T S). Table 1 summarizes the results.

To guarantee accurate counting of agents in our measures, we colored connected

components in the bg-removal overlay videos to identify which agents were occluded

(Fig. 4).

To ensure the coordinate translation process produced accurate world coordi-

nates, we captured pictures and measured the exact distances from objects in the

frame to a speci¯ed point of origin (Fig. 1). We then compared the results of the real

measures with the distances produced by our algorithm and found that the basic

concept is working as expected. However, a slight inaccuracy of a few pixels trans-

lates already to o®set coordinates, ampli¯ed with the distance to the point of origin

on the screen. Any unaccounted ¯sh-eye e®ect distorts the coordinate result further.

4.2. Comparison to feature extraction and classi¯cation

We attempted to extract agent positions from our scenes using feature extraction

and classi¯cation. We implemented a basic HOG feature descriptor34 and the linear

SVM model.35 We used the code-basis published in the open-cv library.36

Table 1. Scene information and encountered error ratios.

Resolution M AT AF T S T A A. E� Eþ EO E

A 782� 720 12271 234 116.12 234 15 1 0.804 0.029 0.023 0.856

16 2 0.136 0.038 0.242 0.417

12 3 0.206 0.035 0.142 0.383

12 4 0.039 0.090 0.462 0.591

B 1920� 1080 5094 167 63.74 124 45 1 0.580 0.029 0.055 0.663

47 2 0.144 0.047 0.266 0.457
34 3 0.096 0.029 0.199 0.324

35 4 0.042 0.185 0.332 0.559

C 1920� 1010 3234 99 22.39 81 42 1 0.382 0.022 0.125 0.529
40 2 0.022 0.103 0.338 0.463

33 3 0.096 0.029 0.199 0.324

34 4 0.000 0.235 0.397 0.632

D 1072� 732 1248 85 5.71 50 24 1 0.000 0.067 0.233 0.300

27 2 0.000 0.433 0.300 0.733

23 3 0.033 0.067 0.233 0.333
23 4 0.000 0.300 0.433 0.733

Notes: Automated pedestrian detection through bg-removal algorithms are compared for their
detection accuracy. Contrary to an assumed error-free annotation in our model they produced at

least 32% overall error ratio throughout all scenes. Algorithms tested were: (1) MultiLayer, (2) LB

Adaptive SOM, (3) LG Mixture Gaussian and (4) Static Frame Di®erence.

M is the total number of markers in scene, AT is the total number of agents in scene, AF is the
average number of agents visible per frame, T S is the time to transcribe scene using video overlay

technique, T A is the time to produce bg-removal overlay, E� is the ratio of undetected pedestrians,

Eþ is the ratio of artifacts that are not pedestrians, E 0 is the ratio of obscured pedestrians, E is the
overall error ratio in correctly detecting pedestrians.
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Although we did try, we could not tweak the descriptor to produce satisfactory

comparison results. Re¯ning the classi¯cation process was very challenging due to

the diversity of the scenes and the unique features within each scene. In a second

approach we zoomed into scenes to allow objects to become bigger. This was

somewhat more successful and we conclude that pedestrians in several of our scenes

were too small to be correctly identi¯ed. The classi¯er was further handicapped by

the inconsistency of the background, such as black areas switching into bright gray

sections. Also the di®erent camera angles let to agents occluding each other in more

dense scenes.

We conclude that the scenes would have to be speci¯cally trained to detect

pedestrians, thereby ruling out a solution that is generally applicable. With an error

ratio of undetected pedestrians (E�) of close to 100%, we decided to omit the results

from Table 1, as they are not giving any meaningful insight.

5. Conclusion

Regardless of the scene, no bg-removal algorithm could match the accuracy of our

manual annotation method. Overall error ratios ranged between 30% and 85%

compared to a 0% error ratio in our approach. While some algorithms performed well

in not missing agents (Adaptive SOM, Static Frame Di®erence), others performed

better in avoiding noise (MultiLayer). Overall, Mixture Gaussian performed best

with an error ratio of 32.7% over all scenes.

We measured the time each algorithm required to produce binary mask videos of

the given scenes. This time includes the time for producing png ¯les of each frame

with the BGS Library, loading them into an image processing tool (ImageJ) and then

Fig. 4. Connected components help to identify and count occluded agents, reduce noise and remove

artifacts.
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producing an .AVI video ¯le @30 fps. It was revealed that for a video with a given

duration, the processing time of bg-subtraction was primarily in°uenced by the video

resolution and frame rate and secondarily by the selected algorithm. In contrast, the

time it took to manually annotate videos was primarily determined by the number of

agents and markers.

To compare against automated detection techniques, we only tested HOG+ LVM

as one of the currently leading pedestrian detection algorithms. Given the chal-

lenging scene features, a pre-trained model could not provide any meaningful results.

Manually training the model for each scene would be possible, but would defeat the

purpose of automated detection.

We conclude that our method for transcribing crowds is a feasible alternative to

bg-removal or automated detection, if precision and a zero-error tolerance are im-

portant criteria. We directly capture the position of a pedestrian where their vertical

axis meets the °oor. Unlike other methods, we do not require error-prone guessing of

an agent's original position. Pre-processing and supplementary tasks, such as bg-

removal, component identi¯cation, and machine learning, can be avoided altogether

if the primary objective is to locate pedestrians in a video frame. Manual annotation

might even be faster than complex and multidimensional alternatives because of the

simplicity of the work °ow. Our coordinate translation technique performed very

well in scenes (c) and (d), where clear environment references to initialize the rect-

angle were available. However, in scene (a) coordinates were slightly o®set because of

the camera distance and low resolution of the video, resulting in inaccurate posi-

tioning of the exact reference rectangle. In scene (b) coordinates appeared correctly,

but agents on the elevated escalator could not be used. We conclude that the quality

of the results are based on scenery and improve with larger video/monitor resolution.

6. Limitations

We are aware that our manual transcription technique is going against the trend of

automated pedestrian detection. However, given the lack of an accurate universally

applicable solution that produces accurate results, we feel a need to provide a tem-

porary solution until automated detection advances to the point of superiority.

Because the transcription process is performed manually, it takes signi¯cantly

more time to locate agent positions. Table 1 shows the time it took to transcribe each

of the scenes. Since a human coder is required and time is the limiting resource, our

approach is not feasible for long videos and videos with hundreds or thousands of

agents in the frame (such as view of a stadium tribune). For the same reason, it

cannot be applied in real time.

The monitor screen size, camera resolution and the distance of the camera to the

pedestrians is another limiting factor. We ¯lmed in HD-resolution and had no pro-

blems transcribing scenes where 120 actors were present at a time. We suspect that

over a threshold of 150 agents/frame, the transcription process might become tedious

and error-prone due to small agent sizes.
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We initially considered analyzing the ¯t between an identi¯ed agent in a bg-

removal tool with the shape of the real pedestrian in the video. Such a metric would

measure the quality of the match and therefore provide another indicator for the

reliability of the bg-algorithm. We were unable to reliably automate the matching

and comparison and left this for a future study.
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