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Abstract

Practitioners in the sciences have used the ‘flow’ of knowledge (post­test score minus pre­test

score) to measure learning in the classroom for the past fifty years. Walstad and Wagner (2016)

and Smith and Wagner (2018) moved this practice forward by disaggregating the flow of

knowledge and accounting for student guessing. These estimates are sensitive to misspecification

of the probability of guessing correct. This work provides guidance to practitioners and

researchers facing this problem. We introduce a transformed measure of true positive learning

that under some knowable conditions performs better when students’ ability to guess correctly is

misspecified and converges to Hake’s (1998) normalized learning gain estimator under certain

conditions. We then use simulations to compare the accuracy of two estimation techniques under

various violations of the assumptions of those techniques. Using recursive partitioning trees fitted

to our simulation results, we provide the practitioner concrete guidance based on a set of yes/no

questions.

Keywords: Disaggregated learning, Gain measurement, Value­added learning, Monte Carlo

Simulation
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On Guessing: An Alternative Adjusted Positive Learning Estimator and Comparing Probability

Misspecification with Monte Carlo Simulations

Introduction

For the past half­century, educators in the sciences (e.g. economics, physics, etc.) have used

pre­ and post­tests to measure the ‘flow’ of knowledge (Siegfried & Fels, 1979), or aggregate

gains in learning over time. Flow­of­knowledge measures play an important role in

program/course assessment, instructor self improvement, and in estimating the impact of

educational treatments as they have a closer connection to the total learning that occurred during a

treatment than stock measures (such as a post­treatment exam). In determining the effectiveness

of an intervention or program, the practitioner1 is usually interested in the increase in student

knowledge that occurred because of the intervention. As the effect of the treatment is not directly

observable, the increase in student knowledge (the flow) from the beginning of the treatment

period (e.g. class or program) to the end of the treatment period is often used instead.

Attempting to measure knowledge increases without accounting for prior knowledge can

lead to unreliable measures of student learning. Prior student knowledge can vary widely from

one section of a course to another (as the sample is the class or program size). Despite this hurdle,

it is necessary to accurately measure student knowledge gains in such settings, as these

measurements drive education intervention research, changes that individual faculty might make

to a course, and the perceived strengths and weaknesses of an academic program. In its most

basic formulation, the practitioner or researcher can find the flow of knowledge by subtracting the

matched pre­test scores from the post­test scores (students who did not take both the pre­ and

post­test are removed from the analysis). While differencing the pre­ and post­tests is a common

approach, other methods include regression analysis with the pre­test as an independent variable

and differencing with a normalization factor (for instance, the Hake (1998) estimator).

Walstad and Wagner (2016) improved this practice by suggesting that the practitioner or

1 Throughout this paper, we will often use the term “practitioner” to describe an instructor or department interested in
measuring learning in one or more classes.
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researcher should disaggregate learning into four types: positive, negative, zero, and retained.

Positive learning is said to occur when the student answered incorrectly on the pre­test then

answered correctly on the post­test. Negative learning is said to occur when the student answered

correctly on the pre­test but then answered incorrectly on the post­test. Zero learning is said to

occur when the student answered incorrectly both times and retained learning is said to occur

when the student answered correctly both times.

While many fields have generated 2x2 tables in order to study specific subsets of

populations based on outcomes,2 the insight of Walstad and Wagner (2016) was that these

disaggregated learning types represent different outcomes and should not be intermixed; a

practitioner should react very differently to an increase in positive versus a decrease in negative

learning (an increase in positive learning is likely due to an improved pedagogical technique

while a decrease in negative learning is likely due to the removal of a confusing explanation).

Despite this fundamental difference, the flow of knowledge is measured as positive learning

minus negative learning. This insight has lead to rapid adoption of the new procedure in research

and in assessment. For instance, Emerson and English (2016) used positive learning to estimate

the impact of educational treatments. Happ, Zlatkin­Troitschanskaia, and Schmidt (2016)

measured the relationship between positive learning and characteristics such as native language

and GPA. To enable the adoption of this technique when assessing many courses, Smith (2018)

developed software that produced the disaggregated values directly from Scantron formatted

exam output files.

The work by Walstad and Wagner (2016) had one notable shortcoming: it did not account

for student guessing. Guessing on a multiple choice exam decreases the accuracy of the

instrument (Zimmerman & Williams, 2003), and multiple choice exams are in widespread use,

especially in lower­level courses. Smith and Wagner (2018) showed that guessing masks the true

learning values and creates bias in the expected values of the unadjusted learning types suggested

by Walstad and Wagner (2016). However, the paper also showed that the unadjusted learning

2 See, for example disaggregations like those provided in Figure 1 of Swets (1969).
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values could be adjusted to account for guessing when the probability of guessing correct is

known. The critical adjusted measures are γ̂ (true positive learning) and α̂ (true negative

learning). When determining if a pedagogical technique is effective or when measuring the

learning in a class, γ̂ is the value of interest. (Throughout this work we will use hats to emphasize

when we are discussing an estimate of a learning parameter and not the parameter itself.) This

modified approach can be applied in educational research. Even more valuable is the improved

accuracy it provides to assessment procedures (the software in Smith (2018) also produces these

adjusted measures).

Smith and Wagner (2018) adjusted the results from the national­norming sample for the

micro­ and macroeconomics Test of Understanding of College Economics (Walstad, Watts, &

Rebeck, 2007) or TUCE. The paper estimated the probability of guessing correct using a

workhorse in the psychometrics literature: the Three Parameter Logistic or 3PL (De Ayala, 2013).

The 3PL estimates the probability of a very low ability student to answer a given question correct

despite not knowing the correct answer to a question. In the literature, this value is referred to as

the pseudoguessing parameter. This method can detect when students are able to remove

distractors from consideration; many well written questions have point estimates for the

pseudoguessing parameter statistically indistinguishable from 1/n, where n is the number of

question options. While this is a reasonable method for the TUCE data, the 3PL cannot be applied

to most classes.

The 3PL procedure requires a tremendous amount of data to converge; researchers disagree

about the precise minimum number but 1000 students with twenty questions seems to be the

median recommendation (De Ayala, 2013, pp. 130­131). Even when this observational threshold

is satisfied, the 3PL estimator will only converge on truth under select conditions.3 This

convergence problem is part of the reason Han (2012) suggested fixing the pseudoguessing

parameter at 1/n to estimate the other parameters in the model.

3 Notably, Orlando and Thissen (2003) show questions of non­monotonic form can be problematic when estimating
the monotonic 3PL.
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Relationship to General Educational Measurement Literature

While the consideration of guessing in evaluating learning is a relatively new feature in the

Economic Education literature, it has been a core element of Educational Measurement for at

least 50 years. Birnbaum (1968) extended existing models by statistically accounting for

guessing.4 Later, Maris (1999) elaborated that students could have a partial mastery of question

content that changes the probability of answering a question correct. These mental resources may

include skills such as educated guessing (partial knowledge), elimination techniques, or other

methods of increasing the likelihood of success.

Educated guessing and other techniques to utilize partial knowledge become particularly

important where the stakes of the test are not sufficiently high. Wise and DeMars (2006) presents

a model that is able to accommodate and adjust for low levels of effort. Under low effort, many

students will seek to simply answer questions quickly, either due to indifference or fatigue, and

will thereby generate inaccurate estimates of learning or understanding. Accounting for low effort

is critical when educators seek to use scores from low­stakes problems (pilot questions given

without stakes, small homework assignments, etc.) to project scores or results in high­stakes

contexts like certification exams or final exams. The model proposed by Wise and DeMars (2006)

can outperform the 3PL model in some cases. Another way for educators to overcome the

low­stakes problem is simply to raise the stakes. Wise and DeMars (2005) proposes several

methods to make a low­stakes test high­stakes for both the educator as well as the test­takers,

including providing incentives for good performance and prompt feedback.

Finally, Gönülateş and Kortemeyer (2017) show that Item Response Theory can be adapted

to account for a student’s propensity to guess using multidimensional Item Response Theory

(MIRT). This approach, like the approach of Wise and DeMars (2006), can be utilized to generate

more accurate forecasts from low­stakes settings like homework assignments to higher stakes

examinations. Gönülateş and Kortemeyer (2017) emphasize that controlling for more learner

4 In Item Response Theory, questions are labeled items. We will proceed to call them questions in order to maintain
the clarity of the manuscript.
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traits will improve models, but mostly in low­stakes settings.

In our work below, we assume that questions are presented in a high­stakes setting, and that

educators can accurately state how many effective discriminators exist for a given question. In the

context of evaluating homework questions or other relatively low­stakes questions, these

assumptions may not be true. In those cases, we urge the reader to refer to the works cited in this

section for a more complete understanding of how guessing and partial knowledge affect our

understanding of learning measurements.

Contribution to the Literature

This paper extends the work of Walstad and Wagner (2016) and Smith and Wagner (2018)

in a number of ways. First, we suggest a transformation of the γ̂ learning estimator: γ̂/(1 − µ̂).

We show that this transformation (what we call the gain estimator) performs better than the

original estimator under conditions knowable to the practitioner or researcher; in some cases, it

has a superior interpretation. Moreover, we extend the Monte Carlo simulations of no learning by

(Smith & Wagner, 2018, pp. 5­9) to include the the gain estimator. Therefore, the practitioner or

researcher can perform the same statistical test regardless of if they use the γ̂ or gain estimator.

Second, this paper suggests that when the probability of guessing correct on a set of exam

questions does not converge to 1/n, assuming true negative learning is zero could be a superior

option. Throughout the paper the modified estimators given this assumption are provided. The

gain estimator under the assumption that true negative learning is zero results in Hake’s (1998)

normalized learning gain – a common learning value used in STEM fields. Therefore, this paper

provides a clarified interpretation of previous research that have used the Hake learning gain.

Third, under strong assumptions, we use a large number of Monte Carlo simulations to

compare deviations from the true value using the estimated γ̂ and γ̂/(1 − µ̂) when assuming the

probability equals 1/n or setting estimated true negative learning to zero. Using these simulation

results we make three general observations and fit the results to decision trees (in Online

Appendix A). These trees represent the collective guidance of all of the Monte Carlo simulations
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Correct (Post) Incorrect (Post)
Correct (Pre) r̂l n̂l

Incorrect (Pre) p̂l 1 − p̂l − n̂l − r̂l

Figure 1. Mapping of responses to raw learning types as described by Walstad and Wagner
(2016). This original disaggregation is used in all calculations in Smith and Wagner (2018) and
this paper. Note that Post­Test = p̂l + r̂l and Pre­Test = n̂l + r̂l.

in a visual form and are critical to providing practitioners guidance.

Finally, we provide a ‘practitioner’s guide’ to the results in this paper. This section walks

the practitioner through the process of choosing a learning estimate (γ̂ or γ̂/(1 − µ̂)), selecting the

best method of specifying the probability of guessing correct (1/n or α̂ = 0), and performing a

statistical test against the null hypothesis of no learning. The practitioner who is only interested in

applying the resulting techniques in this paper can read the practitioner’s guide without first

reading the preceding sections.

This paper will proceed as follows: (1) In A Brief Description of the Estimators in Smith

and Wagner (2018) we review the estimators in Smith and Wagner (2018) and provide those

estimators when estimated true negative learning is zero; (2) In The Gain Measurement we will

propose a transformed measure of positive learning; (3) In Comparing the Adjusted Positive

Learning and the Gain Estimators’ Sensitivity to Probability Misspecification we will show under

what conditions the gain estimator is less sensitive than the original estimator to probability

misspecification; (4) In A Statistical Test of the Gain Measurement using a Counterfactual Monte

Carlo Simulation we will provide a statistical test for the gain estimator equivalent to what was

provided by Smith and Wagner (2018) for the original estimator; (5) In Comparative Monte Carlo

Simulations we compare deviations from the true learning values with Monte Carlo simulations;

and (6) In Practitioner’s Guide we provide instructions on how to use the results in this paper. We

then conclude the paper.



ON GUESSING 9

A Brief Description of the Estimators in Smith and Wagner (2018)

In Smith and Wagner (2018) the authors develop estimators of the true underlying learning

parameters using the raw estimates described in Walstad and Wagner (2016). The estimators are

as follows:

γ̂ = p̂(n̂l + r̂l − 1) + p̂l
(p̂ − 1)2 (1)

α̂ = p̂(p̂l + r̂l − 1) + n̂l
(p̂ − 1)2 (2)

µ̂ = n̂l + r̂l − p̂

1 − p̂
(3)

where p̂l is raw or unadjusted positive learning, n̂l is unadjusted negative learning, and r̂l is

unadjusted retained learning (Figure 1). p̂ is the estimated probability of a student who does not

know the correct answer answering correct nonetheless (for the estimates to be valid, the

probability of guessing correctly cannot equal one).5 γ̂ is the estimate of true positive learning, α̂

is the estimate of true negative learning,6 and µ̂ is the estimate of incoming stock knowledge

(what proportion of students knew the answer when they took the pre­test). Therefore, the

estimate of true retained learning would be µ̂ − α̂ and the estimate of true zero learning would be

1 − µ̂ − γ̂ (for the reader’s convenience, we provide a reference of our notation in Figure 2). As

the underlying learning values must sum to one, the bounds of learning values depend on each

other. Notably, γ can not exceed 1 − µ as µ proportion of students know the question at the time

5 In Smith and Wagner (2018), the authors describe the probability of guessing correct as 1/n. As a result, their
estimators are filled with n’s instead of p̂’s. For notational convenience in the next section, we describe the estimators
in terms of p̂. The estimators are mathematically identical.
6 Unadjusted negative learning is disaggregation of performance which can be generated through multiple
mechanisms including guessing, forgetting, and actively learning incorrect information to replace correct
information. True negative learning removes guessing in the expectation but still measures negative learning without
regard to how it was generated. In practice, people often refer to negative learning as “forgetting” even though that is
not completely accurate.
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Learning Type Unadjusted
Notation

Adjusted for
Guessing Notation

Positive Learning p̂l γ̂

Negative Learning n̂l α̂

Retained Learning r̂l µ̂ − α̂

Zero Learning 1− p̂l− n̂l− r̂l 1 − µ̂ − γ̂

Stock Knowledge r̂l + n̂l µ̂

(a) Notation for learning types in the paper

Meaning Notation

Probability of a student
guessing correct

p̂

Number of options on a mul­
tiple choice exam

n

(b) Other notation used in the paper

Figure 2. This figure provides notation used throughout the paper for the convenience of the
reader. Estimates of an underlying parameter are always presented with a hat (e.g. γ̂). If we are
referring to the underling parameter itself, it will be presented without a hat (e.g. γ).

of the pre­test (this bound holds true of the estimated values as well).

Assuming p̂ is properly specified, with an infinite number of observations γ̂, α̂, and µ̂

converge to the true underlying parameters of γ, α, and µ. However, there is no guarantee p̂ is

properly specified. In the authors’ experience, it seems that p is often near 1/n on

nationally­normed exam questions or other questions where the students are unable to remove

distractors or otherwise modify the probability of guessing correct beyond pure chance. However,

not all exam questions meet this criteria; for brevity we will refer to questions where the

probability of guessing correct is substantively different than 1/n as

“guessing­probability­deviating questions.”

A reasonable alternative to 1/n is to set the estimated true negative learning (α̂) to zero and

solve for the implied probability. Intuitively, true negative learning would occur when students

forgot material they learned prior to the class/program and the class/program instruction did not

resurrect that knowledge. Alternatively, it can occur when the instructor’s explanation of a

concept is inaccurate or otherwise confuses a student that previously had a solid understanding of

a concept. In practice, true negative learning appears to be rare.

In Smith and Wagner (2018), the estimated α̂ values were very low when using the TUCE

national­norming sample (Walstad et al., 2007). This suggests true negative learning is quite rare

in the sample. Additionally, as the authors have applied the method in Smith and Wagner (2018)

to numerous classes for assessment purposes, α̂ values are nearly always below 0.05 and trend



ON GUESSING 11

towards zero. Therefore, while assuming zero true negative learning is an incorrect assumption, it

might be a useful assumption when 1/n could be substantially incorrect due to

guessing­probability­deviating questions. Further, as we will show on page 12, this assumption

has been implicitly made by many authors working in STEM education over the last twenty years.

Setting equation 2 equal to zero and solving for p̂ reveals the implied probability in

equation 4 (derivations of all new equations presented in this paper are in Online Appendix C).

p̂ = n̂l
1 − p̂l − r̂l

(4)

Notably, when unadjusted zero learning equals zero (1 − p̂l − r̂l − n̂l = 0) the implied

probability equals one (which cannot be true). Conceptually, the way unadjusted zero learning

could equal zero is if students can guess correct with 100% probability. Naturally, the accuracy of

this estimate will vary greatly and will at times suggest unrealistic probabilities through

randomness alone; for the estimates presented here to be correct, p̂ cannot equal one. This point

will be made clear in the simulation section of this paper.

Assuming adjusted negative learning equals zero, we can substitute equation 4 into

equation 1 to find our γ̂ estimator given α̂ = 0.

(γ̂|α̂ = 0) = (p̂l − n̂l)(1 − p̂l − r̂l)
1 − n̂l − p̂l − r̂l︸ ︷︷ ︸

Zero Learning

(5)

One can see the impact of p̂ on equation 5: the estimator is undefined as the denominator is

zero when unadjusted zero learning equals zero (when the implied probability of guessing correct,

p̂, equals one). Naturally, the accuracy of this measure will depend on the accuracy of p̂.

Nonetheless, as we will show in the upcoming simulation, this measure can be preferable when

the 1/n estimate is particularly unreasonable. This would occur when myopic students have a

different than chance probability of guessing correctly (e.g. the ability to eliminate a distractor or

confusion caused by the wording of a question or distractor).
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The Gain Measurement

As noted in the previous section, γ has an upper bound at 1 − µ. Therefore, the maximum

observable γ̂ value is question and population dependent. This has an interpretation disadvantage

where learning measurements, even for the same question, cannot be compared across student

populations if the incoming stock knowledge (µ) differs. In this section, we present a simple

transformation that resolves this interpretation disadvantage. Further, under some knowable

conditions, this measure is less sensitive to probability misspecification. To be clear, this

transformation is not always preferable to the γ̂ estimator. However, given data, it is knowable if

the transformation is preferable.

While γ is the proportion of students that learned (γ ∈ [0, 1 − µ]), γ/(1 − µ) is the

proportion of students who learned the material who could have possibly learned the material (i.e.

they didn’t already know it). This measure of positive learning has consistent bounds of [0, 1]

regardless of stock knowledge. Using equations 1 and 3, the gain measurement is revealed to be

the equation below:

γ̂

1 − µ̂
= p̂(n̂l + r̂l − 1) + p̂l

(p̂ − 1)(n̂l + r̂l − 1)
(6)

When 1/n might be a particularly poor estimate of p, one may set adjusted negative

learning to zero and solve for p̂. The probability implied by equation 4 suggests the gain estimator

simplifies to equation 7.

( γ̂

1 − µ̂
|α̂ = 0) = p̂l − n̂l

1 − n̂l − r̂l
(7)

Equation 7 is mathematically equivalent to (Post­Test − Pre­Test)/(1 − Pre­Test). (Note

that Post­Test = p̂l + r̂l and Pre­Test = n̂l + r̂l). Hake (1998) refers to this measure as a

‘normalized learning gain;’ this measure has been used in many STEM studies including Colt,

Davoudi, Murgu, and Rohani (2011), Hamne and Bernhard (2000), and Supasorn (2015). With

this work, we show that this measure can be interpreted as the adjusted­for­guessing gain measure
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when assuming zero true negative learning.

Comparing the Adjusted Positive Learning and the Gain Estimators’ Sensitivity to

Probability Misspecification

To determine the sensitivity of the estimators, we will use a common tool in the field of

economics: elasticity. Likely the most familiar elasticity is price elasticity of demand, which

measures how sensitive a good or service is to changes in price. Formally it is the percent change

in quantity divided by the percent change in price. This basic equation can be rearranged as

follows: %∆Q
%∆P

= ∆Q/Q
∆P/P

= ∆Q
∆P

P
Q
. ∆Q

∆P
is the change in quantity divided by the change in price;

simply put, it is the derivative of the quantity function with respect to price. Therefore, we can

re­express the price elasticity of demand as Q′(P )P
Q
.

In this section, we will develop probability misspecification elasticities. That is, in percent

terms, how responsive the estimate is to the probability of guessing correct being misspecified;

mathematically, it is the percent change in the estimate divided by the percent change in the

probability misspecification. All else equal, a ‘less elastic’ estimator is desirable as it will be

closer to the true learning value when the probability of guessing correct is misspecified.

To compare the sensitivity of the two estimators of interest (γ̂ and γ̂/(1 − µ̂) – equations 1

and 6), we will make two notional changes. First, we will describe the specified probability (p̂) as

p + ∆, where p is the true probability of guessing correct and ∆ is the specification error of the

success rate of guessing (which can be positive or negative). Second, to simplify the notation later

in this section, we will describe the gain estimator as the function g(∆) (where the partial

derivative with respect to ∆ would be described as g′(∆)) and the adjusted positive learning

estimator as the function f(∆) (where the partial derivative with respect to ∆ would be described

as f ′(∆)). With these two notation changes, our estimators can be specified as follows:

γ̂

1 − µ̂
= (p + ∆)(n̂l + r̂l − 1) + p̂l

(p + ∆ − 1)(n̂l + r̂l − 1)
= g(∆)

γ̂ = (p + ∆)(n̂l + r̂l − 1) + p̂l
(p + ∆ − 1)2 = f(∆)

(8)
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As the bounds of the estimators differ, we cannot compare the impact of ∆ on the

estimators directly; we will calculate elasticities. Here we will describe εγ̂/(1−µ̂) as the probability

misspecification elasticity of the gain estimator. Similarly, εγ̂ is the probability misspecification

elasticity of the γ̂ estimator. These elasticities are presented in equation 9:

εγ̂/(1−µ̂) = g′(∆) ∆
g(∆)

= − ∆(n̂l + p̂l + r̂l − 1)
(∆ + p − 1)((n̂l + r̂l − 1)(∆ + p) + p̂l)

εγ̂ = f ′(∆) ∆
f(∆)

= −∆(n̂l(∆ + p + 1) + 2p̂l + (r̂l − 1)(∆ + p + 1))
(∆ + p − 1)((n̂l + r̂l − 1)(∆ + p) + p̂l)

(9)

Dividing the equations presented above results in the ratio of elasticities (equation 10):

R =
εγ̂/(1−µ̂)

εγ̂

= n̂l + p̂l + r̂l − 1
2p̂l + (n̂l + r̂l − 1)(∆ + p + 1)

(10)

When this ratio (R) is between −1 and 1, the gain estimator is less sensitive to a probability

misspecification. When the value is outside of that range, the original γ̂ estimator is less sensitive

to probability misspecification. Concrete examples of this behavior are demonstrated in Figure 3.

Notably, while p and ∆ are not known, p + ∆ is the value specified by the practitioner or

researcher (p̂). R is therefore a knowable value for any given dataset, since p and ∆ never occur

except as the summed value specified by the practitioner or researcher. If the practitioner or

researcher is assuming α̂ = 0, then this ratio simplifies to:

(R|α̂ = 0) = p̂l + r̂l − 1
2p̂l + r̂l − n̂l − 1

(11)

Whether (R|α̂ = 0) is between −1 and 1 depends on the relative size of p̂l and n̂l. On the

positive side of the range, if p̂l is at least twice as large as n̂l then the gain measurement will

always be less sensitive to probability misspecification. Regardless, this ratio, like R in general,

can be calculated by the practitioner or researcher given data.
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(a) p̂l = 0.50, r̂l = 0.30, n̂l = 0.07, R = −0.53
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(b) p̂l = 0.35, r̂l = 0.10, n̂l = 0.10, R = 2.00

Figure 3. By comparing γ̂/γ − 1 and γ̂/(1−µ̂)
γ/(1−µ) − 1 we demonstrate the sensitivity of the estimates

to probability misspecification at example learning values; along the x­axis of both graphs is the
amount that the estimated probability deviates from the true probability (∆) and the true
probability of guessing correct is 1/5 (p = 1/5) in these graphs. In panel 3(a), R = −0.53 (when
∆ = 0) with the specified learning values below the figure. This falls into the range of [−1, 1]
where the gain estimator is less sensitive to probability misspecification. This can be seen by the
steeper slope of γ̂/γ − 1 (solid) in comparison to γ̂/(1−µ̂)

γ/(1−µ) − 1 (dashed) indicating the misspecified
estimator γ̂ deviates away from the true value at a higher rate than the misspecified γ̂/(1 − µ̂)
estimator. In panel 3(b), R = 2.00 (when ∆ = 0) with the specified learning values below the
figure. In this range the γ̂ estimator is less sensitive to probability misspecification. This can be
seen by the steeper slope of γ̂/(1−µ̂)

γ/(1−µ) − 1 in comparison to γ̂/γ − 1.

A Statistical Test of the Gain Measurement using a Counterfactual Monte Carlo Simulation

Following an identical methodology to Smith and Wagner (2018), we provide a statistical

test for the gain measurement by simulating a counterfactual distribution when there is no true

positive or negative learning occurring. Smith and Wagner (2018) created a counterfactual

distribution of no learning for the positive learning estimator γ̂. However, as the gain estimator

suggested in this paper (γ̂/(1 − µ̂)) did not exist, it was not included in their critical value tables.

This Monte Carlo simulation replicates student responses to a single question asked on both

a pre­ and post­test. First, m students are randomly pulled from a population with µ stock

knowledge, where m is the number of students in the class. After this random pull, each student

either knows or doesn’t know the answer to the question (with the proportion of the population

knowing the answer equal to µ). The students who know the answer simply answer the question

correct on both the pre­ and post­test. The students who don’t know the answer guess on both the

pre­ and post­test with 1/n probability of guessing correct. Each student’s guess on the post­test

is independent of their guess on the pre­test, given that the student does not know the correct
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answer to the question.

The unadjusted learning types are then calculated and adjusted to produce estimates for

positive learning, negative learning, and stock knowledge (γ̂, α̂, and µ̂, respectively). We extend

the original simulation by calculating γ̂/(1 − µ̂) for each simulated class. This process is repeated

10,000 times. The resulting estimated gain measurements are then ordered from lowest to highest

and the 90% and 95% critical values are extracted for the simulated empirical distribution.

Similarly, the 95% confidence interval for stock knowledge (µ̂) is extracted.

To use these Monte Carlo simulations, the practitioner or researcher should find the set of

rows associated with the number of students in their class (m). Then, using their calculated µ̂

value, they should find the set of simulated distributions where their µ̂ value falls in the

confidence interval (Online Appendix Table B1 if p̂ = 1/4 and Online Appendix Table B2 if

p̂ = 1/5). If their calculated gain measurement (γ̂/(1 − µ̂)) exceeds the greatest critical value of

the relevant set of rows then the practitioner or researcher can say that their value likely did not

occur from randomness alone when there is in fact no learning. Put more simply, the value is

statistically different from randomness. We present these tables in Online Appendix B (Tables B1

if p̂ = 1/4 and Table B2 if p̂ = 1/5; a larger set of tables can be found at

https://goo.gl/kKAySX and the simulation code is available at https://goo.gl/zOqlDx).

For each row in the tables, µ (stock knowledge), m (number of students), and n (question options)

are specified; all other values are derived as part of the simulation (µ ∈ {0.1, 0.2, ..., 0.8},

m ∈ {15, 20, 25, ..., 50, 60, 70, ..., 100, 150, 200, 250, 300}, and n ∈ {3, 4, 5, 6}). For a more

detailed description of these Monte Carlo simulations, see theMonte Carlo Simulation of the

Counterfactual section of Smith and Wagner (2018).

Comparative Monte Carlo Simulations

In this section, we perform Monte Carlo simulations to compare the accuracy of assuming

the probability of guessing correct equals 1/n against the accuracy of assuming that true negative

learning equals zero (α̂ = 0). It is not surprising that setting the probability correctly (by either

https://goo.gl/kKAySX
https://goo.gl/zOqlDx
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method) would result in the superior estimate. Therefore, we present results based on when these

assumptions are violated in Online Appendix E. In the case of the 1/n estimator, we assume the

practitioner or researcher is setting p̂ = 1/4 or p̂ = 1/5 but the true probability is simulated from

0.15 to 0.35 (with steps of 0.01). Similarly, with the true negative learning equaling zero

estimator, we assume the practitioner or researcher is setting α̂ = 0, but the true negative learning

ranges from 0.01 to 0.05 (with steps of 0.01). These results have been simulated with all

combinations of γ ∈ {0.1, 0.2, 0.3, 0.4, 0.5} and µ ∈ {0.1, 0.2, 0.3, 0.4, 0.5} conditioned on

γ + µ + α ≤ 1. We have generated results using class sizes of 30, 50, and 100. In total, we have

generated 15,120 distributions: 7560 assuming p̂ = 1/4, 7560 assuming p̂ = 1/5. The complete

set of results are available here: https://goo.gl/2f8NSa. The chosen parameters are

motivated by the maximum and minimum values observed by the authors in the TUCE dataset as

well as data collected through departmental assessment procedures. If the reader wishes to

simulate a combination of parameters not provided in the paper, our simulation code is available

here: https://goo.gl/qjCCUj. The Monte Carlo simulation works as follows:

1. For a given underlying µ (true stock knowledge), each simulated student’s stock ability on

an exam with 30 equally difficult questions is drawn from a Binomial distribution with

probability such that the population µ̂ equals the seeded µ value. From this procedure, each

student knows (randomly) some set of questions on the pre­test.

2. For a given underlying γ (true positive learning), each student randomly ‘learns’ some set

of the questions they did not know during the pre­test. This value is determined by a draw

from a Binomial distribution such that the population γ̂ equals the seeded γ value.

3. For a given underlying α (true negative learning), each student randomly ‘forgets’ some set

of the questions they knew at the time of the pre­test. This value is determined by a draw

from a Binomial distribution such that the population α̂ equals the seeded α value.

4. Based on the random draws above, each student knows or does not know the answer to

each question on each of the exams. For the questions they know, they answer correctly.

https://goo.gl/2f8NSa
https://goo.gl/qjCCUj
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On the questions they don’t know they guess with the seeded value probability (p) of

guessing correct. From the resulting simulated exam responses, the raw learning types can

be calculated.

5. From the steps above, the pre­ and post­test responses are simulated such that the

unadjusted learning types can be calculated. From this, true positive learning (γ̂1/n) and the

gain measurement ( γ̂1/n

1−µ̂1/n
) are estimated assuming p̂ = 1/4 (regardless of the true

probability of guessing correct; simulations have also been conducted assuming p̂ = 1/5).

Similarly, true positive learning (γ̂Z) and the gain measurement ( γ̂Z

1−µ̂Z
) are calculated under

the assumption that true negative learning equals zero (regardless of the actual seeded α

value).

6. From the steps above we have simulated estimates of the true positive learning and the gain

measurement as calculated by a practitioner or researcher. However, we also know the true

learning values for the simulated class (γ and γ/(1 − µ)). The simulation calculates the

absolute deviation from the true value of γ for the class when assuming p̂ = 1/4

(
∣∣∣γ̂1/n − γ

∣∣∣) and when assuming true negative learning equals zero (|γ̂Z − γ|). Similarly,

the absolute deviation from the true gain measurement (γ/(1 − µ)) is calculated when

assuming p̂ = 1/4 (
∣∣∣∣ γ̂1/n

1−µ̂1/n
− γ

1−µ

∣∣∣∣) and when assuming true negative learning equals zero
(
∣∣∣ γ̂Z

1−µ̂Z
− γ

1−µ

∣∣∣).
7. This process is repeated for 10,000 classes and the average of each of the four measures of

absolute deviation are reported for a given set of seeded values. If unadjusted zero learning

equals zero in one of the 10,000 simulated classes (which can occur by randomness alone)

then the absolute deviation from truth for the γ̂Z estimator is infinite. Therefore, assuming

true negative learning is equal to zero is not feasible for that specification; this is indicated

with a blank cell in the tables.

The probabilities used to characterize the Binomial distributions are not specifically defined

above as they vary with the specified values of µ, γ, and α. That is, for a given population γ value
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to be achieved, the specified probability that characterizes the Binomial distribution must increase

with an increase in µ as a smaller proportion of the population have the possibility to learn

(1 − µ). Similarly, for a given value of α, the specified probability that characterizes the Binomial

distribution decreases with µ as there is a larger group of students who could forget.

Our rationale for the use of the Binomial distribution in the procedure above is that each

question on the simulated exam is mapped to a unique bit of knowledge that could be known,

learned, or forgotten. If the knowledge is truly independent (and no two questions are mapped to

the same bit of knowledge), then the questions can be thought of as a Binomial distribution. By

necessity, the distributional assumption is strong. Without assuming a specific distribution (with

relatively few parameters), the Monte Carlo simulations are not feasible given that we are

simulating all combinations of the input parameters; a targeted sensitivity check of this

assumption was performed in Online Appendix D.

In the educational context, the Binomial assumption indicates that we are simulating an

exam with equally difficult questions where each question is entirely independent. In many cases,

these are unreasonable assumptions. However, many instructors attempt to write exams that

contain independent questions; often in the context of program/course assessment for

accreditation, the questions are required be independent. The sensitivity check in Online

Appendix D is an attempt to partially address this weakness. In that set of simulations we

structured the process of learning and forgetting to be highly correlated with student ability (more

details in the appendix). The simulations in Online Appendix D show that the simulations

presented here are at least somewhat robust to changes in the correlation structure. If the reader

wishes to perform a different targeted simulation using a different distribution or correlation

structure, they can do so as the pulls from the Binomial distribution occur in three places in the

code (which we’ve made available).

This distribution assumption emphasizes the intended use of these Monte Carlo simulations.

Unlike the simulations provided in the previous section, which can be used more generally, our

goal here is to provide guidance to the practitioner or researcher. For our simulations to be
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feasible, our assumptions are necessarily strong; without strong assumptions we would not be

able to provide guidance to the practitioner at all. Therefore, the values in the table should only be

compared to each other and one should focus on trends instead of any single simulated

distribution. We will describe these trends as observations.

In addition to the observations included in this paper, we use the full set of simulation

results (https://goo.gl/2f8NSa) to generate figures A1 and A2 in Online Appendix A. These

recursive decision trees (Breiman, Friedman, Stone, & Olshen, 1984) find the splits in the data

that minimize error. In this context, the data (all of the simulations) is recursively split by the

parameter (and value on a continuous variable) that best predicts whether the practitioner should

use the 1/n or α̂ = 0 probability strategy. The sub nodes are then split using the same logic (and

so on). Therefore, these recursive decision trees represent the most important breaks in the

simulated data and can assist the practitioner in determining the best probability estimation

strategy based on the assumptions they are willing to make about their dataset. These generated

decision trees are in concordance with the general observations made in the following section but

provide a concrete procedure for the practitioner to follow.

Results of the Monte Carlo Simulations

In Online Appendix E we provide Monte Carlo simulation results for the procedure

described above. For each specification, the mean absolute deviation from the true value is

provided for the two proposed methods of setting the probability of guessing correct. Further, to

visually show any trend, a column (‘1/n Pref.’) has the value ‘T’ whenever the 1/n method of

specifying the probability of guessing correct results in a lower mean absolute deviation from the

true value. In total, we have four tables of results (https://goo.gl/2f8NSa): The first table

compares the methods of estimating γ̂ when the practitioner believes the probability of guessing

correct equals 1/4; the second table compares the methods of estimating γ̂/(1 − µ̂) when the

practitioner believes the probability of guessing correct equals 1/4; the third table compares the

methods of estimating γ̂ when the practitioner believes the probability of guessing correct equals

https://goo.gl/2f8NSa
https://goo.gl/2f8NSa
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1/5; and the final table compares the methods of estimating γ̂/(1 − µ̂) when the practitioner

believes the probability of guessing correct equals 1/5. The true probability of guessing correct is

provided in the column p in each table.

Observation 1 Under the specified data generating process in our Monte Carlo simulations,

when the specified probability of guessing correct using 1/n deviates from the true probability by

0.05 or less, it is more often preferable to use the 1/n probability estimate.

The mean absolute deviation is smaller using the 1/n estimator in 78% of the 720 simulated

distributions estimating γ̂ when we specify that the true probability deviates by 0.05 or less from

1/n (1/4). This is particularly true as α increases. In 82% of cases when α = 0.03 and 99% of

cases when α = 0.05, the 1/n estimator produces a smaller mean absolute deviation. The smaller

mean absolute deviation can be due to either a less biased estimator or a narrower distribution;

when p is overestimated, the distribution produced by assuming α̂ = 0 is substantially wider than

when assuming the probability equals 1/n (see Figure 4 for an example). Put simply, due to the

increased width of the γ̂Z distribution, the γ̂1/n estimator might be a superior option even when

the center of the γ̂Z distribution is closer to the true value.

A similar story can be told with the gain estimator: in 65% of the simulated distributions

when the 1/n probability estimator violates truth by 0.05, the mean absolute deviation is smaller

using the 1/n probability estimate. Like the γ̂ estimator, these percentages increase with α: in

75% of the α = 0.03 simulated distributions and 99% of the α = 0.05 distributions, the 1/n

estimator is the preferred strategy.

Observation 2 Under the specified data generating process in our Monte Carlo simulations,

when the true α value is less than or equal to 0.03 and the true probability deviates by 0.10 from

the estimated 1/n probability, it is preferable to assume zero true negative learning when

estimating the probability of guessing correct. This is particularly true if the µ and γ values are

low.
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(a) p = 0.20 (b) p = 0.30

Figure 4. Kernel Density Estimates (KDE – for details see Scott (2015)) of γ̂ distributions when
underlying µ = 0.3, γ = 0.3 and α = 0.03. Both simulations are of class sizes of 50 students
where the practitioner or researcher assumes the probability of guessing correct is equal to 1/4.
The true probability of guessing correct (p) is below each figure; this is the only difference in the
simulation parameters that generated the figures. Optimal bandwidth is calculated using
Silverman’s (1986) method. The mean value of γ is plotted as a vertical line.

When the 1/n probability estimator is incorrect by 0.10, assuming true negative learning

(α) is equal to zero often results in a smaller mean deviation from truth. In the case of the γ̂

estimator, in 50% of the simulated distributions, the 1/n estimator results in a lower mean

deviation from truth. However, when only looking at the simulated distributions where

α ∈ {0.01, 0.02, 0.03}, setting α̂ = 0 is a preferable strategy 60% of the time.

This conclusion is stronger with the gain measurement: in only 26% of cases when the

probability deviation of 1/n is equal to 0.10 is using the 1/n estimator a preferable strategy.

Moreover, when α = 0.03, setting α̂ = 0 results in a lower mean absolute deviation 77% of the

time; this is increased to 99% when α = 0.01.

Further, if γ and µ are low, then setting α̂ = 0 might result in lower mean absolute

deviation. As an example, examining only the rows of the online table where γ = 0.5 and the true

probability deviates by 0.10 from the estimated 1/n probability, in 78% of cases using the 1/n

estimator would be preferable to setting α̂ = 0. However, when only looking at the rows where

γ = 0.1 (all else equal), in 15% of cases is 1/n the preferable strategy. A similar story can be told

with µ.
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Observation 3 Under the specified data generating process in our Monte Carlo simulations,

calculating the probability of guessing correct under the assumption of zero true negative

learning is more often the best strategy when using the gain measurement than when using γ̂ as

the measurement of learning.

As noted earlier, the mean absolute deviation is smaller using the 1/n estimator in 78% of

the 720 simulated distributions estimating γ̂ when we specify that the true probability deviates by

0.05 from 1/n (1/4). However, under the same specifications with the gain metric, the 1/n

strategy is only preferable in 65% of cases. Moreover, when the probability specified by 1/n is

off by 0.10, then γ̂ can be estimated using either method with roughly the same chance of the

strategy having the lower mean absolute deviation. However, in the case of the gain metric of the

same specification, the 1/n probability strategy is only preferable 26% of the time. Using the

same underlying parameters as Figure 4, Figure 5 compares the width of the γ̂/(1 − µ̂)

distributions when assuming α̂ = 0 and when assuming the probability equals 1/n. This shows

the difference in distribution width of the two estimation strategies decreases in comparison to the

γ̂ distributions shown in Figure 4. In Figure 5(a), the 1/n estimator distribution has a standard

deviation of 0.018 while α̂ = 0 estimator distribution has a standard deviation of 0.020. In Figure

5(b), the 1/n estimator distribution has a standard deviation of 0.018 while α̂ = 0 estimator

distribution has a standard deviation of 0.025.

Practitioner’s Guide

In this section, we describe how to make actionable decisions based on the information in

the study. This section is simplified to show only the relevant conclusions and tools; how these

conclusions/tools were derived are left to other sections of the paper.

Assuming the practitioner wishes to use disaggregated value­added learning to estimate the

amount of learning in their classroom, study, or assessment procedure, they are faced with the two

fundamental questions: (1) should they measure their results in terms of positive learning adjusted

for guess (γ̂) or the gain estimator introduced in this paper (γ̂/(1 − µ̂)), and (2) should they
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(a) p = 0.20 (b) p = 0.30

Figure 5. Kernel Density Estimates (KDE – for details see Scott (2015)) of γ̂/(1 − µ̂) distributions
when underlying µ = 0.3, γ = 0.3 and α = 0.03. Both simulations are of class sizes of 50
students where the practitioner or researcher assumes the probability of guessing correct is equal
to 1/4. The true probability of guessing correct (p) is below each figure; this is the only difference
in the simulation parameters that generated the figures. Optimal bandwidth is calculated using
Silverman’s (1986) method. The mean value of γ/(1 − µ) is plotted as a vertical line.

estimate the probability of guessing correct as 1/n or assume α = 0?

These choices could be influenced many factors. For instance, the practitioner could have a

long standing assessment process calculating γ̂ values for a given course. In that situation, the

ability to compare across years might override any statistical factors. Similarly, a practitioner

facing populations with very different stock levels of knowledge might prefer to use the gain

estimator for increased interpretability. However, for purposes of this section, we will assume that

the practitioner wishes to maximize the accuracy of their estimate. This set of choices can be

visualized as Table 1.

To determine which cell is the most appropriate, the practitioner must calculate R, defined

in Comparing the Adjusted Positive Learning and the Gain Estimators’ Sensitivity to Probability

Misspecification, and follow the decision trees presented in Online Appendix A. We will walk

through each of these steps.

The first step is to calculate the unadjusted p̂l, n̂l, r̂l, and ẑl. This disaggregation can be

performed by hand or by using software that performs this disaggregation automatically (Smith,

2018). Using these values the practitioner can easily calculate both R equations with a formula:
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Table 1
Decision for the practitioner using the tools presented in this paper. R is the ratio of elasticities
(or sensitivity) to probability misspecification and E is the average absolute error of given
estimation approach.

1/n α̂ = 0
γ̂ |R| > 1 & |E1/n| < |Eα̂=0| |R| > 1 & |E1/n| > |Eα̂=0|

γ̂/(1 − µ̂) |R| < 1 & |E1/n| < |Eα̂=0| |R| < 1 & |E1/n| > |Eα̂=0|

R = n̂l+p̂l+r̂l−1
(n̂l+r̂l−1)(p̂+1)+2p̂l when the practitioner assumes p̂ = 1/n, R = p̂l+r̂l−1

2p̂l+r̂l−n̂l−1 when the

practitioner assumes α̂ = 0.

R represents the ratio of two probability misspecification elasticities (εγ̂/(1−µ̂)
εγ̂

). As the gain

estimator is in the numerator of this fraction, when −1 < R < 1 then the gain estimator is less

sensitive (in percent terms) to misspecification. The two calculated R values are likely close to

each other (both in the range −1 < R < 1 or not); if they are not, the practitioner might need to

perform the steps that follow twice. With the estimator selected, the practitioner can move to

selecting either 1/n or α̂ = 0 to estimate p̂.

The goal of the practitioner is to choose a strategy that maximizes the accuracy of the

chosen estimator: in essence, which strategy would result in less absolute error. However, this

absolute error is not known without assumptions. To provide the practitioner at least some

guidance on this choice, a large set of Monte Carlo simulations have been conducted under a

given set of assumptions, not least of which is the independence of the questions (details of these

assumptions are provided in Comparative Monte Carlo Simulations). These results were then fit

to decision trees that represent the collective wisdom of all of these simulations in one diagram.

The practitioner should start with what they know about the exam questions. If the question

has been carefully designed to give a myopic student chance probability of guessing correct, then

probability of guessing correct is likely to converge on 1/n. If that wasn’t a central tenant of

question construction, however, this might not be the case. Knowledge of question guessing

probability is the first step to putting the trees in Online Appendix A in action. As an example,

suppose that the practitioner has chosen to use the gain estimator and believes that their
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four­option multiple choice exam was designed to give students chance probability of guessing

correct. Following Online Appendix Figure A2(b), there is a yes/no choice indicting that

|p̂ − p| > 0.055. If the practitioner believes that the questions are designed to give the student

only chance probability of guessing correct, they likely do not believe that there is such a large

deviation from the true probability. Noted in the round node, without further questions, the

diagram suggests the practitioner should use the 1/n probability estimator. However, if they

believe they know how much negative learning (α) occurs in their sample, they could further

refine their choice. In this case, the tree asks if there is less than 0.015 true negative learning; a

very small amount. The practitioner likely does not believe that is reasonable, answers ‘no’ and

finds the final node (continuing to suggest the 1/n estimator).

The final step is to determine if the observed learning value is statistically different from no

learning. To give a concrete example, if a practitioner or researcher observed a µ̂ of 0.6, had a

class size of 30 (m), estimated the gain measurement (γ̂/(1 − µ̂)) to be 0.4, and was exploring a

question with n = 4, then the final five rows of Online Appendix Table B1 corresponding to class

sizes of 30 might apply. Because the true µ may lie between 0.4 and 0.8, the practitioner or

researcher would use the critical values (at either the 90% or 95% level) to test whether or not the

gain was statistically different from 0. With a gain of 0.4, the practitioner or researcher would fail

to reject the null hypothesis of no learning at the 95% level but reject the null at the 90% level.

Conclusion

This paper extends the work of Walstad and Wagner (2016) and Smith and Wagner (2018)

by: (1) providing a transformed measure of learning that under knowable conditions is less

sensitive to probability misspecification; (2) providing a statistical test for the new transformed

measure; (3) suggesting an alternative method of determining the probability of guessing correct

(α̂ = 0); (4) simulating the distribution of outcomes when the probability of guessing correct is

assumed to be 1/n (where n is the number of answer options) and assuming true negative

learning is zero and solving for the probability that this implies. These Monte Carlo simulations
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show when one probability specification results in a smaller mean absolute deviation from the

true value (which are known in the simulations). As our assumptions are very strong, we only

make general observations about our simulation results.

One reasonable conclusion one could draw from the Monte Carlo simulations is a reiteration

of the importance of exam questions with a known probability of guessing correct. When the

specified probability of guessing correct using 1/n was deviated by 0.05 or less in either direction

from the true value, the simulations indicated it was almost always better to use the 1/n

probability estimator. Arguably, exam question options that result in more than a 0.05 probability

deviation from random guessing is in an indication of exam questions with distractors that are not

serving their intended purpose. This suggests that carefully written question distractors aren’t just

important to create a stronger discriminator between high and low quality students, but are in fact

critical for this type of analysis of the data. Widely used exam questions that have been tested,

even if a norming sample isn’t available, might result in a higher quality analysis.

Further, our simulations suggested that the estimators assuming zero true negative learning

performed best when true positive and retained learning were comparatively low. This result was

hinted at in A Brief Description of the Estimators in Smith and Wagner (2018) where if raw zero

learning equaled zero, the implied probability of guessing the correct answer equaled one when

assuming α̂ = 0. This suggests that datasets with very low zero learning would result in

impractical implied probabilities of guessing the correct answer on a question.

While the transformed measure, supplemented by the Monte Carlo simulations, provides the

practitioner or researcher guidance, it does not replace judgment. Only the practitioner/researcher

can decide what assumptions they are willing to make for their particular dataset. However, this

paper provides them with tools to make more informed decisions when it comes time to assess

learning in a collection of classes, in their own class, or to test the effectiveness of a pedagogical

technique; the section Practitioner’s Guide can help practitioners make this decision.
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Appendix B

Monte Carlo Simulations of the Gain Measurement under the Null of Zero Learning
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Table B1
90% and 95% critical values from simulated γ̂/(1 − µ̂) distribution where
n = 4 (p = 1/4) and underlying γ = 0 and α = 0

Students µ γ̂
1−µ̂ 0.90

CV γ̂
1−µ̂ 0.95

CV µ̂ 95% CI

15 0.1 0.238 0.333 -0.156 0.378
15 0.2 0.259 0.333 -0.156 0.556
15 0.3 0.259 0.333 -0.067 0.644
15 0.4 0.333 0.429 0.111 0.733
15 0.5 0.333 0.467 0.200 0.822
15 0.6 0.333 0.556 0.289 0.911
15 0.7 0.556 1.000 0.378 0.911
15 0.8 1.000 1.000 0.556 1.000
30 0.1 0.175 0.222 -0.111 0.333
30 0.2 0.185 0.238 -0.022 0.422
30 0.3 0.200 0.250 0.067 0.556
30 0.4 0.200 0.273 0.156 0.644
30 0.5 0.238 0.333 0.289 0.733
30 0.6 0.259 0.333 0.378 0.822
30 0.7 0.333 0.429 0.511 0.867
30 0.8 0.333 0.556 0.600 0.956
50 0.1 0.135 0.171 -0.067 0.280
50 0.2 0.140 0.183 0.013 0.387
50 0.3 0.147 0.200 0.120 0.493
50 0.4 0.158 0.200 0.227 0.573
50 0.5 0.175 0.228 0.307 0.680
50 0.6 0.200 0.259 0.413 0.760
50 0.7 0.238 0.333 0.547 0.840
50 0.8 0.333 0.333 0.653 0.920
80 0.1 0.103 0.136 -0.033 0.233
80 0.2 0.111 0.141 0.067 0.350
80 0.3 0.111 0.147 0.150 0.450
80 0.4 0.124 0.162 0.250 0.550
80 0.5 0.140 0.183 0.367 0.633
80 0.6 0.158 0.210 0.467 0.733
80 0.7 0.185 0.246 0.583 0.817
80 0.8 0.222 0.289 0.700 0.900
100 0.1 0.091 0.118 -0.027 0.227
100 0.2 0.096 0.127 0.067 0.333
100 0.3 0.103 0.133 0.173 0.427
100 0.4 0.111 0.145 0.267 0.533
100 0.5 0.124 0.162 0.373 0.627
100 0.6 0.140 0.179 0.480 0.720
100 0.7 0.158 0.212 0.587 0.800
100 0.8 0.200 0.259 0.707 0.893
300 0.1 0.052 0.066 0.031 0.169
300 0.2 0.056 0.074 0.129 0.276
300 0.3 0.059 0.076 0.227 0.373
300 0.4 0.065 0.083 0.324 0.476
300 0.5 0.069 0.091 0.427 0.573
300 0.6 0.082 0.106 0.529 0.667
300 0.7 0.093 0.118 0.636 0.760
300 0.8 0.111 0.145 0.747 0.853
Notes: Each row indicates the critical values at the 90% threshold ( γ̂

1−µ̂ 0.90
CV) and 95% threshold

( γ̂
1−µ̂ 0.95

CV). The 95% confidence interval of the estimated µ̂ values (µ̂ 95% CI) are provided to

assist the practitioner or researcher in finding the appropriate γ̂
1−µ̂

critical value for a given
statement. A much larger set of critical values are available at https://goo.gl/kKAySX. All
simulations run with 10,000 repetitions.

https://goo.gl/kKAySX
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Table B2
90% and 95% critical values from simulated γ̂/(1 − µ̂) distribution where
n = 5 (p = 1/5) and underlying γ = 0 and α = 0

Students µ γ̂
1−µ̂ 0.90

CV γ̂
1−µ̂ 0.95

CV µ̂ 95% CI

15 0.1 0.205 0.271 -0.167 0.417
15 0.2 0.219 0.306 -0.083 0.500
15 0.3 0.231 0.306 0.000 0.583
15 0.4 0.250 0.375 0.083 0.667
15 0.5 0.286 0.375 0.167 0.833
15 0.6 0.375 0.464 0.333 0.917
15 0.7 0.375 0.583 0.417 0.917
15 0.8 1.000 1.000 0.583 1.000
30 0.1 0.145 0.188 -0.083 0.292
30 0.2 0.148 0.196 0.000 0.417
30 0.3 0.167 0.211 0.083 0.500
30 0.4 0.167 0.231 0.167 0.625
30 0.5 0.196 0.250 0.292 0.708
30 0.6 0.219 0.286 0.375 0.792
30 0.7 0.250 0.375 0.500 0.875
30 0.8 0.375 0.500 0.625 0.958
50 0.1 0.107 0.143 -0.050 0.250
50 0.2 0.113 0.152 0.050 0.375
50 0.3 0.125 0.167 0.125 0.475
50 0.4 0.135 0.167 0.225 0.575
50 0.5 0.145 0.196 0.325 0.675
50 0.6 0.167 0.226 0.425 0.750
50 0.7 0.196 0.250 0.550 0.850
50 0.8 0.250 0.375 0.675 0.925
80 0.1 0.087 0.113 -0.016 0.219
80 0.2 0.091 0.118 0.078 0.328
80 0.3 0.096 0.125 0.172 0.438
80 0.4 0.107 0.141 0.266 0.531
80 0.5 0.113 0.152 0.359 0.641
80 0.6 0.130 0.167 0.469 0.719
80 0.7 0.148 0.196 0.578 0.813
80 0.8 0.196 0.261 0.688 0.891
100 0.1 0.076 0.101 -0.013 0.213
100 0.2 0.083 0.110 0.088 0.313
100 0.3 0.089 0.116 0.175 0.425
100 0.4 0.094 0.122 0.275 0.525
100 0.5 0.103 0.135 0.375 0.625
100 0.6 0.113 0.152 0.488 0.713
100 0.7 0.135 0.179 0.588 0.800
100 0.8 0.167 0.219 0.700 0.888
300 0.1 0.044 0.057 0.038 0.167
300 0.2 0.048 0.063 0.133 0.267
300 0.3 0.051 0.064 0.229 0.371
300 0.4 0.054 0.071 0.329 0.471
300 0.5 0.060 0.077 0.433 0.571
300 0.6 0.065 0.084 0.533 0.667
300 0.7 0.078 0.102 0.638 0.758
300 0.8 0.094 0.122 0.746 0.850
Notes: Each row indicates the critical values at the 90% threshold ( γ̂

1−µ̂ 0.90
CV) and 95% threshold

( γ̂
1−µ̂ 0.95

CV). The 95% confidence interval of the estimated µ̂ values (µ̂ 95% CI) are provided to

assist the practitioner or researcher in finding the appropriate γ̂
1−µ̂

critical value for a given
statement. A much larger set of critical values are available at https://goo.gl/kKAySX. All
simulations run with 10,000 repetitions.

https://goo.gl/kKAySX


ONLINE APPENDIX FOR “ON GUESSING..." 6

Appendix C

Derivations of Equations in the Article

Derivations of all equations in this paper are provided in this section. Alternatively, we

have posted Mathematica files showing the same result: https://goo.gl/qjCCUj.

Derivations of Equation 4. If α̂ = 0 is assumed, equation 2 can be set to zero

and solved for p̂.

0 = p̂(p̂l + r̂l − 1) + n̂l
(p̂ − 1)2

0 = p̂(p̂l + r̂l − 1) + n̂l

−n̂l = p̂(p̂l + r̂l − 1)

p̂ = n̂l
1 − p̂l − r̂l

(12)

Derivations of Equation 5. Assuming α̂ = 0, one can substitute equation 4 into

equation 1 and simplify.

γ̂ = p̂(n̂l + r̂l − 1) + p̂l
(p̂ − 1)2

(γ̂|α̂ = 0) =
n̂l

1−p̂l−r̂l (n̂l + r̂l − 1) + p̂l(
n̂l

1−p̂l−r̂l − 1
)2

(γ̂|α̂ = 0) = n̂l(n̂l + r̂l − 1) + p̂l(1 − p̂l − r̂l)(
n̂l

1−p̂l−r̂l − 1−p̂l−r̂l
1−p̂l−r̂l

)2
(1 − p̂l − r̂l)

(γ̂|α̂ = 0) = n̂l(n̂l + r̂l − 1) + p̂l(1 − p̂l − r̂l)(
n̂l+p̂l+r̂l−1

1−p̂l−r̂l

)
(n̂l + p̂l + r̂l − 1)

(γ̂|α̂ = 0) = (n̂l(n̂l + r̂l − 1) + p̂l(1 − p̂l − r̂l))(1 − p̂l − r̂l)
(n̂l + p̂l + r̂l − 1)2

(γ̂|α̂ = 0) = (n̂l
2

+ n̂lr̂l − n̂l + p̂l − p̂l
2

− p̂lr̂l)(1 − p̂l − r̂l)
(n̂l + p̂l + r̂l − 1)2

(γ̂|α̂ = 0) = (n̂l − p̂l)(n̂l + p̂l + r̂l − 1)(1 − p̂l − r̂l)
(n̂l + p̂l + r̂l − 1)2

(γ̂|α̂ = 0) = (n̂l − p̂l)(1 − p̂l − r̂l)
n̂l + p̂l + r̂l − 1

(13)

Derivation of Equation 6. Using equations 1 and 3, one can find γ̂
1−µ̂

.

https://goo.gl/qjCCUj
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γ̂

1 − µ̂
=

p̂(n̂l+r̂l−1)+p̂l
(p̂−1)2

1 − n̂l+r̂l−p̂
1−p̂

γ̂

1 − µ̂
=

p̂(n̂l+r̂l−1)+p̂l
(p̂−1)2

n̂l+r̂l−1
p̂−1

γ̂

1 − µ̂
=

p̂(n̂l+r̂l−1)+p̂l
(p̂−1)

n̂l + r̂l − 1
γ̂

1 − µ̂
= p̂(n̂l + r̂l − 1) + p̂l

(n̂l + r̂l − 1)(p̂ − 1)

(14)

Derivation of Equation 7. Using equations 6, we can find the value ( γ̂
1−µ̂

|α̂ = 0)

by substituting equation 4 in for all instances of p̂ and simplifying.

γ̂

1 − µ̂
= p̂(n̂l + r̂l − 1) + p̂l

(n̂l + r̂l − 1)(p̂ − 1)

( γ̂

1 − µ̂
|α̂ = 0) =

n̂l
1−r̂l−p̂l (n̂l + r̂l − 1) + p̂l

(n̂l + r̂l − 1)( n̂l
1−r̂l−p̂l − 1−r̂l−p̂l

1−r̂l−p̂l )

( γ̂

1 − µ̂
|α̂ = 0) = n̂l(n̂l + r̂l − 1) + p̂l(1 − r̂l − p̂l)

(n̂l + r̂l − 1)(n̂l + p̂l + r̂l − 1)

( γ̂

1 − µ̂
|α̂ = 0) = (n̂l − p̂l)(n̂l + p̂l + r̂l − 1)

(n̂l + r̂l − 1)(n̂l + p̂l + r̂l − 1)

( γ̂

1 − µ̂
|α̂ = 0) = p̂l − n̂l

1 − n̂l − r̂l

(15)

Derivation of Equation 9. The following is the derivation of εγ̂/(1−µ̂). This can

be achieved by:

• Finding δ(γ̂/(1−µ̂))
δ∆ , which we will define as g′(∆).

• Multiply g′(∆) ∆
g(∆) .

Finding g′(∆):
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g(∆) = (p + ∆)(n̂l + r̂l − 1) + p̂l
(p + ∆ − 1)(n̂l + r̂l − 1)

g′(∆) = 1
p + ∆ − 1

− p̂l + (n̂l + r̂l − 1)(p + ∆)
(p + ∆ − 1)2(r̂l + n̂l − 1)

g′(∆) = (p + ∆ − 1)(r̂l + n̂l − 1) − p̂l − (n̂l + r̂l − 1)(p + ∆)
(p + ∆ − 1)2(r̂l + n̂l − 1)

g′(∆) = (r̂l + n̂l − 1)((p + ∆ − 1) − (p + ∆)) − p̂l
(p + ∆ − 1)2(r̂l + n̂l − 1)

g′(∆) = 1 − r̂l − n̂l − p̂l
(p + ∆ − 1)2(r̂l + n̂l − 1)

(16)

Multiply g′(∆) ∆
g(∆) :

εγ̂/(1−µ̂) =

(
1 − r̂l − n̂l − p̂l

(p + ∆ − 1)2(r̂l + n̂l − 1)

)
∆

(p+∆)(n̂l+r̂l−1)+p̂l
(p+∆−1)(n̂l+r̂l−1)

εγ̂/(1−µ̂) = ∆(1 − n̂l − r̂l − p̂l)
(p + ∆ − 1)(p + ∆)(n̂l + r̂l − 1) + p̂l(p + ∆ − 1)

εγ̂/(1−µ̂) = ∆(1 − n̂l − r̂l − p̂l)
(p + ∆ − 1)((p + ∆)(n̂l + r̂l − 1) + p̂l)

εγ̂/(1−µ̂) = − ∆(n̂l + p̂l + r̂l − 1)
(∆ + p − 1)((n̂l + r̂l − 1)(∆ + p) + p̂l)

(17)

The following is the derivation of εγ̂. This can be achieved by:

• Finding δγ̂
δ∆ , which we will define as f ′(∆).

• Multiply f ′(∆) ∆
f(∆) .

Finding f ′(∆):

f(∆) = (p + ∆)(n̂l + r̂l − 1) + p̂l
(p + ∆ − 1)2

f ′(∆) = n̂l + r̂l − 1
(p + ∆ − 1)2 − 2((p + ∆)(n̂l + r̂l − 1) + p̂l)

(p + ∆ − 1)3

f ′(∆) = (n̂l + r̂l − 1)(p + ∆ − 1) − 2((p + ∆)(n̂l + r̂l − 1) + p̂l)
(p + ∆ − 1)3

(18)

Multiply f ′(∆) ∆
f(∆) :
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εγ̂ = (n̂l + r̂l − 1)(p + ∆ − 1) − 2((p + ∆)(n̂l + r̂l − 1) + p̂l)
(p + ∆ − 1)3

∆
(p+∆)(n̂l+r̂l−1)+p̂l

(p+∆−1)2

εγ̂ = ∆((n̂l + r̂l − 1)(p + ∆ − 1) − 2((p + ∆)(n̂l + r̂l − 1) + p̂l))
(p + ∆ − 1)(p + ∆)(n̂l + r̂l − 1) + p̂l(p + ∆ − 1)

εγ̂ = ∆((n̂l + r̂l − 1)((p + ∆ − 1) − 2(p + ∆)) − 2p̂l)
(p + ∆ − 1)((p + ∆)(n̂l + r̂l − 1) + p̂l)

εγ̂ = ∆((n̂l + r̂l − 1)(−1 − p − ∆) − 2p̂l)
(p + ∆ − 1)((p + ∆)(n̂l + r̂l − 1) + p̂l)

εγ̂ = −∆(n̂l(∆ + p + 1) + 2p̂l + (r̂l − 1)(∆ + p + 1))
(∆ + p − 1)((n̂l + r̂l − 1)(∆ + p) + p̂l)

(19)

Derivation of Equation 10.

R =
εγ̂/(1−µ̂)

εγ̂
=

− ∆(n̂l+p̂l+r̂l−1)
(∆+p−1)((n̂l+r̂l−1)(∆+p)+p̂l)

− ∆(n̂l(∆+p+1)+2p̂l+(r̂l−1)(∆+p+1))
(∆+p−1)((n̂l+r̂l−1)(∆+p)+p̂l)

R = n̂l + p̂l + r̂l − 1
n̂l(∆ + p + 1) + 2p̂l + (r̂l − 1)(∆ + p + 1)

R = n̂l + p̂l + r̂l − 1
2p̂l + (n̂l + r̂l − 1)(∆ + p + 1)

(20)

Derivation of Equation 11. Given that p̂ = p + ∆, all instances of p + ∆ are

replaced with equation 4 given we are assuming α̂ = 0.

R = n̂l + p̂l + r̂l − 1
n̂l(∆ + p + 1) + 2p̂l + (r̂l − 1)(∆ + p + 1)

(R|α̂ = 0) = n̂l + p̂l + r̂l − 1
n̂l( n̂l

1−p̂l−r̂l + 1) + 2p̂l + (r̂l − 1)( n̂l
1−p̂l−r̂l + 1)

(R|α̂ = 0) = n̂l + p̂l + r̂l − 1
n̂l( n̂l+1−p̂l−r̂l

1−p̂l−r̂l ) + 2p̂l + (r̂l − 1)( n̂l+1−p̂l−r̂l
1−p̂l−r̂l )

(R|α̂ = 0) = (p̂l + r̂l − 1)(n̂l + p̂l + r̂l − 1)
−(n̂l(1 + n̂l − p̂l − r̂l)) + 2p̂l(p̂l + r̂l − 1) − (r̂l − 1)(1 + n̂l − p̂l − r̂l)

(R|α̂ = 0) = (p̂l + r̂l − 1)(n̂l + p̂l + r̂l − 1)

−n̂l − n̂l
2

+ n̂lp̂l + n̂lr̂l − 2p̂l + 2p̂l
2

+ 2p̂lr̂l + 1 + n̂l − p̂l − 2r̂l − n̂lr̂l + p̂lr̂l + r̂l
2

(R|α̂ = 0) = (p̂l + r̂l − 1)(n̂l + p̂l + r̂l − 1)

1 − n̂l
2

− 3p̂l + n̂lp̂l + 2p̂l
2

− 2r̂l + 3p̂lr̂l + r̂l
2

(R|α̂ = 0) = (p̂l + r̂l − 1)(n̂l + p̂l + r̂l − 1)
(2p̂l + r̂l − n̂l − 1)(n̂l + p̂l + r̂l − 1)

(R|α̂ = 0) = p̂l + r̂l − 1
2p̂l + r̂l − n̂l − 1

(21)
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Appendix D

Simulations with Learning Correlated with Ability

As a sensitivity check, we re-simulated every comparative Monte Carlo simulation

presented in this paper. In the original simulations, we assumed a Binomial distribution to

determine the student’s level of stock knowledge (µ), positive learning (γ), and negative

learning or forgetting (α). A core issue with these simulations is the implied assumption

that there is no correlation between knowledge and learning. In this set of simulations we

modify this assumption and assume that as stock knowledge increases, the probability of

positive learning increases and the probability of forgetting (negative learning) decreases.

Specifically, we use a logistic function ( L
1+e−k(x−x0) ) along with the difference between the

seeded µ and the individual student’s µi (x − x0 = µi − µ for positive learning;

x − x0 = µ − µi for negative learning) to change the probability of the student learning or

forgetting. We have set the limit on the logistic function such that the probability cannot

exceed the bounds of [0, 1], however, it spans as much of the range as possible while still

being centered on the seeded value and approaches an appropriate boundary

asymptotically.

We purposely made the correlation between µi and learning quite strong; we set the k

value in the logistic function at 5. There is, of course, an infinite number of possible ways

that µi could be correlated with the learning values. However, if our observations

generated from comparative simulations where there is no correlation substantively match

the observations when the simulations have a high degree of correlation then the

observations at least appear to be generalizable.1

Using the simulations correlated to ability, we fit four Recursive Partitioning trees

(Breiman et al., 1984) akin to Online Appendix A. Like the original trees, the outcome

variable was whether the 1/n or α̂ = 0 probability estimator produced more error in the

1 Unlike the comparative simulations described in the main body of the paper, each distribution was
created using only 1000 simulated classes (instead of 10,000). This allowed the procedure to complete in a
reasonable amount of time.
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learning estimate. While some break points changed slightly, the trees generated with this

correlation assumption are remarkably similar to the those in Online Appendix A.



ONLINE APPENDIX FOR “ON GUESSING..." 12

(a
)

p̂
=

0.
20

(b
)

p̂
=

0.
25

Fi
gu

re
D

1.
T

he
sim

ul
at

ed
γ̂

di
st

rib
ut

io
ns

(h
tt

p:
//

bi
t.

ly
/M

CS
TF

ul
l)

w
he

n
le

ar
ni

ng
wa

s
co

rr
el

at
ed

to
st

oc
k

kn
ow

le
dg

e
we

re
us

ed
to

fit
a

R
ec

ur
siv

e
Pa

rt
iti

on
in

g
tr

ee
(B

re
im

an
et

al
.,

19
84

)
w

ith
an

ou
tc

om
e

va
ria

bl
e

of
th

e
m

in
im

um
ab

so
lu

te
er

ro
r

es
tim

at
or

.
Fe

at
ur

es
in

cl
ud

ed
we

re
th

e
ab

so
lu

te
de

vi
at

io
n

fro
m

th
e

tr
ue

pr
ob

ab
ili

ty
of

gu
es

sin
g

co
rr

ec
t

(|p
−

p̂|
),

tr
ue

un
de

rly
in

g
st

oc
k

kn
ow

le
dg

e
(µ

),
tr

ue
un

de
rly

in
g

ne
ga

tiv
e

le
ar

ni
ng

(α
),

an
d

cl
as

s
siz

e
(S

tu
de

nt
s)

.
Ea

ch
no

de
(o

va
l)

re
pr

es
en

ts
th

e
be

st
(lo

we
st

ab
so

lu
te

er
ro

r)
es

tim
at

io
n

st
ra

te
gy

at
th

at
po

in
t

in
th

e
tr

ee
.

B
el

ow
ea

ch
no

de
is

th
e

pr
op

or
tio

n
of

th
e

da
ta

in
th

at
no

de
w

he
re

p̂
=

1/
n

is
th

e
pr

ef
er

re
d

st
ra

te
gy

(fi
rs

t
nu

m
be

r)
fo

llo
we

d
by

th
e

pr
op

or
tio

n
of

th
e

ov
er

al
lt

ra
in

in
g

da
ta

th
at

no
de

re
pr

es
en

ts
.

Fi
gu

re
(a

)
is

tr
ai

ne
d

on
al

lγ̂
sim

ul
at

io
n

re
su

lts
w

he
re

p
=

1/
5

an
d

Fi
gu

re
(b

)
is

tr
ai

ne
d

on
al

lγ̂
sim

ul
at

io
n

re
su

lts
w

he
re

p
=

1/
4.

http://bit.ly/MCSTFull


ONLINE APPENDIX FOR “ON GUESSING..." 13

(a
)

p̂
=

0.
20

(b
)

p̂
=

0.
25

Fi
gu

re
D

2.
T

he
sim

ul
at

ed
γ̂

1−
µ̂

di
st

rib
ut

io
ns

(h
tt

p:
//

bi
t.

ly
/M

CS
TF

ul
l)

w
he

n
le

ar
ni

ng
wa

s
co

rr
el

at
ed

to
st

oc
k

kn
ow

le
dg

e
we

re
us

ed
to

fit
a

R
ec

ur
siv

e
Pa

rt
iti

on
in

g
tr

ee
(B

re
im

an
et

al
.,

19
84

)
w

ith
an

ou
tc

om
e

va
ria

bl
e

of
th

e
m

in
im

um
ab

so
lu

te
er

ro
r

es
tim

at
or

.
Fe

at
ur

es
in

cl
ud

ed
we

re
th

e
ab

so
lu

te
de

vi
at

io
n

fro
m

th
e

tr
ue

pr
ob

ab
ili

ty
of

gu
es

sin
g

co
rr

ec
t

(|p
−

p̂|
),

tr
ue

un
de

rly
in

g
st

oc
k

kn
ow

le
dg

e
(µ

),
tr

ue
un

de
rly

in
g

ne
ga

tiv
e

le
ar

ni
ng

(α
),

an
d

cl
as

s
siz

e.
Ea

ch
no

de
(o

va
l)

re
pr

es
en

ts
th

e
be

st
(lo

we
st

ab
so

lu
te

er
ro

r)
es

tim
at

io
n

st
ra

te
gy

at
th

at
po

in
t

in
th

e
tr

ee
.

B
el

ow
ea

ch
no

de
is

th
e

pr
op

or
tio

n
of

th
e

da
ta

in
th

at
no

de
w

he
re

p̂
=

1/
n

is
th

e
pr

ef
er

re
d

st
ra

te
gy

(fi
rs

t
nu

m
be

r)
fo

llo
we

d
by

th
e

pr
op

or
tio

n
of

th
e

ov
er

al
lt

ra
in

in
g

da
ta

th
at

no
de

re
pr

es
en

ts
.

Fi
gu

re
(a

)
is

tr
ai

ne
d

on
al

l
γ̂

1−
µ̂

sim
ul

at
io

n
re

su
lts

w
he

re
p

=
1/

5
an

d
Fi

gu
re

(b
)

is
tr

ai
ne

d
on

al
l

γ̂
1−

µ̂
sim

ul
at

io
n

re
su

lts
w

he
re

p
=

1/
4.

http://bit.ly/MCSTFull


ONLINE APPENDIX FOR “ON GUESSING..." 14

Appendix E

Comparative Monte Carlo Simulations
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Table E1
γ estimator comparison when the 1/n estimator is deviated by 0.05 from
the true probability of guessing correct

α p γ µ
∣∣γ̂1/n − γ

∣∣ |γ̂Z − γ| 1/n Pref.

0.01 0.2 0.1 0.1 0.051 0.018
0.01 0.3 0.1 0.1 0.043 0.022
0.01 0.2 0.3 0.1 0.024 0.013
0.01 0.3 0.3 0.1 0.019 0.017
0.01 0.2 0.5 0.1 0.012 0.013 T
0.01 0.3 0.5 0.1 0.014 0.021 T
0.03 0.2 0.1 0.1 0.050 0.033
0.03 0.3 0.1 0.1 0.043 0.037
0.03 0.2 0.3 0.1 0.023 0.021
0.03 0.3 0.3 0.1 0.020 0.024 T
0.03 0.2 0.5 0.1 0.012 0.016 T
0.03 0.3 0.5 0.1 0.015 0.024 T
0.05 0.2 0.1 0.1 0.050 0.053 T
0.05 0.3 0.1 0.1 0.044 0.057 T
0.05 0.2 0.3 0.1 0.024 0.033 T
0.05 0.3 0.3 0.1 0.020 0.035 T
0.05 0.2 0.5 0.1 0.012 0.017 T
0.05 0.3 0.5 0.1 0.015 0.026 T
0.01 0.2 0.1 0.3 0.036 0.016
0.01 0.3 0.1 0.3 0.031 0.020
0.01 0.2 0.3 0.3 0.013 0.010
0.01 0.3 0.3 0.3 0.012 0.015 T
0.01 0.2 0.5 0.3 0.019 T
0.01 0.3 0.5 0.3 0.022 T
0.03 0.2 0.1 0.3 0.036 0.032
0.03 0.3 0.1 0.3 0.031 0.036 T
0.03 0.2 0.3 0.3 0.012 0.014 T
0.03 0.3 0.3 0.3 0.012 0.017 T
0.03 0.2 0.5 0.3 0.020 T
0.03 0.3 0.5 0.3 0.022 T
0.05 0.2 0.1 0.3 0.036 0.052 T
0.05 0.3 0.1 0.3 0.031 0.056 T
0.05 0.2 0.3 0.3 0.013 0.022 T
0.05 0.3 0.3 0.3 0.012 0.023 T
0.05 0.2 0.5 0.3 0.020 T
0.05 0.3 0.5 0.3 0.022 T
0.01 0.2 0.1 0.5 0.022 0.014
0.01 0.3 0.1 0.5 0.019 0.018
0.01 0.2 0.3 0.5 0.010 0.017 T
0.01 0.3 0.3 0.5 0.011 0.026 T
0.03 0.2 0.1 0.5 0.022 0.031 T
0.03 0.3 0.1 0.5 0.019 0.034 T
0.03 0.2 0.3 0.5 0.010 0.023 T
0.03 0.3 0.3 0.5 0.011 0.033 T
0.05 0.2 0.1 0.5 0.022 0.051 T
0.05 0.3 0.1 0.5 0.019 0.055 T
0.05 0.2 0.3 0.5 0.010 0.027 T
0.05 0.3 0.3 0.5 0.011 0.036 T

Notes: These Monte Carlo simulations compare the true γ value to values produced by two different
estimates of the probability of guessing correct. The γ̂1/n estimator assumes the probability of
guessing correct is equal to 1/4. The γ̂Z estimator assume α̂ = 0. These estimates of γ are compared
to the true value in absolute terms and the averages across all 10,000 simulations are calculated. The
column ‘1/n Pref.’ takes the value ‘T’ when the average absolute deviation of the 1/n estimator
produced less average absolute deviation than the α̂ = 0 estimator. In some cases, the γ̂Z estimator
can be very wrong: the blank cells indicate where at least one of the 10,000 simulations estimated
the probability of guessing correct to be 100% (resulting in division by zero); this can occur by
random chance alone. The results above are a subset of a much larger set of simulations available
here: https://goo.gl/2f8NSa.

https://goo.gl/2f8NSa


ONLINE APPENDIX FOR “ON GUESSING..." 16

Table E2
γ estimator comparison when the 1/n estimator is deviated by 0.10 from
the true probability of guessing correct

α p γ µ
∣∣γ̂1/n − γ

∣∣ |γ̂Z − γ| 1/n Pref.

0.01 0.15 0.1 0.1 0.108 0.015
0.01 0.35 0.1 0.1 0.079 0.025
0.01 0.15 0.3 0.1 0.051 0.011
0.01 0.35 0.3 0.1 0.030 0.019
0.01 0.15 0.5 0.1 0.012 0.011
0.01 0.35 0.5 0.1 0.022 0.027 T
0.03 0.15 0.1 0.1 0.108 0.032
0.03 0.35 0.1 0.1 0.079 0.040
0.03 0.15 0.3 0.1 0.051 0.020
0.03 0.35 0.3 0.1 0.030 0.025
0.03 0.15 0.5 0.1 0.012 0.013 T
0.03 0.35 0.5 0.1 0.022 0.030 T
0.05 0.15 0.1 0.1 0.108 0.052
0.05 0.35 0.1 0.1 0.079 0.059
0.05 0.15 0.3 0.1 0.051 0.032
0.05 0.35 0.3 0.1 0.030 0.035 T
0.05 0.15 0.5 0.1 0.012 0.014 T
0.05 0.35 0.5 0.1 0.022 0.031 T
0.01 0.15 0.1 0.3 0.078 0.014
0.01 0.35 0.1 0.3 0.056 0.023
0.01 0.15 0.3 0.3 0.021 0.009
0.01 0.35 0.3 0.3 0.013 0.018 T
0.01 0.15 0.5 0.3 0.037 T
0.01 0.35 0.5 0.3 0.043 T
0.03 0.15 0.1 0.3 0.077 0.031
0.03 0.35 0.1 0.3 0.056 0.039
0.03 0.15 0.3 0.3 0.021 0.013
0.03 0.35 0.3 0.3 0.013 0.020 T
0.03 0.15 0.5 0.3 0.037 T
0.03 0.35 0.5 0.3 0.044 T
0.05 0.15 0.1 0.3 0.077 0.051
0.05 0.35 0.1 0.3 0.056 0.058 T
0.05 0.15 0.3 0.3 0.021 0.021
0.05 0.35 0.3 0.3 0.013 0.025 T
0.05 0.15 0.5 0.3 0.036 T
0.05 0.35 0.5 0.3 0.043 T
0.01 0.15 0.1 0.5 0.047 0.012
0.01 0.35 0.1 0.5 0.033 0.020
0.01 0.15 0.3 0.5 0.011 0.013 T
0.01 0.35 0.3 0.5 0.018 0.030 T
0.03 0.15 0.1 0.5 0.047 0.029
0.03 0.35 0.1 0.5 0.033 0.036 T
0.03 0.15 0.3 0.5 0.011 0.019 T
0.03 0.35 0.3 0.5 0.018 0.036 T
0.05 0.15 0.1 0.5 0.047 0.050 T
0.05 0.35 0.1 0.5 0.033 0.057 T
0.05 0.15 0.3 0.5 0.012 0.023 T
0.05 0.35 0.3 0.5 0.018 0.040 T

Notes: These Monte Carlo simulations compare the true γ value to values produced by two different
estimates of the probability of guessing correct. The γ̂1/n estimator assumes the probability of
guessing correct is equal to 1/4. The γ̂Z estimator assume α̂ = 0. These estimates of γ are compared
to the true value in absolute terms and the averages across all 10,000 simulations are calculated. The
column ‘1/n Pref.’ takes the value ‘T’ when the average absolute deviation of the 1/n estimator
produced less average absolute deviation than the α̂ = 0 estimator. In some cases, the γ̂Z estimator
can be very wrong: the blank cells indicate where at least one of the 10,000 simulations estimated
the probability of guessing correct to be 100% (resulting in division by zero); this can occur by
random chance alone. The results above are a subset of a much larger set of simulations available
here: https://goo.gl/2f8NSa.

https://goo.gl/2f8NSa
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Table E3
γ/(1 − µ) estimator comparison when the 1/n estimator is deviated by
0.05 from the true probability of guessing correct

α p γ µ

∣∣∣ γ̂1/n

1−µ̂1/n
− γ

1−µ

∣∣∣ ∣∣ γ̂Z
1−µ̂Z

− γ
1−µ

∣∣ 1/n Pref.

0.01 0.2 0.1 0.1 0.060 0.020
0.01 0.3 0.1 0.1 0.059 0.026
0.01 0.2 0.3 0.1 0.044 0.018
0.01 0.3 0.3 0.1 0.044 0.022
0.01 0.2 0.5 0.1 0.030 0.015
0.01 0.3 0.5 0.1 0.030 0.018
0.03 0.2 0.1 0.1 0.059 0.040
0.03 0.3 0.1 0.1 0.059 0.044
0.03 0.2 0.3 0.1 0.045 0.038
0.03 0.3 0.3 0.1 0.045 0.041
0.03 0.2 0.5 0.1 0.030 0.037 T
0.03 0.3 0.5 0.1 0.030 0.039 T
0.05 0.2 0.1 0.1 0.059 0.062 T
0.05 0.3 0.1 0.1 0.060 0.066 T
0.05 0.2 0.3 0.1 0.045 0.061 T
0.05 0.3 0.3 0.1 0.044 0.064 T
0.05 0.2 0.5 0.1 0.030 0.060 T
0.05 0.3 0.5 0.1 0.030 0.062 T
0.01 0.2 0.1 0.3 0.057 0.024
0.01 0.3 0.1 0.3 0.057 0.031
0.01 0.2 0.3 0.3 0.038 0.021
0.01 0.3 0.3 0.3 0.039 0.025
0.01 0.2 0.5 0.3 0.020 0.018
0.01 0.3 0.5 0.3 0.020 0.019
0.03 0.2 0.1 0.3 0.057 0.051
0.03 0.3 0.1 0.3 0.057 0.056
0.03 0.2 0.3 0.3 0.038 0.049 T
0.03 0.3 0.3 0.3 0.039 0.052 T
0.03 0.2 0.5 0.3 0.020 0.047 T
0.03 0.3 0.5 0.3 0.021 0.048 T
0.05 0.2 0.1 0.3 0.057 0.081 T
0.05 0.3 0.1 0.3 0.057 0.085 T
0.05 0.2 0.3 0.3 0.039 0.079 T
0.05 0.3 0.3 0.3 0.039 0.082 T
0.05 0.2 0.5 0.3 0.020 0.076 T
0.05 0.3 0.5 0.3 0.021 0.078 T
0.01 0.2 0.1 0.5 0.053 0.032
0.01 0.3 0.1 0.5 0.054 0.041
0.01 0.2 0.3 0.5 0.028 0.026
0.01 0.3 0.3 0.5 0.029 0.030 T
0.03 0.2 0.1 0.5 0.053 0.072 T
0.03 0.3 0.1 0.5 0.054 0.079 T
0.03 0.2 0.3 0.5 0.028 0.068 T
0.03 0.3 0.3 0.5 0.028 0.072 T
0.05 0.2 0.1 0.5 0.054 0.114 T
0.05 0.3 0.1 0.5 0.054 0.122 T
0.05 0.2 0.3 0.5 0.027 0.110 T
0.05 0.3 0.3 0.5 0.029 0.114 T

Notes: These Monte Carlo simulations compare the true γ/(1 − µ) value to values produced by two
different estimates of the probability of guessing correct. The γ̂1/n/(1 − µ̂1/n) estimator assumes the
probability of guessing correct is equal to 1/4. The γ̂Z/(1 − µ̂Z) estimator assumes α̂ = 0. These
estimates of γ/(1 − µ) are compared to the true value in absolute terms and the averages across all
10,000 simulations are calculated. The column ‘1/n Pref.’ takes the value ‘T’ when the average
absolute deviation of the 1/n estimator produced less average absolute deviation than the α̂ = 0
estimator. The results above are a subset of a much larger set of simulations available here:
https://goo.gl/2f8NSa.

https://goo.gl/2f8NSa
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Table E4
γ/(1 − µ) estimator comparison when the 1/n estimator is deviated by
0.10 from the true probability of guessing correct

α p γ µ

∣∣∣ γ̂1/n

1−µ̂1/n
− γ

1−µ

∣∣∣ ∣∣ γ̂Z
1−µ̂Z

− γ
1−µ

∣∣ 1/n Pref.

0.01 0.15 0.1 0.1 0.119 0.018
0.01 0.35 0.1 0.1 0.119 0.029
0.01 0.15 0.3 0.1 0.089 0.016
0.01 0.35 0.3 0.1 0.089 0.024
0.01 0.15 0.5 0.1 0.059 0.014
0.01 0.35 0.5 0.1 0.059 0.020
0.03 0.15 0.1 0.1 0.119 0.038
0.03 0.35 0.1 0.1 0.119 0.047
0.03 0.15 0.3 0.1 0.089 0.037
0.03 0.35 0.3 0.1 0.089 0.043
0.03 0.15 0.5 0.1 0.059 0.036
0.03 0.35 0.5 0.1 0.059 0.040
0.05 0.15 0.1 0.1 0.119 0.061
0.05 0.35 0.1 0.1 0.118 0.069
0.05 0.15 0.3 0.1 0.089 0.060
0.05 0.35 0.3 0.1 0.089 0.066
0.05 0.15 0.5 0.1 0.059 0.059
0.05 0.35 0.5 0.1 0.059 0.063 T
0.01 0.15 0.1 0.3 0.115 0.022
0.01 0.35 0.1 0.3 0.114 0.035
0.01 0.15 0.3 0.3 0.076 0.019
0.01 0.35 0.3 0.3 0.076 0.028
0.01 0.15 0.5 0.3 0.038 0.017
0.01 0.35 0.5 0.3 0.038 0.021
0.03 0.15 0.1 0.3 0.114 0.049
0.03 0.35 0.1 0.3 0.114 0.060
0.03 0.15 0.3 0.3 0.076 0.047
0.03 0.35 0.3 0.3 0.076 0.054
0.03 0.15 0.5 0.3 0.038 0.046 T
0.03 0.35 0.5 0.3 0.038 0.050 T
0.05 0.15 0.1 0.3 0.114 0.079
0.05 0.35 0.1 0.3 0.115 0.088
0.05 0.15 0.3 0.3 0.076 0.077 T
0.05 0.35 0.3 0.3 0.076 0.084 T
0.05 0.15 0.5 0.3 0.038 0.075 T
0.05 0.35 0.5 0.3 0.038 0.079 T
0.01 0.15 0.1 0.5 0.107 0.029
0.01 0.35 0.1 0.5 0.106 0.045
0.01 0.15 0.3 0.5 0.053 0.024
0.01 0.35 0.3 0.5 0.054 0.033
0.03 0.15 0.1 0.5 0.107 0.069
0.03 0.35 0.1 0.5 0.107 0.084
0.03 0.15 0.3 0.5 0.053 0.066 T
0.03 0.35 0.3 0.5 0.053 0.074 T
0.05 0.15 0.1 0.5 0.107 0.111 T
0.05 0.35 0.1 0.5 0.107 0.126 T
0.05 0.15 0.3 0.5 0.053 0.108 T
0.05 0.35 0.3 0.5 0.054 0.116 T

Notes: These Monte Carlo simulations compare the true γ/(1 − µ) value to values produced by two
different estimates of the probability of guessing correct. The γ̂1/n/(1 − µ̂1/n) estimator assumes the
probability of guessing correct is equal to 1/4. The γ̂Z/(1 − µ̂Z) estimator assumes α̂ = 0. These
estimates of γ/(1 − µ) are compared to the true value in absolute terms and the averages across all
10,000 simulations are calculated. The column ‘1/n Pref.’ takes the value ‘T’ when the average
absolute deviation of the 1/n estimator produced less average absolute deviation than the α̂ = 0
estimator. The results above are a subset of a much larger set of simulations available here:
https://goo.gl/2f8NSa.

https://goo.gl/2f8NSa
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