Yoga Training Improves Metabolic Parameters in Obese Boys

Dae Yun Seo
SungRyul Lee
Arturo Figueroa
Hyoung Kyu Kim
Yeong Ho Baek

See next page for additional authors

Follow this and additional works at: https://digitalcommons.unomaha.edu/hperfacpub

Part of the Health and Physical Education Commons, and the Kinesiology Commons

Please take our feedback survey at: https://unomaha.az1.qualtrics.com/jfe/form/SV_8cchtFmpDyGbLE
Authors
Dae Yun Seo, SungRyul Lee, Arturo Figueroa, Hyoung Kyu Kim, Yeong Ho Baek, Yi Sub Kwak, Nari Kim, Tae Hoon Choi, Byoung Doo Rhee, Kyung-Soo Kim, Byung Joo Park, Song-young Park, and Jin Han
Yoga Training Improves Metabolic Parameters in Obese Boys

Dae Yun Seo1, SungRyul Lee1, Arturo Figueroa2, Hyoung Kyu Kim1, Yeong Ho Baek3, Yi Sub Kwak4, Nari Kim1, Tae Hoon Choi1, Byoung Doo Rhee15, Kyung Soo Ko1,6, Byung Joo Park7, Song Young Park8, and Jin Han1

1National Research Laboratory for Mitochondrial Signaling, Department of Physiology, College of Medicine, Cardiovascular and Metabolic Disease Center, Inje University, Busan 614-735, Korea, 2Department of Nutrition, Food and Exercise Sciences, College of Human Sciences, Florida State University, Tallahassee, FL 32306, USA, 3Department of Physical Education, Pusan National University, Busan 609-735, 4Department of Physical Education, Dong-Eui University, Busan 614-714, 5Department of Sport and Leisure Studies, Andong Science College, Andong 760-709, 6Department of Internal Medicine, College of Medicine, Inje University, Seoul 100-032, 7Division of Leisure & Sports Science, Dong Seo University, Busan 617-716, Korea

INTRODUCTION

Yoga has been known to have stimulatory or inhibitory effects on the metabolic parameters and to be uncomplicated therapy for obesity. The purpose of the present study was to test the effect of an 8-week of yoga-asana training on body composition, lipid profile, and insulin resistance (IR) in obese adolescent boys. Twenty volunteers with body mass index (BMI) greater than the 95th percentile were randomly assigned to yoga (age 14.7±0.5 years, n=10) and control groups (age 14.6±1.0 years, n=10). The yoga group performed exercises three times per week at 40~60% of heart-rate reserve (HRR) for 8 weeks. IR was determined with the homeostasis model assessment of insulin resistance (HOMA-IR). After yoga training, body weight, BMI, fat mass (FM), and body fat % (BF %) were significantly decreased, and fat-free mass and basal metabolic rate were significantly increased than baseline values. FM and BF % were significantly improved in the yoga group compared with the control group (p<0.05). Total cholesterol (TC) was significantly decreased in the yoga group (p<0.01). HDL-cholesterol was decreased in both groups (p<0.05). No significant changes were observed between or within groups for triglycerides, LDL-cholesterol, glucose, insulin, and HOMA-IR. Our findings show that an 8-week of yoga training improves body composition and TC levels in obese adolescent boys, suggesting that yoga training may be effective in controlling some metabolic syndrome factors in obese adolescent boys.

Key Words: Yoga (asana), Obesity, Body composition, Lipid profile, HOMA-IR

Received February 21, 2012, Revised April 25, 2012, Accepted May 12, 2012

Corresponding to: Jin Han, National Research Laboratory for Mitochondrial Signaling, Department of Physiology, College of Medicine, Cardiovascular and Metabolic Disease Center Inje University, 633-165, Gaegeum-dong, Busanjin-gu, Busan 614-735, Korea. (Tel) 82-51-890-6727, (Fax) 82-51-894-5714, (E-mail) phyhanjinje.ac.kr

This is an Open Access article distributed under the terms of the Creative Commons Attribution Non-Commercial License (http://creativecommons.org/licenses/by-nc/3.0) which permits unrestricted non-commercial use, distribution, and reproduction in any medium, provided the original work is properly cited.
tively [12,13]. Asana yoga uses various postures to develop physical strength, flexibility, and endurance [13], and can be used as a moderate-intensity exercise for patients with limited aerobic capacity or restricted ability to exercise [14]. Furthermore, yoga has been shown to decrease hypertension and cardiac inflammation, stabilize the sympathetic nervous system, and improve psychological health and cardiac function [15-17].

Although the American College of Sports Medicine (ACSM) and Centers for Disease Control (CDC) suggest moderately intense physical activity for obese subjects [18,19] because exercise training has been shown to improve metabolic factors in subjects with obesity [20-23], obese adolescents engage in less physical activity during school days and on weekends than their non-obese peers [24]. In that context, yoga training may help obese adolescents to achieve the recommended levels of physical activity, and it may be an attractive alternative exercise training programs because it increases heart rate and muscle strength, has limited harmful side effects, and requires virtually no equipment [13,25].

Limited information is accessible regarding the impact of yoga-asana training, on cardiovascular-metabolic risk factors in obese adolescents. Accordingly, we hypothesized that yoga-asana training may have beneficial effect on metabolic parameters in obese adolescent boys. Therefore, we evaluated the effect of an 8-week of yoga-asana training on body composition, lipid profile, and the homeostasis model assessment of insulin resistance (HOMA-IR) in obese adolescent boys.

METHODS

Subjects and study design

Obese adolescent boys between the ages of 13 and 15 years with body mass index (BMI) was greater than the 95th percentile, as defined by French population standards [26], were recruited in Busan, Korea, through flyers posted in middle schools and outpatient waiting rooms and through advertisements in the school newspaper. We have fully explained the potential risks and benefits in the study before written informed consent was provided by parents and participants, according to the guidelines of the Ju Rae middle school research ethics committee. Participants who had hypertension (blood pressure >140/90 mmHg), were using medication, or had an injury in the 6 months previous the study were eliminated. We enrolled 19 subjects in the yoga (asana) group and 15 in the control group, who did not participate in physical activity program before 6 months. However, 14 subjects overall were excluded from the analysis because of low compliance to the yoga training (n=9), defined as missing more than three sessions, or use of medication during the study in the control group (n=5). Girls were excluded from our study because of confounding hormonal effects and possible difficulty in performing yoga asana during menstruation. The yoga and control groups received general health-education regarding risk factors associated with type 2 diabetes, consuming a balanced diet and engaging in physical activity. Subjects in the control group did not participate in any after school and were encouraged not to perform >30 min of exercise weekly, which is below the minimum exercise required to improve health and fitness [27]. Subjects were advised not to change their diet and physical activity lifestyles during the study. The 8-week study was successfully completed by 20 participants (Table 1).

Yoga (asana) training protocol

Yoga training was conducted by a certified yoga in-

Table 1. Baseline clinical characteristics of the study population

<table>
<thead>
<tr>
<th>Participants (n=20)</th>
<th>Age (years)</th>
<th>Height (cm)</th>
<th>Weight (kg)</th>
<th>BMI (kg/m²)</th>
<th>Fat-free mass (kg)</th>
<th>Fat mass (kg)</th>
<th>Body fat (%)</th>
<th>BMR</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>14.65±0.74</td>
<td>164.28±8.39</td>
<td>77.91±9.09</td>
<td>28.80±1.70</td>
<td>26.31±5.28</td>
<td>30.01±4.58</td>
<td>38.81±6.24</td>
<td>1403.50±191.23</td>
</tr>
</tbody>
</table>

All participants were Korean adolescent males recruited in Busan. Values are presented as means±SEM. BMI, body mass index; BMR, basal metabolic rate.

Table 2. Design of the yoga-asana training protocol

<table>
<thead>
<tr>
<th>Time</th>
<th>Contents (Intensity)</th>
<th>Type</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>10 min</td>
<td>Warm up</td>
<td></td>
<td></td>
</tr>
<tr>
<td>40 min</td>
<td>Sitting</td>
<td>Seated forward bend</td>
<td>Type</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Bound angle pose</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Head to knee pose</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Wide angle seated forward bend</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Stretches the lower back and the shoulders</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Standing</td>
<td>Weight over to the right foot, lifting the left foot off the floor</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Extended triangle pose</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Stretches legs and arms</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Lying</td>
<td>Bend from the hip joints to slowly lower toes to the floor above and beyond head</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Lie on back on the floor with knees bent, feet on the floor</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Lie on your belly with hands alongside torso, palms up</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Sit on the floor with knees bent, feet on the floor, and lean back onto forearms</td>
<td></td>
</tr>
<tr>
<td>10 min</td>
<td>Relaxation</td>
<td>Deep relaxation pose</td>
<td></td>
</tr>
</tbody>
</table>

HRR, heart-rate reserve; RPE, rating of perceived exertion (RPE); THR, the targeted heart rate (intensity% ×(HRR + HRresting)).
Yoga Training Improves Metabolic Parameters

Measures and biochemical analyses

Body composition and blood sample were obtained before and after 8 weeks. Body weight and height were measured with subjects wearing light clothes and without shoes. Body composition including fat mass (FM), fat-free mass (FFM), and basal metabolic rate (BMR) were measured using a multi-frequency electrical impedance analyzer. BMR was calculated using a Harris Benedict formula (X-scan Plus II, Jawon Medical, Seoul, Korea) [30-32], following a previous method [29]. To maintain THR during exercise, we measured heart rate using the carotid artery pulse 1 min after the exercise started.

Statistical analysis

The results are expressed as the mean±standard deviation. Within-group comparisons were made using paired sample t-tests. The unpaired t-test was used for baseline group comparisons and changes in differences before and after in the control and yoga groups. All statistical analyses were performed using the Statistical Package for the Social Sciences version 19.0 for Windows (SPSS, Inc., Chicago, IL, USA). Statistical significance was set at p-value<0.05.

RESULTS

The study included 20 Korean boys 14.7±0.7 years of age who were classified as obese (BMI 28.80±1.70 kg/m²). No significant differences in all parameters were found between groups at baseline (Table 1). Changes in body composition before and after 8 weeks the control and yoga groups are summarized in Table 3. Body weight and BMI significantly (p<0.05) decreased after yoga training but not after the control period. FM was significantly (p<0.05) decreased with yoga training and control period, but the change was significantly (p<0.05) greater in the yoga group. BF % decreased with yoga training by 4.3% compared with no significant decrease in the control group. BMR was increased in the yoga training group by 44 Kcal/day but there was no significant change in the control group.

The changes in blood lipids, glucose, and insulin in both groups are shown in Table 4. The lipid profile, glucose, and insulin were normal range in all participants before and after the study. TC was significantly (p<0.01) decreased in the yoga group. TG was not significantly decreased in the yoga group. LDLc was slightly increased and HDLc was decreased in the control and yoga groups (p<0.05). No significant changes were found in glucose, insulin, and HOMA-IR in both groups. The change in glucose, insulin, and HOMA-IR was less in the yoga group than the control group.

Table 3. Changes in body composition following an 8-week yoga-asana training

<table>
<thead>
<tr>
<th></th>
<th>Control (n=10)</th>
<th>Yoga (n=10)</th>
<th>p-value*</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Pre</td>
<td>Post</td>
<td>Diff (mean)</td>
</tr>
<tr>
<td>Age (years)</td>
<td>14.60±0.96†</td>
<td>14.70±0.48</td>
<td></td>
</tr>
<tr>
<td>Height (cm)</td>
<td>165.19±10.33</td>
<td>163.85±6.34</td>
<td></td>
</tr>
<tr>
<td>Weight (kg)</td>
<td>79.43±10.83</td>
<td>78.13±10.44</td>
<td>−1.30</td>
</tr>
<tr>
<td>BMI (kg/m²)</td>
<td>29.04±2.11</td>
<td>29.57±2.97</td>
<td>0.53</td>
</tr>
<tr>
<td>Fat-free mass (kg)</td>
<td>27.51±5.92</td>
<td>28.06±5.79</td>
<td>0.55</td>
</tr>
<tr>
<td>Fat mass (kg)</td>
<td>29.63±4.86</td>
<td>27.38±5.29**</td>
<td>−2.07</td>
</tr>
<tr>
<td>Body fat (%)</td>
<td>37.65±6.49</td>
<td>36.15±6.55</td>
<td>−1.50</td>
</tr>
<tr>
<td>BMR (kcal/day)</td>
<td>1443.20±216.52</td>
<td>1459.10±205.51</td>
<td>15.90</td>
</tr>
</tbody>
</table>

*Values are presented as means±SEM. †Control versus Yoga group. Diff, post value−pre value; BMI, body mass index; BMR, basal metabolic rate. p<0.05, pre value vs post value; **p<0.01, pre value vs post value; ***p<0.001, pre value vs post value.
treatment for obesity in adolescents. The decrease in body weight, BMI, FM, and BF % in the yoga group may have been related to an increase in FFM, and BMR following yoga training. In this context, yoga-asana training provides an alternative option for increasing the physical activity levels required to improve body composition and BMR in obese adolescents, as shown with conventional exercise training programs [48,49].

We did not observe a clear positive effect of yoga on blood lipids, with the exception of a decrease in TC. Cholesterol is a key contributor to the development of heart disease, stroke, and other vascular diseases [50]; thus, a reduction in TC following the yoga-asana training is a promising finding. Several studies have confirmed that the yoga training significantly increases HDLc and decreases TG, and LDLc [51-53]. It is well known that yoga training, which is alternative exercise training, provides health benefits. In the present study, however, a significant decrease in HDLc was observed in both the yoga and control groups. Although significant reductions in HDLc following a high-fiber, low-fat diet, and exercise intervention have been reported [54,55], the effect of lifestyle interventions on HDLc are controversial [56]. Our finding is similar to those of Sun et al. [56] who observed that a decrease in HDLc following exercise with dietary intervention in overweight adolescents. Moreover, decreases in TC and HDLc have been reported in the control group and after 12 weeks of resistance and aerobic exercise training in overweight and obese adults with type 2 diabetes [57]. Of note, improvement in HDLc is not observed after resistance exercise training in adolescents [44]. However, the mechanism for the decreased in HDLc is not clear, and the clinical relevance of this small reduction warrants further investigation. Because the adolescent period is highly metabolically active, it is possible that an unknown factor may have interfered with or masked the positive effects of yoga training on HDLc levels that has been demonstrated in previous studies.

Damodaran et al. [58] reported that 3 months of yoga training significantly decreased plasma glucose concentrations, whereas a study by Elder et al. [59] showed no significant impact of yoga training on glucose levels. Obese adolescents who participated in regular exercise had lower insulin levels and HOMA-IR than those who did not exercise regularly [50]. Our results showed no significant between or within the group differences in glucose, insulin,

DISCUSSION

The present study was designed to determine the impact of an 8-week of yoga-asana training on body composition, lipid profile, and insulin resistance in obese adolescent males. We studied adolescent boys because males are typically unfamiliar with yoga and most have not explored the benefits of yoga training. The major finding of the present study was that an 8-week of yoga-asana training improved body weight, BMI, FM, BF %, FFM, BMR, and TC compared with baseline values in obese adolescent boys.

The physiological effects of yoga training that have been previously reported include the inhibition of body weight gain, reductions in cholesterol levels, and blood pressure, and improvement in immune function as well as beneficial psychological effects [34-39]. In the study, our subjects participated in less physical activities than their non-obese peers during school days and at weekends, and their physical activity during the evenings and weekends was much lower than that during school days. Home- and family-based physical activity that can be performed alone may be the best way to increase energy consumption in obese adolescents because they are less likely to participate in group physical activities [24]. Although the obese person do not participate in dynamic exercise programs, they can participate in static exercise program, such as pilates exercise [40].

Body weight is a main metabolic syndrome factor [41]. Weight loss is related to the reduction in the risk for diabetes and cardiovascular disease through improvements in blood pressure, TG, and HDLc in obese subjects [42,43]. In the present study, the small body weight loss observed after yoga training is explained by the combined decrease in FM and the increase in FFM. Consistent with our findings, similar increase in FFM have been reported after 8 weeks of resistance exercise training in obese and lean adolescent [44,45] and Benavides and Caballero [46] reported that yoga training was a significantly decreased body weight in children. In contrast to our findings, 8 weeks of endurance exercise training did not show changes in body composition in obese adults [47]. The increase in FFM was a significant predictor for the decreases in body weight and FM [44]. Our findings of weight loss accompanied by reduced FM and increased FFM, major determinants of resting energy expenditure, indicate that yoga training is a potential adjunct

Table 4. Changes in metabolic risk factors following an 8-week yoga-asana training

<table>
<thead>
<tr>
<th></th>
<th>Control (n=10)</th>
<th>Yoga (n=10)</th>
<th>p-value*</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Pre</td>
<td>Post</td>
<td>Diff (mean)</td>
</tr>
<tr>
<td>TC (mg/dl)</td>
<td>168.60±26.14</td>
<td>156.70±21.90</td>
<td>−11.90</td>
</tr>
<tr>
<td>TG (mg/dl)</td>
<td>123.10±63.35</td>
<td>111.40±49.17</td>
<td>−11.70</td>
</tr>
<tr>
<td>HDLc (mg/dl)</td>
<td>58.70±18.54</td>
<td>36.80±14.09 **</td>
<td>−21.90</td>
</tr>
<tr>
<td>LDLc (mg/dl)</td>
<td>85.20±26.92</td>
<td>90.50±15.10</td>
<td>5.30</td>
</tr>
<tr>
<td>HDLc/LDLc</td>
<td>0.79±0.46</td>
<td>0.40±0.15</td>
<td>−0.38</td>
</tr>
<tr>
<td>Glucose (mg/dl)</td>
<td>86.60±4.83</td>
<td>85.60±3.89</td>
<td>−1.00</td>
</tr>
<tr>
<td>Insulin (mU/l)</td>
<td>5.62±1.88</td>
<td>9.93±7.94</td>
<td>4.30</td>
</tr>
<tr>
<td>HOMA-IR</td>
<td>7.19±2.38</td>
<td>12.74±10.51</td>
<td>5.54</td>
</tr>
</tbody>
</table>

*Values are presented as mean±SEM. Control versus Yoga group. Diff, post value−pre value; TC, total cholesterol; TG, triglyceride; LDLc, LDL-cholesterol; HDLc, HDL-cholesterol; HOMA-IR, Homeostasis Model of Assessment-Insulin Resistance. *p<0.01, pre value vs post value; **p<0.001, pre value vs post value.
Yoga Training Improves Metabolic Parameters

and HOMA-IR. This may be related to the fact that participants in both groups had normal glucose and insulin levels, and practicing yoga-asana training did not have an impact on relatively normal glucose homeostasis. Matthews et al. [33] also found no changes in these markers of glucose control with 8 weeks of resistance exercise training in adolescents, suggesting the need of long-term interventions. Long-term yoga training has been shown to have a beneficial effect on insulin resistance in patients with diabetes [61].

Some limitations of the current study are the relatively small sample size, and 10 participants in each group may not have been sufficient to obtain statistically significant results. A future study with a larger number of participants is necessary. Furthermore, obesity is a chronic condition and thus long-term treatment and follow-up will is required. Finally, we did not monitor the diet during the study, which explains the small decrease in FM in the control group. However, the decrease in FM was smaller compared with the yoga group and did not affect other body composition and BMR.

The finding of the study demonstrate that yoga-asana training is a suitable exercise for attenuating obesity in adolescent boys, as indicated by improvements in BMI, FM, metabolic effects of yoga training with those of conventional training is a suitable exercise for attenuating obesity in adolescents, suggesting the need of long-term interventions. Long-term yoga training has been shown to have a beneficial effect on insulin resistance in patients with diabetes [61].

ACKNOWLEDGEMENTS

This work was supported by Priority Research Centers Program through the National Research Foundation of Korea (NRF) funded by the Ministry of Education, Science and Technology (2010-0020224).

REFERENCES

8. Steinberger J, Daniels SR; American Heart Association Atherosclerosis, Hypertension, and Obesity in the Young Committee (Council on Cardiovascular Disease in the Young); American Heart Association Diabetes Committee (Council on Nutrition, Physical Activity, and Metabolism). Obesity, insulin resistance, diabetes, and cardiovascular risk in children: an American Heart Association scientific statement from the Atherosclerosis, Hypertension, and Obesity in the Young Committee (Council on Cardiovascular Disease in the Young) and the Diabetes Committee (Council on Nutrition, Physical Activity, and Metabolism). Circulation. 2003;107:1448-1453.
27. ACSM. ACSM’S Guideline for Exercise Testing and Prescrib-
ing, 7th ed. ACSM. 2006:38-44.
30. Tomoum HY, Badawy NB, Hassan NE, Alian KM. Anthropo-
33. Mody BS. Acute effects of Surya Namaskar on the cardiovas-
35. Pal A, Mandal S, Gondal A, Arora S, Bhattacharjee J. Effect of integrated yoga practices on immune responses in examina-
41. McQuigan MR, Tatasciore M, Newton RU, Pettigrew S. Eight weeks of resistance training can significantly alter body compo-
43. Vogelsang TW, Hanel B, Kristoffersen US, Petersen CL, Melsisen J, Holmquist N, Larsson B, Kjaer A. Effect of eight weeks of endurance exercise training on right and left ventricu-
46. Levine GN, Keaney JF Jr, Vita JA. Cholesterol reduction in cardiovascular disease. Clinical benefits and possible mecha-