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ON SPECTRA OF COMPOSITION OPERATORS

VALENTIN MATACHE

Abstract. In this paper we consider composition operators Cφ on the Hilbert

Hardy space over the unit disc, induced by analytic selfmaps φ. We use the
fact that the operator C∗

φCφ is asymptotically Toeplitz to obtain information
on the essential spectrum and spectrum of Cφ, which we are able to describe in
select cases (including the case of some hypercyclic composition operators or

that of composition operators with the property that the asymptotic symbol of
C∗

φCφ is constant a.e.). One of our tools is the Nikodym derivative of the pull–
back measure induced by φ. An alternative formula for the essential norm of

a composition operator (valid in select cases), in terms of the aforementioned
Nikodym derivative, is established. Estimates of the spectra of adjoints of
composition operators are obtained. Based on them, we describe the spectrum
of composition operators induced by maps fixing a point, whose iterates exhibit

a strong form of attractiveness to that point.

1. Introduction

Let H2 denote the Hilbert Hardy space over U, the open unit disc centered at
the origin, that is, H2 is the space of analytic functions on U with square summable
Maclaurin coefficients.

The norm of any f ∈ H2 is computable with the formulas

(1) ∥f∥ := sup
0<r<1

(∫
T
|f(rζ)|2 dm(ζ)

)1/2

< +∞,

wherem is the normalized arc–length measure on T, the boundary of U, respectively

(2) ∥f∥ =

√√√√+∞∑
n=0

|cn|2,

where {cn} is the sequence of Maclaurin coefficients of f .
It is well known that H2–functions have radial limits a.e. on T, the radial limit–

functions being in the Lebesgue space L2
T(dm) and having ∥ ∥2–norm identical to

the H2–norm of the function itself. For that reason, H2–functions and their radial
limit functions are customarily denoted by the same symbol. This identification
will be used throughout this paper. It embeds isometrically H2 into L2

T(dm), so
one can write H2 ⊆ L2

T(dm). Recall that the Poisson kernel is the function

P (z, u) = ℜu+ z

u− z
=

1− |z|2

|u− z|2
z ∈ U, u ∈ T
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2 VALENTIN MATACHE

and the Poisson integral Pµ of any complex Borel measure µ is the function

Pµ(z) =

∫
T
P (z, u) dµ(u) z ∈ U.

Bounded analytic functions visibly belong to H2 since it is very easy to see that
any analytic function f on U satisfies condition ∥f∥∞ ≤ ∥f∥, where ∥ ∥∞ denotes
the supremum norm. If the radial limit–function of a bounded analytic function is
unimodular a.e., that analytic function is called an inner function. Clearly, inner
functions are analytic selfmaps of U, that is analytic functions mapping U into
itself.

Given any analytic selfmap φ of U, the operator

Cφf = f ◦ φ f ∈ H2

is necessarily linear. We call Cφ the composition operator induced by φ and refer
to φ as the symbol of Cφ. If φ is a conformal automorphism, we say that Cφ is
an automorphic composition operator or a composition operator with automorphic
symbol. It is well known that all composition operators on H2 are bounded. Ac-
tually, this fact is a principle of function theory called Littlewood’s Subordination
Principle [17, Theorem 1.7], which says that composition operators induced by
symbols fixing the origin are contractions. The fact that all composition operators
are bounded follows from Littlewood’s Principle with little technical effort.

The space H2 is a reproducing kernel Hilbert space. This means that the special
functions kw(z) = 1/(1− wz), z, w ∈ U, called kernel functions, have the property

(3) ⟨f, kw⟩ = f(w) w ∈ U
called the reproducing property. Caughran and Schwartz [10] observed the following
immediate consequence of that property

(4) C∗
φkw = kφ(w) w ∈ U

where C∗
φ denotes the adjoint of Cφ.

This introductory section is dedicated to setting up the notation and describing
the content of the next sections.

The eigenvalue equation for composition operators is called “Schröder’s equa-
tion”. In Section 2 we briefly discuss G. Koenigs’s theorem on the aforementioned
equation. The main reason for that is recording Remark 2, saying that if an opera-
tor induced by some non–automorphic φ fixing a point in U has simply connected
essential spectrum, then its spectrum is the union of the essential spectrum and the
set consisting of the number 1 and the powers of the derivative of φ at the fixed
point. This remark is repeatedly used in Sections 3–5, which contain the main
results in this paper.

In Section 3 we consider the essential infimum ess inf ψ, where ψ denotes the
Nikodym derivative of the pull–back measure induced by φ. We show that one case
when composition operators have circular (and hence simply connected), essential
spectra is that of composition operators induced by non–automorphic maps φ fixing
a point, whose essential spectral radius satisfies the inequality re(Cφ) ≤

√
ess inf ψ

(Theorem 6). Another result in Section 3 is the formula ∥Cφ∥e =
√
ess sup ψ

(Theorem 6), for the essential norm of Cφ, which is valid in the case of particular
symbols φ. We characterize the situation when C∗

φCφ is a compact perturbation
of a scalar multiple of the identity operator, observing that only maps φ with a
fixed point in U can have that property (Theorem 8). The spectrum and essential
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spectrum of an operator with the previously described property are determined.
Analytic selfmaps with orthogonal powers are examples of maps φ satisfying the
assumptions of Theorem 8.

Section 4 contains properties of composition operators induced by symbols with-
out fixed points in U. The computations of the essential spectral radius and spectral
radius of such operators are currently scattered in the literature and their proofs
broken into many cases. We are able to write an elegant short proof covering all
cases simultaneously (Theorem 10). Based on that proof, we are able to obtain
a formula for the angular derivative of the symbols φ at the Denjoy–Wolff point
in this setting (formula (35)). Section 4 also contains the computation of spec-
tra of some hypercyclic composition operators (Theorem 11), that is composition
operators with dense orbits. The same section contains results about compact
perturbations of composition operators. They are applied to obtain as immediate
consequences the descriptions of spectra of essentially linear–fractional composition
operators (Corollary 2), which appeared initially in [2].

In Section 5, upper estimates of the spectra of the adjoints of composition op-
erators are established (Proposition 4) using formula (35). As a consequence, the
spectra of composition operators induced by selfmaps φ fixing some ω ∈ U and
satisfying the dynamical attractiveness condition

(5) lim sup
n→+∞

n

√
∥φ[n] − ω∥ = 0

are determined (Corollary 3). Examples of classes of symbols φ satisfying (5) are
given (Proposition 5 and Theorem 15).

2. Schröder’s equation and spectra

The main message in this section is that the spectrum of a composition operator
whose symbol fixes a point in U can be immediately found if the essential spectrum
of that operator is determined and turns out to be a simply connected set. The
following brief collection of known results, leads to that conclusion.

The functional equation

(6) f ◦ φ = λf

is customarily called Schröder’s equation, after Ernst Schröder, the first mathe-
matician known to have considered solving it [30]. If we seek nonzero solutions
f ∈ H2, then this is the eigenvalue equation of Cφ.

Denote by {φ[n]} the sequence of iterates of φ. Recall the following ([15]):

Theorem 1 (Denjoy–Wolff). Let φ be an analytic selfmap of U other than the
identity or an elliptic disc automorphism. Then the sequence of iterates {φ[n]}
converges uniformly on compacts to a point ω ∈ U called the Denjoy–Wolff point of
φ.

An immediate consequence is the fact that an analytic selfmap φ of U, other
than the identity map, can have at most one fixed point in U so, whenever this
happens we will speak of “the fixed point of φ” rather than “a fixed point of φ”.
Now, the fact that the Denjoy–Wolff point of a non–automorphic selfmap with a
fixed point in U is exactly that fixed point is an easy consequence of Schwarz’s
lemma in classical complex analysis. In their work, Denjoy and Wolff addressed the
delicate case, that is the case of analytic selfmaps of U, without fixed points in U.
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Solutions of (6) were constructed in the larger spaceH(U) of all analytic functions
on U. This was done in the case when φ has a fixed point ω ∈ U but is not a
conformal automorphism. In that case, a simple complex analysis argument shows
that the only eigenvalues Cφ can have are 1 and (φ′(ω))n, n = 1, 2, 3, . . .

Denote by
∼
Cφ, the composition operator induced by φ on H(U). Recall that G.

Koenigs proved the following [22]:

Theorem 2 (Koenigs’s Theorem). Let φ be a nonconstant, non–automorphic, an-
alytic selfmap of U fixing ω ∈ U. If φ′(ω) ̸= 0, then there is an analytic function
σ which satisfies equation (6) for λ = φ′(ω). Consequently, for all n = 1, 2, 3, . . . ,
the functions σn satisfy the same equation for λ = (φ′(ω))n, respectively. The

eigenspaces of
∼
Cφ corresponding to the eigenvalues above are all 1–dimensional.

Thus σn is an eigenfunction of Cφ , for some n = 1, 2, . . . , if and only if σn ∈ H2.
This is not always the case, and the mean growth of the function σ makes the object
of deeper phenomena. For a good analysis of this topic, we refer the reader to [32].

We call the values (φ′(ω))n, n = 1, 2, . . . the Schröder eigenvalues of Cφ, even
when they are not, technically speaking, eigenvalues. Whether they are or not, the
values above are always in the spectrum σ(Cφ) (see [15, Theorem 7.32] for more
details on this fact).

For any composition operator, the constant function 1 is obviously an eigen-
function associated to the eigenvalue 1, by the obvious equality 1 ◦ φ = 1. The
eigenvalues problem is easy to treat in the case φ′(ω) = 0 (not covered by Koenigs’s
theorem). Indeed, in that case, the only eigenvalue, other than 1, Cφ can possibly
have is 0 (and 0 is an eigenvalue only if the symbol of the composition operator is
a constant function). Thus, to summarize, denote by σp(Cφ) the point spectrum
of Cφ and note that:

Remark 1. Let φ be a nonconstant analytic selfmap of U fixing ω ∈ U other than
the identity or an elliptic automorpism. Then

(7) {1} ⊆ σp(Cφ) ⊆ {φ′(ω))n : n = 1, 2, 3, . . . } ∪ {1} ⊆ σ(Cφ)

and each eigenvalue is simple (that is each eigenvalue has multiplicity 1).

Let σe(Cφ) denote the essential spectrum of Cφ. The important consequence of
our previous considerations is the following :

Remark 2. Let φ be a non–automorphic analytic selfmap of U with a fixed point
ω ∈ U and let ρe,∞(Cφ) be the unbounded connected component of the essential
resolvent ρe(Cφ) of Cφ. Then

σ(Cφ) ∩ ρe,∞(Cφ) ⊆ {(φ′(ω))n : n = 1, 2, . . . } ∪ {1}.
Consequently, if σe(Cφ) is simply connected then

(8) σ(Cφ) = σe(Cφ) ∪ {(φ′(ω))n : n = 1, 2, . . . } ∪ {1}.
Equation (8) also holds if σp(C

∗
φ) ⊆ {0, 1}.

Indeed, if λ ∈ ρe,∞(Cφ), then Cφ − λI is a Fredholm operator. The Fredholm
index, that is the map i(λ) = dim(ker(Cφ−λI))−dim(ker(Cφ−λI)∗), is continuous
on the arc wise–connected set A = {Cφ − λI : λ ∈ ρe,∞(Cφ)}. Since the map i is
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valued in a discrete set, this means that it is constant on A, namely null since, for |λ|
large enough, Cφ−λI is invertible. The conclusion is that, if λ ∈ ρe,∞(Cφ)∩σ(Cφ),
then λ is an eigenvalue of Cφ.

If σp(C
∗
φ) ⊆ {0, 1} and λ ∈ σ(Cφ) \ σe(Cφ), then λ ∈ σp(Cφ) or λ ∈ σp(C

∗
φ). By

Koenigs’s theorem, we deduce that λ can only be 0, 1, or one of the Schröder eigen-
values. Given that the only Fredholm composition operators are the automorphic
composition operators ([12, Theorem 1]), the conclusion of our remark follows.

One situation when σe(Cφ) is simply connected is, of course, when Cφ is essen-
tially quasinilpotent. But are such composition operators necessarily induced by
non–automorphic symbols fixing a point? The answer is affirmative. It has been
obtained initially by Caughran and Schwartz [10] in the particular setting of power
compact composition operators and in full generality by Bourdon and Shapiro [8].
This is the first particular case when the spectral description (8) appeared in the
literature.

There are two well known cases when the spectrum of Cφ is the union of a closed
disc centered at the origin, the set of Schröder eigenvalues, and 1. The first is when
φ is non–automorphic, fixes a point, and has an analytic extension on an open
neighborhood of the closed unit disc. The proof is due to Kamowitz [20]. The
second case is when φ is univalent, non–automorphic, with a fixed point; this time
the credit goes to Cowen and MacCluer [14]. According to the author of [2], the
circular disc involved in the aforementioned description of spectra is not proved to
be the essential spectrum of Cφ by either H. Kamowitz or Cowen and MacCluer.

Finally, this author proved that symbols having orthogonal powers (that is an-
alytic selfmaps φ of U with the property that {1, φ, φ2, φ3, . . . } is an orthogonal
subset of H2) induce composition operators with circular essential spectrum and
therefore their spectrum is given by (8) [26].

When discussing composition operators whose symbol φ fixes ω ∈ U, it is useful
to observe that, the conformal automorphism αω(z) = (ω−z)/(1−ωz) is self inverse
and so, the conformally conjugated symbol ψ = αω ◦ φ ◦ αω induces a composition
operator Cψ whose symbol fixes the origin.

The operators Cφ and Cψ are similar operators since

(9) Cψ = CαωCφCαω .

A last tool we will use in the sequel (Section 5, Theorem 14 and Proposition 5)
and wish to record in this section is the following:

Theorem 3 ([33]). If φ is a non–inner analytic selfmap of U fixing the origin,
then

(10) ∥Cφ|C⊥∥ < 1.

Above, C⊥ is the orthogonal complement in H2 of the subspace C of constant
functions.

3. The Nikodym derivative dmφ−1/dm

A notion we wish to review is that of Aleksandrov measure. For any analytic
selfmap φ of U and for all u ∈ T, the function fu(z) = P (φ(z), u), z ∈ U, is a
nonnegative harmonic function. Therefore, by Herglotz’s well known theorem in
harmonic analysis, there is a unique, Borel, finite, nonnegative measure τu, so that
Pτu = fu. That measure is called the Aleksandrov mesure of φ having index u. Let
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σu denote the singular part of τu in its Lebesgue decomposition with respect to m.
The main result in [11] is the following formula for the essential norm ∥Cφ∥e of Cφ:

(11) ∥Cφ∥e =
√

sup
u∈T

∥σu∥.

Denote by P the orthogonal projection of L2
T(dm) onto H2. For any essentially

bounded, measurable function ψ on T, the operator

Tψf = P (ψf) f ∈ H2

is called the Toeplitz operator with symbol ψ (or induced by ψ). Let us consider
the coordinate function z. The Toeplitz operator Tz is called the unilateral shift
on H2 because of its obvious shift–action on the Maclaurin coefficients of H2–
functions. Actually, it is a unilateral forward shift of multiplicity 1 in the sense
of [36]. For that reason, we will use the notation S = Tz. It is well known that
a bounded operator A on H2 is a Toeplitz operator if and only if S∗AS = A.
In that case, the operator sequence {S∗nASn} tends to A in all the topologies
of L(H2), since it is a constant sequence. For all operators A, if the sequence
{S∗nASn} is convergent, weakly, strongly, or uniformly, then the limit T of that
sequence satisfies the operator equation S∗TS = T and is therefore a Toeplitz
operator. Whenever that happens, A is called a weakly asymptotically Toeplitz
operator (WAT), respectively strongly asymptotically Toeplitz operator (SAT), or
uniformly asymptotically Toeplitz operator (UAT). The symbol ψ of the Toeplitz
operator T described above is called the asymptotic symbol of A. Recently, this
author proved the following:

Theorem 4 ([25, Theorem 5]). Let φ be an analytic selfmap of U. Then C∗
φCφ is

always WAT. Its asymptotic symbol ψ has Fourier coefficients {cn} given by

(12) cn =

∫
Eφ

φn dm n = 0,±1,±2, . . .

where Eφ = {u ∈ T : |φ(u)| = 1}. If ∥φ|Ecφ∥∞ < 1, then C∗
φCφ is UAT.

Above we used the notation ∥φ|Ecφ∥∞ for the essential supremum norm of the
restriction φ|Ecφ of φ to the complement Ecφ of Eφ. A characterization of UAT–
operators is contained by the following theorem of Feintuch:

Theorem 5 ([18, Theorem 4.1]). A Hilbert space operator T is UAT if and only if
it is a compact perturbation of a Toeplitz operator.

Besides Feintuch’s original paper, the proof can also be found in [25, Theorem
3]. According to that proof, if T = Tψ+K, where K is a compact operator, then T
is UAT with asymptotic symbol ψ. Thus, by Theorem 4, if C∗

φCφ is UAT, then its
asymptotic symbol is the function ψ whose Fourier coefficients are given by (12).
We will prove in the sequel that, for all φ, the function ψ with Fourier coefficients
described by (12) is necessarily an essentially bounded, essentially nonnegative
function, namely the Nikodym derivative dmφ−1/dm of the pull–back measure
mφ−1 induced by φ.

Recall that the pull–back measure of m under φ is the Borel measure

(13) mφ−1(E) = m(φ−1(E)) E ⊆ Eφ.
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In one of the earliest papers on composition operators [27], Nordgren proved
that mφ−1 ≪ m, if φ is inner. His result extends with little effort to any φ. The
Nikodym derivative dmφ−1/dm is related to the essential spectral radius re(Cφ)
and the essential spectral norm ∥Cφ∥e of Cφ as follows.

Theorem 6. Let φ be a non–automorphic analytic selfmap of U and ψ = dmφ−1

dm .
Then, the Fourier coefficients of ψ are given by (12) and the following inequality
holds

(14)
√
ess sup ψ ≤ ∥Cφ∥e.

If φ fixes a point in U, then

(15) (
√

ess inf ψ)U ⊆ σe(Cφ)

and hence

(16)
√
ess inf ψ ≤ re(Cφ).

If C∗
φCφ is UAT, then

(17) ∥Cφ∥e =
√

ess supψ.

Proof. Using the well known change of measure formula [19, Ch. VIII, Section 39,
Theorem C], one can write∫

T
zn dmφ−1 =

∫
Eφ

φn dm n = 0,±1,±2, . . . ,

thus showing that the Fourier coefficients of dmφ−1/dm are given by (12). The con-
sequence is that dmφ−1/dm and the asymptotic symbol of the WAT–operator C∗

φCφ
coincide a.e. Besides proving that the asymptotic symbol of C∗

φCφ is dmφ−1/dm,

this computation has an immediate consequence: it establishes that dmφ−1/dm is
essentially bounded (a known fact).

In the process of establishing formula (11), the authors of [11, relation (2.6)]
prove that

∥σα∥ = lim
r→1−

(1− r2)

∫
T

dm(u)

|α− rφ(u)|2
.

Keeping this in mind, note that

(1− r2)

∫
T

dm(u)

|α− rφ(u)|2
≥ (1− r2)

∫
Eφ

dm(u)

|α− rφ(u)|2
=∫

T

(1− r2)

|α− ru|2
ψ(u) dm(u) =

∫
T

(1− r2)

|u− rα|2
ψ(u) dm(u) = Pψ(rα).

Letting r → 1−, one gets ψ(α) ≤ ∥σα∥ a.e. which, combined with (11), establishes
(14).

By the measure theoretical formula already cited in this proof, one obtains

(18) ∥Cφf∥2 ≥
∫
Eφ

|f ◦ φ|2 dm =

∫
T
|f |2ψ dm ≥ (ess inf ψ) ∥f∥2 f ∈ H2.

Assume ess inf ψ > 0. We note that Cφ − λI is bounded below if |λ| <
√
ess inf ψ.

Indeed, by (18), one has

∥(Cφ−λI)f∥2 ≥ (∥Cφf∥−∥λf∥)2 ≥
(√

ess inf ψ − |λ|
)2

∥f∥2 f ∈ H2.
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As we noted before, the only Fredholm composition operators are the invertible ones
[12, Theorem 1], that is the composition operators induced by disc automorphisms.
Therefore, relation (15) is an immediate consequence of that fact if ess inf ψ = 0.

If ess inf ψ > 0, then note that Cφ is bounded below, since we established that
Cφ − λI is bounded below for all |λ| <

√
ess inf ψ. Given that, by Theorem 2, the

kernel of Cφ − λI has dimension at most 1 for all complex λ, one deduces that Cφ
is a semi–Fredholm operator having index −∞. The semi–Fredholm index being
norm–continuous, it follows that σe(Cφ) contains open discs rU, r > 0, so that
Cφ − λI is a semi–Fredholm operator having index −∞ for all λ in rU. The union
of all those discs is also an open disc centered at the origin. Denote its radius ρ.
The disc ρU is the circular disc centered at 0 of largest radius which is contained
in σe(Cφ) and has the property that Cφ − λI is a semi–Fredholm operator having
index −∞ for all λ ∈ ρU.

It follows that Cφ− λI has non–closed range for at least one λ on the boundary
of ρU. To see that, argue by contradiction, assuming Cφ − λI is a semi–Fredholm
operator having index −∞ for all λ with property |λ| = ρ. By the continuity of the
semi–Fredholm index, for each such λ there is an open disc about λ so that Cφ−αI
is a semi–Fredholm operator having index −∞ for all α in that open disc. Using
the compactness of the boundary ρT of ρU, one can cover ρT with finitely many
such discs. The fact is contradictory because it produces an open disc centered at
the origin, contained in σe(Cφ) with radius larger than ρ and the property that
Cφ − λI is a semi–Fredholm operator having index −∞ for all λ in that open disc.

We have established that there is some λ, |λ| = ρ, with the property that Cφ−λI
has non–closed range, or the range is closed but the semi–Fredholm index is not
−∞. Note that the later situation is not possible since, if Cφ − λI had closed
range and semi–Fredholm index other than −∞, then that index would have to be
finite (by Theorem 2), and so, λ would belong to the essential resolvent–set of Cφ,
contrary to fact.

Since for all λ with property |λ| <
√
ess inf ψ, the range of Cφ − λI is closed,

one deduces that (15) holds.
Assume now that C∗

φCφ is UAT. Then C∗
φCφ is a compact perturbation of Tψ.

By [16, Theorem 7.20], σ(Tψ) = [ess infψ, ess supψ] = σe(Tψ). The cited theo-
rem establishes only that the the spectrum of a selfadjoint Toeplitz operator Tψ
equals the line–interval above. The fact that it coincides with the essential spec-
trum of the same operator is a consequence of the following argument. In the
interesting case ess infψ < ess supψ, if any of the interior points in the line inter-
val [ess infψ, ess supψ] belonged to the essential resolvent ρe(Tψ), then one could
consider a Jordan loop having ess infψ in its interior and esssupψ in its exterior,
thus separating the essential range of ψ. This would contradict [16, Theorem 7.42
].

Equality (17) is a direct consequence of equality σe(Tψ) = [ess infψ, ess supψ],
the fact that Tψ and C∗

φCφ are essentially equal, and the equality re(T ) = ∥T∥e
valid for all selfadjoint operators T .

The utility of formula (17) is being a substitute for (11) or the better known
“Nevanlinna counting function essential norm formula” (the first known formula
for the essential norm of a composition operator [31]), in select cases, when the
aforementioned formulas might be hard to use, but (17) applies and works easier.
Here is an example.
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Example 1. Let φ(eiθ) = eiθ if 0 ≤ θ ≤ π and φ(eiθ) = eiθ/2 if π < θ < 2π. The
outer function having boundary function φ is also denoted by φ and has expression

φ(z) = e
∫
T

u+z
u−z log |φ(u)| dm(u) z ∈ U.

Clearly, that outer function is an analytic selfmap of U and the computation of
the Fourier coefficients of ψ leads to the conclusion that ψ is the characteristic
function of the upper semicircle of T. Thus ess inf ψ = 0 < 1 = ess sup ψ. Since
∥φ|Ecφ∥∞ = 1/2 < 1, it follows, by Theorem 4, that C∗

φCφ is UAT. Therefore, by
Theorem 6, ∥Cφ∥e = 1.

An interesting consequence of Theorem 6 is:

Corollary 1. Let φ be a non–automorphic analytic selfmap of U with a fixed point
ω ∈ U. If re(Cφ) ≤

√
ess inf ψ, then

(19) σ(Cφ) = (
√
ess inf ψ)U ∪ {(φ′(ω))n : n = 1, 2, . . . } ∪ {1}

and

(20) σe(Cφ) = (
√
ess inf ψ)U.

Clearly, if re(Cφ) = 0, then re(Cφ) ≤
√
ess inf ψ, which leads to the already

mentioned description of the spectra of essentially quasinilpotent composition op-
erators. Let us consider the case re(Cφ) > 0 now.

The spectral picture of an operator T is, according to [28], the structure consist-
ing of the set σe(T ) and the collection of holes (bounded connected components of
the essential resolvent) and pseudoholes (connected components of the difference
set of the essential spectrum and the right respectively left essential spectrum) and
associated semi–Fredholm indices. It is easy to note that, if φ satisfies the hypothe-
sis of Corollary 1 and re(Cφ) > 0, that structure contains only a circular pseudohole
centered at the origin of radius

√
ess inf ψ. This fact is established in the proof of

Theorem 6. The semi–Fredholm index (which should be constant on pseudoholes),
is equal to −∞, according to the aforementioned proof.

Actually, in that proof, it is shown that, if Cφ is a closed range operator induced
by some non–automorphic φ, then σe(Cφ) contains an open disc centered at the
origin, so that the semi–Fredholm index of Cφ − λI is constantly −∞ for all λ in
that disc. This fact will be used in the proof of Theorem 8.

For all notions related to Fredholm theory, we refer the reader to Chapter 1 of
Carl Pearcy’s beautiful monograph [28]. Among other things, we will make use of
the following theorem (due to Brown, Douglas, and Fillmore [9]) which can be also
found in [28, Theorem 1.35]:

Theorem 7. Two essentially normal operators are compalent if and only if they
have the same spectral picture.

Let us recall that two operators A and B are called compalent (or essentially
unitarily equivalent), if U∗AU −B is compact, for some unitary operator U and an
operator T is called essentially normal if T ∗T − TT ∗ is compact.

With these explanations, we prove:

Theorem 8. Let φ be a non–automorphic analytic selfmap of U. Then, the fol-
lowing are equivalent:

(21) C∗
φCφ is UAT with constant asymptotic symbol.
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(22) σe(C
∗
φCφ) = {|λ|2} for some λ ∈ C.

(23) Cφ = λV +K

for some λ ∈ C, some isometry V , and some compact operator K.
In case φ has the above properties, λ = |λ| = re(Cφ) = ∥Cφ∥e = limn→+∞ ∥φn∥,

hence λ ≤ 1. Also, equations (19) and (20) hold with
√
ψ = λ a.e.

Proof. Clearly (21) =⇒ (22), because if (21) holds, then

C∗
φCφ = |λ|2I +K

for some λ ∈ C and compact K, hence (22) holds.
Conversely, (22) =⇒ (21). Indeed, if (22) holds, then the nonnegative operators

C∗
φCφ and |λ|2I are compalent (by Theorem 7), and hence there are some operators

U unitary and K compact so that

U∗|λ|2IU = |λ|2I = C∗
φCφ +K

that is, (21) holds.
The fact that (23) =⇒ (21) is equally easy to prove. Indeed, if Cφ has represen-

tation (23), then

C∗
φCφ = |λ|2I +K1

where K1 is the (necessarily compact operator) K1 = (λV +K)∗K+λK∗V . Thus,
C∗
φCφ is UAT with asymptotic symbol ψ = |λ|2 a.e.
To prove (21) =⇒ (23), assume C∗

φCφ is UAT with constant asymptotic symbol

ψ = |λ|2 a.e. that is assume

(24) C∗
φCφ = |λ|2I +K

for some compact operator K. The implication is trivially true if λ = 0, since Cφ
is compact if C∗

φCφ is compact.

In case λ ̸= 0, the operator
√
C∗
φCφ is bounded below and hence it is an injective

selfadjoint operator, for which reason its range must be dense. Thus,
√
C∗
φCφ is

actually invertible.
By the polar decomposition theorem, there is a partial isometry V so that

(25) Cφ = V
√
C∗
φCφ.

Given that
√
C∗
φCφ is invertible, V is actually an isometry, not just a partial

isometry.
On the other hand, the compact operator K = C∗

φCφ − |λ|2I is normal hence
diagonal (with respect to some complete orthonormal basis), with diagonal entries
tending to 0. Therefore, the nonnegative operator C∗

φCφ is a diagonal operator

with nonnegative entries tending to |λ|2. Therefore the operator
√
C∗
φCφ is the

diagonal operator having entries {λn} equal to the square roots of the entries of
C∗
φCφ.
One gets that√

C∗
φCφ = |λ|I +K2
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where K2 is the diagonal compact operator having diagonal entries {λn − |λ|}.
Thus, by (25),

Cφ = |λ|V + V K2

that is Cφ has representation (23), and hence λ = |λ|, that is, λ must be nonneg-
ative. The case λ = 0 is that of compact composition operators, when necessarily
|φ| < 1 a.e. and hence limn→+∞ ∥φn∥ = 0 = re(Cφ) = ∥Cφ∥e. As we noted before,
if φ induces a compact composition operator, then φ must have a fixed point in U.
Let us treat the case λ > 0 now.

Given that ψ = λ > 0 a.e., one has that σe(Cφ) contains an open disc centered
at the origin (by (15)), and hence, the isometry V cannot be unitary. Indeed, recall
the famous Wold decomposition theorem (see [36]), which says that any isometry is
representable in a unique way as the (possibly degenerate), direct sum of a unitary
operator and a forward shift. In our case, the forward shift must act on a nonzero
space and have infinite multiplicity. Thus

σe(Cφ) = σe(V ) = λU

and so λ = re(Cφ) = ∥Cφ∥e by (24).
The sequence {∥φn∥} is a decreasing sequence of nonnegative numbers hence a

convergent sequence. Given representation (23), the fact that V is isometric, K
compact, and the sequence {zn} tends weakly to 0, one can write

|λ−∥φn∥ | = | ∥λV (zn)∥ − ∥Cφ(zn)∥ | ≤ ∥(Cφ−λV )(zn)∥ = ∥K(zn)∥ → 0.

Hence λ = limn→+∞ ∥φn∥ ≤ 1.
The last thing to prove is that φ must fix a point in U. Given that the sequence

{∥φn∥} is decreasing, the case λ = 1 occurs if and only if ∥φ∥ = 1. This happens
if and only if φ is an inner function fixing the origin. Indeed, |φ| ≤ 1 a.e. so
1− |φ|2 ≥ 0 a.e. and so, if ∥φ∥ = 1, one gets∫

T
(1− |φ(u)|2) dm(u) = 0

hence |φ| = 1 a.e., that is φ is inner. The converse, that is the fact that ∥φ∥ = 1 if
φ is inner is evident. Now, if φ is inner, then according to [4], C∗

φCφ is the Toeplitz
operator Tψ with symbol

ψ(u) = P (φ(0), u) a.e.

(see also [25, Theorem 4]). That symbol is constant a.e. if and only if φ(0) = 0.
If 0 < λ < 1, one has that re(Cφ) < 1, hence φ needs to be a non–inner function
fixing some ω ∈ U by [26, Theorem 3.3] (see also Theorem 9 in Section 4 of the
current paper).

In conclusion, φ has a fixed point, hence it satisfies the hypothesis of Corollary
1, and so, equations (19) and (20) hold with

√
ψ = λ a.e.. �

Here is an example of analytic selfmaps of U with the properties in Theorem 8:

Example 2. If φ has orthogonal powers and λ := limn→+∞ ∥φn∥, then σe(C∗
φCφ) =

{λ}.

Indeed, one can easily see that

C∗
φCφ = λ2I +K
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where λ = limn→+∞ ∥φn∥ andK is the compact diagonal operator, having diagonal
entries {λ2 − ∥φn∥2} (see [26, Proof of Theorem 2.1] for full details).

The analytic selfmaps with orthogonal powers made the object of a noted prob-
lem raised by Rudin and solved recently by Bishop and Sundberg. In 1988 Rudin
asked if the only analytic selfmaps with orthogonal powers are the scalar multiples
of inner functions fixing the origin. The answer is negative (see [1] and [35]).

4. Boundary fixed point case

In the case when the Denjoy–Wolff point ω is on the unit circle, it is known
that the angular derivative φ′(ω) at that point exists and is a real number with
the property 0 < φ′(ω) ≤ 1. Actually, ω is the only boundary fixed point of φ with
the afore mentioned properties. (Boundary fixed point means point ω ∈ T with
property limr→1− φ(rω) = ω.)

In that case, φ is called a selfmap of hyperbolic type if φ′(ω) < 1, respectively a
selfmap of parabolic type if φ′(ω) = 1.

Analytic selfmaps of parabolic type are classified into two categories. The first is
selfmaps of parabolic automorphic type. This means that the selfmap φ of parabolic
type has the propery

(26) lim
n→+∞

ρ(φ[n+1](z), φ[n](z)) > 0 z ∈ U,

where ρ is the pseudohyperbolic metric ρ(z, w) = |(w − z)/(1− wz)|, z, w ∈ U. If

(27) lim
n→+∞

ρ(φ[n+1](z), φ[n](z)) = 0 z ∈ U,

then φ is called a selfmap of parabolic non–automorphic type. The limits in (26)
or (27) necessarily exist because the sequence under scrutiny is decreasing, by the
Schwarz–Pick lemma [31, Section 4.3].

Cowen proved the formula r(Cφ) = 1/
√
φ′(ω) [13, Theorem 2.1], valid for sym-

bols φ of parabolic or hyperbolic type. In addition, if φ is of hyperbolic type, Cowen
showed that the point spectrum σp(Cφ) contains the annulus {z ∈ C :

√
φ′(ω) <

|z| < 1/
√
φ′(ω)} and all eigenvalues in that annulus have infinite multiplicity [13,

Theorem 4.5]. The immediate consequence is that the essential spectral radius

re(Cφ) can be calculated with the formula r(Cφ) = re(Cφ) = 1/
√
φ′(ω) in the

case of symbols of hyperbolic type. The same is true for symbols of parabolic type,
given the following:

Theorem 9 ([26, Theorem 3.3]). The inequality

(28) re(Cφ) < 1

holds if and only if φ is a non–inner selfmap of U fixing a point in U.

To review:

Theorem 10. Let φ denote an analytic selfmap of U of parabolic or hyperbolic type
with Denjoy–Wolff point ω ∈ T. Then

(29) r(Cφ) = re(Cφ) = 1/
√
φ′(ω).

We found a short elegant proof for Theorem 10 which we present in the following
for multiple purposes. Among other things, we are able to establish all equalities
simultaneously for symbols of both parabolic and hyperbolic type:
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Proof of Theorem 10. We begin by recalling a well-known norm estimate satisfied
by any composition operator on H2, namely:

(30) ∥Cφ∥ ≤

√
1 + |φ(0)|
1− |φ(0)|

.

Since, by the Denjoy–Wolff theorem, φ[n](0) → ω, one can write

φ′(ω) = lim inf
z→ω

1− |φ(z)|
1− |z|

≤ lim inf
n→+∞

1− |φ[n+1](0)|
1− |φ[n](0)|

.

It is well known (and rather easy to prove) that, for any sequence {cn} of positive
numbers, one has

(31) lim inf
n→+∞

cn+1

cn
≤ lim inf

n→+∞
n
√
cn ≤ lim sup

n→+∞
n
√
cn ≤ lim sup

n→+∞

cn+1

cn
.

We draw the conclusion

(32)
√
φ′(ω) ≤ lim inf

n→+∞
2n

√
1− |φ[n](0)|.

As the authors of [11, (3.1)] observe, one always has

(33) 1/
√
φ′(ω) ≤ ∥Cφ∥e.

Let us apply the estimate above to an arbitrary iterate φ[n] of φ. One gets

(34) 1/(φ′(ω))n/2 ≤ ∥Cnφ∥e.

Indeed, by the Denjoy–Wolff theorem, the Denjoy–Wolff point of any iterate φ[n] of
φ is also ω. The chain rule for angular derivatives and the fact that ω is a boundary
fixed point of φ combine into showing that (34) holds.

By (30) – (34), one can write:

1/
√
φ′(ω) ≤ re(Cφ) = lim

n→+∞
n

√
∥Cnφ∥e ≤ lim

n→+∞
n

√
∥Cnφ∥ = r(Cφ)

≤ lim inf
n→+∞

2n

√
1 + |φ[n](0)|
1− |φ[n](0)|

=
1

lim supn→+∞
2n
√

1− |φ[n](0)|

≤ lim sup
n→+∞

2n

√
1 + |φ[n](0)|
1− |φ[n](0)|

=
1

lim infn→+∞
2n
√

1− |φ[n](0)|
≤ 1/

√
φ′(ω).

Besides elegance and completeness, the other reason for including the proof of
Theorem 10 is the following:

Remark 3. Let φ denote an analytic selfmap of U of parabolic or hyperbolic type
with Denjoy–Wolff point ω ∈ T. By the proof of Theorem 10, one can see that

(35) φ′(ω) = lim
n→+∞

n

√
1− |φ[n](0)|.

Formula (35) is particularly useful because it helps us prove the following propo-
sition, which will be used in Section 5 of this paper to obtain estimates of the
spectra of adjoints of composition operators.
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Proposition 1. If φ is an analytic selfmap of U with Denjoy–Wolff point ω ∈ T,
then

(36) φ′(ω) = lim
n→+∞

n

√
∥φ[n] − ω∥

if φ is of parabolic type. If φ is of hyperbolic type, then

(37) φ′(ω) ≤ lim inf
n→+∞

n

√
∥φ[n] − ω∥ ≤ lim sup

n→+∞

n

√
∥φ[n] − ω∥ ≤

√
φ′(ω)

Moreover, the inequalities (37) are sharp.

Proof. If |ω| = 1, one can write

1− |φ[n](0)| ≤ |φ[n](0)− ω| ≤ ∥φ[n] − ω∥ ≤ 2 n = 1, 2, 3, . . .

and, if φ is of parabolic type, then one gets that (36) holds as a consequence of (35)
(given that 21/n → 1).

Assume that φ is of hyperbolic type. In that case, it is known that φ[n](0) →
ω non–tangentially, that is the aforementioned sequence is contained (with the
possible exception of finitely many indices) in any non–tangential approach region
with vertex at ω. For that reason, given M > 1, one can write

(38)
|ω − φ[n](0)|
1− |φ[n](0)|

< M n ≥ n0

for some positive integer n0.
Keeping this in mind, one has

(39) ∥φ[n] − ω∥2 = ⟨φ[n] − ω, φ[n] − ω⟩ = 1 + ∥φ[n]∥2 − 2Re⟨φ[n], ω⟩

≤ 2(1− Re(ωφ[n](0))) = 2
Re(ω(ω − φ[n](0))

|ω − φ[n](0)|
|ω − φ[n](0)|
1− |φ[n](0)|

(1− |φ[n](0)|)

≤ 2M(1− |φ[n](0)|) n ≥ n0.

So, given that

n

√
1− |φ[n](0)| ≤ n

√
∥φ[n] − ω∥ ≤ (2M)1/2n 2n

√
(1− |φ[n](0)|) n ≥ n0,

condition (37) follows by (35). To see that the inequalities (37) are sharp, con-
sider the hyperbolic disc automorphism φ(z) = (2z+1)/(z+2) with Denjoy–Wolff
point ω = 1 and note that φ[n](0) > 0 and ∥φ[n]∥ = 1, n = 1, 2, 3, . . . Thus, by the
proof of Proposition 1,

∥φ[n] − ω∥ =
√

2(1− |φ[n](0)|) n = 1, 2, 3, . . .

By (35) it follows that limn→+∞
n
√
∥φ[n] − ω∥ =

√
φ′(ω). Now consider the linear–

fractional symbol φ(z) = (z+1)/2 with Denjoy–Wolff point ω = 1. Clearly φ′(ω) =

1/2 < 1. A straightforward argument leads to limn→+∞
n
√
∥φ[n] − ω∥ = φ′(ω).

We mentioned earlier that certain subsets of the point spectrum of some com-
position operators consisted of eigenvalues of infinite multiplicity. Actually:

Proposition 2. If a composition operator has a nonconstant, bounded, invariant
function, then all its eigenvalues have infinite multiplicity. In particular, composi-
tion operators with symbols of hyperbolic or parabolic automorphic type have that
property.



SPECTRA OF COMPOSITION OPERATORS 15

Proof. Let u ∈ H∞ be such that Cφu = u. Then Cφu
n = un, n = 1, 2, . . . . The

set of all powers of u is linearly independent because, if arguing by contradiction,
one assumes otherwise, then there is some nonconstant polynomial p with complex
coefficients and the property p ◦ u = 0. This is a contradiction, given that u is
nonconstant and p can have only finitely many zeros.

If f is any eigenfunction of Cφ, then {unf : n = 1, 2, 3, . . . } is a linearly indepen-
dent set of eigenfunctions associated to the same eigenvalue. Thus all eigenvalues
of Cφ have infinite multiplicity.

According to [29, Theorem 1], if φ is of parabolic automorphic type there is a
real number b ̸= 0 and an analytic map σ of U into the right half–plane so that

σ ◦ φ = σ + ib.

Clearly σ is not constant since b ̸= 0. In that case

u = e(−2π/b)σ if b > 0 respectively u = e(2π/b)σ if b < 0

is a nonconstant, bounded, invariant function of Cφ.
Again, by [29, Theorem 1], when φ is of hyperbolic type then there exist K > 1

and an analytic map of U into the right half–plane so that

σ ◦ φ = Kσ.

In that case

u = e(2πi log σ/ logK)

is a nonconstant, bounded, invariant function of Cφ.

The fact that the eigenvalues of composition operators with symbol of hyperbolic
type have infinite multiplicity was first proved in [13]. Considerations in that paper
can also be used to prove the same property for symbols of parabolic automorphic
type.

We preferred to prove Proposition 2 instead of just citing [13] both for the sake
of completeness and because the principle contained by it works in any space of
analytic functions where bounded analytic functions are multipliers (that is the
given space is closed under multiplication by bounded analytic functions).

Operators with dense orbits are called hypercyclic. It is rather well known that
the adjoints of such operators have empty point spectra. We refer the reader to [24]
for the basic properties of hypercyclic operators. Only univalent symbols of para-
bolic or hyperbolic type can induce hypercyclic composition operators. According
to [7], many such symbols induce hypercyclic operators. An exact description of
the set of analytic selfmaps of U inducing hypercyclic composition operators on H2

is not known, though.
All that makes interesting the following application of our results:

Theorem 11. If φ is a symbol of either parabolic automorphic or hyperbolic type
inducing a hypercyclic composition operator, then σ(Cφ) = σe(Cφ). If φ is a non–
automorphic symbol of hyperbolic type inducing a hypercyclic composition operator,
then σ(Cφ) = σe(Cφ) = (1/

√
φ′(ω))U.

Proof. Indeed, given that all eigenvalues of Cφ have infinite multiplicity, the set
σ(Cφ) \ σe(Cφ), if nonempty, must consist of eigenvalues of C∗

φ having finite mul-
tiplicity. The conclusion is σ(Cφ) = σe(Cφ).
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In the case when φ is of hyperbolic type, Cowen proved σ(Cφ) has circular
symmetry, that is if λ belongs to σ(Cφ), the whole circle centered at the origin and
containing λ must be contained in σ(Cφ) [13, Theorem 4.3].

If φ is not an automorphism, then σ(Cφ) contains both the origin and {z ∈ C :√
φ′(ω) < |z| < 1/

√
φ′(ω)} [13, Theorem 4.5].

Arguing by contradiction, assume there is some 0 < r <
√
φ′(ω) so that σ(Cφ)∩

rT = ∅.
If the spectrum of a hypercyclic operator can be represented as the union of

two disjoint, nonempty compact sets K1 and K2, then both K1 and K2 must meet
the unit circle [24, Theorem 2.5 ]. This property was originally proved in [21], an
unpublished Ph. D. thesis.

In our case, σ(Cφ) is the union of the set K1 of all points in σ(Cφ) interior to
the circle rT and the set K2 of all points in σ(Cφ) exterior to the circle rT. Clearly
K1 misses the unit circle which is a contradiction.

The conclusion is that σ(Cφ) must meet each circle rT, 0 < r <
√
φ′(ω), which,

given the circular symmetry of σ(Cφ), ends the proof.

Another application of our results is finding the spectra of composition operators
that are compact perturbations of other composition operators. More explicitly, we
say Cφ is a compact perturbation of another composition operator if there is some
analytic selfmap ψ ̸= φ of U so that

(40) Cφ − Cψ is a compact operator.

Essentially linear fractional composition operators have the aforementioned prop-
erty and, in their case, Cψ is induced by a linear fractional selfmap of U [3, Theorem
7.6 ].

Recall the definition of essentially linear fractional composition operators [3].
They are the composition operators Cφ induced by symbols φ with the following
properties:

• φ(U) is a subset of an open horocycle (that is of a proper subdisc of U, tangent
to the unit circle) tangent to T at some point η ∈ T.

• The set φ−1(η) of all points on T whose cluster sets contain η is a singleton.

• The map φ′′′ extends continuously at that singleton.

Relative to composition operators who are compact perturbations of other com-
position operators recall the following theorem in [34]:

Theorem 12. For any pair of distinct composition operators Cφ and Cψ, one has
the following essential norm estimate

(41) ∥Cφ − Cψ∥e ≥
√
m(Eφ) +m(Eψ).

Thus, only composition operators whose symbols φ satisfy the condition |φ| < 1
a.e. have the chance of being compact perturbations of other composition oper-
ators. Note that operators with essential linear fractional symbols φ obviously
have property |φ| < 1 a.e. because the ranges of their symbols are contained by
horocycles.

Along these lines, a useful result is:

Proposition 3. If φ and ψ are analytic selfmaps of U satisfying condition (40),
then exactly one of the following is true:
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(i) φ and ψ are maps having a fixed point in U,
(ii) φ and ψ are maps of hyperbolic type,

(iii) φ and ψ are maps of parabolic type.

Proof. We begin by noting that φ and ψ cannot be inner maps by (41). Therefore,
given the evident equality re(Cφ) = re(Cψ), Theorem 9, and Theorem 10, situation
(i) occurs if and only if re(Cφ) < 1, situation (ii) if and only if re(Cφ) > 1, and
situation (iii) if and only if re(Cφ) = 1.

Proposition 3 can also be proved by combining the fact that the Denjoy–Wolff
point of some φ, if situated on T, is the only boundary fixed point having the
property φ′(ω) ≤ 1, with the following interesting theorem proved by MacCluer in
[23]:

Theorem 13. If Cφ and Cψ satisfy (40), then for all ω ∈ T, φ has an angular
derivative at ω if and only if ψ has the same property and, in that case, one has
that:

φ(ω) = ψ(ω) and φ′(ω) = ψ′(ω).

Our next application is to obtain as a consequence of the results above [2, The-
orems 3.1 and 3.2 ].

Corollary 2. If φ is an essentially linear–fractional symbol fixing a point in U,
then σ(Cφ) is a disc centered at the origin plus the Schröder eigenvalues and 1. The
radius of that disc is re(Cφ), a quantity computable with the following formulas:

(42) re(Cφ) = 0 if φ has no boundary fixed points.

(43) re(Cφ) =
1√
φ′(η)

if φ has a (necessarily unique) boundary fixed point η.

If φ is an essentially linear–fractional symbol of hyperbolic type, then σe(Cφ) =

σ(Cφ) = (1/
√
φ′(ω))U, where ω ∈ T is the Denjoy–Wolff point of φ.

Indeed, if φ is an essentially linear fractional symbol, then σe(Cφ) = σe(Cψ)
where ψ is a linear fractional map satisfying condition (40). If φ has a fixed point
in U, then so does ψ, and ψ is not a disc automorphism (since |ψ| < 1 a.e). In
that case, σ(Cψ) contains the disc centered at the origin having radius re(Cφ) ([15,
Theorem 7.30]) and so, the desired description of the spectrum follows by Remark
2.

By Theorem 13, ψ and φ have the same boundary fixed points, if any. If there
aren’t any, then ∥ψ ◦ ψ∥∞ < 1, hence C2

φ and C2
ψ are compact, so re(Cφ) = 0. If

there is a boundary fixed point η, that point is unique (since ψ is univalent and
has circular range internally tangent to T). All iterates ψ[n] share this unique fixed
point and, since ψ[−n](u) is a finite set for all u ∈ T, one has that

∥Cnψ∥e = ∥Cψ[n]∥e =
1

(ψ′(η))n/2
n = 1, 2, 3, . . .

(see [11, page 63]), and hence

re(Cφ) = re(Cψ) = lim
n→+∞

n

√
∥Cnψ∥e =

1√
ψ′(η)

=
1√
φ′(η)

.
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If φ is of hyperbolic type, then so is ψ. It follows that Cψ is hypercyclic [6], so

Theorems 10 and 11 combine to show that σe(Cφ) = σ(Cφ) = (1/
√
φ′(ω))U.

Remark 4. Our considerations providing a shortcut for [2, Theorems 3.1 and 3.2 ],
miss one fact: in the case when φ fixes a point and Cφ has positive essential spectral
radius, the disc involved in the “disc plus Schröder eigenvalues” representation of
spectra is not proved to equal σe(Cφ), a fact known to hold [2].

5. On the spectrum of C∗
φ

The following stronger version of the Denjoy–Wolff theorem is our tool to get
information on σ(C∗

φ).

Theorem 14 ([5, Theorem 3.1]). Let φ be an analytic selfmap of U with Denjoy–
Wolff point ω. If |ω| = 1, then ∥φ[n] −ω∥ → 0 when n→ +∞. If φ is a non–inner
analytic selfmap of U fixing a point ω ∈ U, then ∥φ[n] − ω∥ → 0 when n→ +∞.

Proof. For the sake of completeness again, here is a very short proof. If |ω| = 1,
the statement in Theorem 14 is an immediate consequence of the Denjoy–Wolff
theorem itself and estimate

∥φ[n] − ω∥2 ≤ 2(1− Re(ωφ[n](0))) n = 1, 2, 3, . . .

which holds for parabolic or hyperbolic symbols and was established in (39). If
|ω| < 1, the conclusion of Theorem 14 is an immediate consequence of (9) and
(10). �

Based on Theorem 14, one can prove the following technical lemma:

Lemma 1. Let C[Z] denote the set of analytic polynomials with complex coeffi-
cients. If φ is an analytic selfmap of U with Denjoy–Wolff point ω and |ω| = 1,
then ∥p ◦ φ[n] − p(ω)∥ → 0 when n → +∞ for all p ∈ C[Z]. If φ is not an inner
function and |ω| < 1, then again ∥p ◦ φ[n] − p(ω)∥ → 0 when n → +∞ for all
p ∈ C[Z].

Proof. Choose p ∈ C[Z] arbitrary and fixed. Note that q = p− p(ω) is an analytic
polynomial with property q(ω) = 0 for which reason q can be written q(z) =
(z − ω)f(z) for some f ∈ C[Z]. Note also that for all positive integers n, one has
that

p ◦ φ[n] − p(ω) = q ◦ φ[n] = (φ[n] − ω)f ◦ φ[n].

Therefore

∥p ◦ φ[n] − p(ω)∥ ≤ ∥f ◦ φ[n]∥∞∥φ[n] − ω∥ ≤ ∥f∥∞∥φ[n] − ω∥ → 0.

Based on Lemma 1, one obtains the following estimates of the point spectrum
σp(C

∗
φ) of C

∗
φ:

Proposition 4. Let φ be an analytic selfmap of U with Denjoy–Wolff point ω. If
|ω| = 1, then

(44) σp(C
∗
φ) ⊆ lim sup

n→+∞

n

√
∥φ[n] − ω∥U ⊆

√
φ′(ω)U.
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If φ is non–inner and |ω| < 1, then

(45) σp(C
∗
φ) ⊆ lim sup

n→+∞

n

√
∥φ[n] − ω∥U ∪ {1}.

If φ is of parabolic type, then

(46) σp(C
∗
φ) ⊆ U.

Proof. Assume |ω| = 1. The set C[Z]ω of all analytic polynomials null at ω is a

dense subset of H2 [6]. Thus, consider λ ∈ C, |λ| > lim supn→+∞
n
√
∥φ[n] − ω∥

with property C∗
φf = λf for some f ∈ H2. We will prove that f = 0 by showing f

is orthogonal to C[Z]ω. Take any p(z) = (z−ω)q(z) ∈ C[Z]ω and note one can use
the Cauchy–Schwarz inequality and write

|⟨f, p⟩| = |⟨f, (φ[n] − ω)q ◦ φ[n]⟩|
|λ|n

≤ ∥f∥ ∥q∥∞
∥φ[n] − ω∥

|λn|
→ 0

because, under our assumptions

+∞∑
n=1

∥φ[n] − ω∥
|λn|

< +∞.

This establishes the relation (44), given Proposition 1.
If φ is not inner and |ω| < 1 then, the set C[Z]ω of all analytic polynomials null at

ω is a dense subset of the orthocomplement of the 1–dimensional subspace spanned
by the kernel function kω and so, if one assumes C∗

φf = λf for some f ∈ H2, the
same argument as above leads to the fact that f is a scalar multiple of kω. By (4),
this means f is either null or an eigenfunction associated to the eigenvalue 1, which
establishes (45).

If φ is of parabolic type, we must prove no unimodular number is an eigenvalue
of C∗

φ. Choose λ ∈ C, |λ| = 1, λ ̸= 1 and assume C∗
φf = λf for some f ∈ H2. We

want to prove f = 0. Arguing by contradiction, assume f is not the null function.
Therefore ⟨f, p⟩ ̸= 0 for some p ∈ C[Z], since C[Z] is a dense subset of H2. Observe
that

⟨f, p⟩ = 1

λn
⟨(C∗

φ)
nf, p⟩ = ⟨f, p ◦ φ[n]⟩

λn
n = 1, 2, 3, . . .

hence

λn =
⟨f, p ◦ φ[n]⟩

⟨f, p⟩
→ ⟨f, p(ω)⟩

⟨f, p⟩
.

This is a contradiction because, under our assumptions, the sequence {λn} is di-
vergent. Thus f = 0.

The case λ = 1 needs to be treated separately. Assume C∗
φf = f for some

f ∈ H2. Then

(47) ⟨f, p⟩ = ⟨(C∗
φ)
nf, p⟩ = ⟨f, p ◦ φ[n]⟩ → f(0)p(ω) p ∈ C[Z].

Now take p(z) = zk, k = 0, 1, 2, . . . in (47). One obtains that the sequence of
Maclaurin coefficients of f is {f(0)ωk}. This sequence must be square–summable.
Given that |ω| = 1, it follows that the aforementioned sequence is the null sequence
and hence f is the null function.
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Corollary 3. If φ is a non–inner analytic selfmap of U, fixing a point ω ∈ U, and

(48) lim sup
n→+∞

n

√
∥φ[n] − ω∥ = 0,

then σ(Cφ) satisfies equality (8).

Indeed, this is an immediate consequence of Proposition 4 and Remark 2.
In complex dynamics theory, a fixed point ω of an analytic map φ is called a

super–attracting fixed point if φ′(ω) = 0. If condition (48) is satisfied, then ω is
such a fixed point and so, what Corollary 3 says is that σ(Cφ) = σe(Cφ) ∪ {1}.
Indeed:

Proposition 5. If φ is a non–inner analytic selfmap of U, fixing ω ∈ U, and
equation (48) holds, then φ′(ω) = 0. If φ(ω) = ω, φ′(ω) = 0, and φ induces an
essentially quasinilpotent composition operator, then equation (48) holds.

Proof. To begin, assume ω = 0. An elementary computation shows that, if φ(0) = 0

then C∗
φ(z) = φ′(0)z. If one assumes φ′(0) ̸= 0, then σ(C∗

φ), contains values
different from 0 and 1 and so, by Proposition 4, condition (48) fails for such φ.
For arbitrary ω ∈ U, consider the operator similarity (9), and note that ψ fixes the
origin.

If φ(0) = φ′(0) = 0, then the subspace C of constant functions is a reducing
subspace of Cφ. Denote by I the identity operator acting on that space. If re(Cφ) =
0, then, given that Cφ = I ⊕ (Cφ|zH2), it follows that the restriction Cφ|zH2

of Cφ to the orthocomplement zH2 of C is a quasinilpotent operator. Indeed,
σ(Cφ) = {0, 1} and σ(Cφ|zH2) cannot contain 1 given that ∥Cφ|zH2∥ < 1 (by
Theorem 3). Thus

lim sup
n→+∞

n

√
∥φ[n]∥ = lim sup

n→+∞

n

√
∥(Cφ|zH2)n(z)∥ ≤ r((Cφ|zH2)) = 0,

that is (48) holds.
For arbitrary ω ∈ U and z ∈ U, note first that

|ω − αω(z)| =
(1− |ω|2)|z|
|1− ωz|

and hence

(49) (1− |ω|)|z| ≤ |ω − αω(z)| ≤ (1 + |ω|)|z|.
Consider the operator similarity (9), note that re(Cψ) = re(Cφ) = 0, ψ(0) = 0, and
using (49), one can write for all n = 1, 2, 3, . . . and z ∈ U

(50) (1− |ω|)|ψ[n](αω(z))| ≤
∣∣∣ω − αω(ψ

[n](αω(z)))
∣∣∣ ≤ (1 + |ω|)|ψ[n](αω(z))|

which leads to

(51) (1− |ω|)∥Cαω (ψ
[n])∥ ≤ ∥ω − φ[n]∥ ≤ (1 + |ω|)∥Cαω (ψ

[n])∥
and hence to

(52) c1∥ψ[n]∥ ≤ ∥ω − φ[n]∥ ≤ c2∥ψ[n]∥ n = 1, 2, 3, . . .

for some positive constants c1 and c2, because the bounded operator Cαω is invert-
ible and hence, bounded below. Therefore

n

√
∥ω − φ[n]∥ ≤ n

√
c2∥ψ[n]∥ → 0.
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The only closed range, essentially quasinilpotent composition operators are those
induced by constant symbols. Actually:

Remark 5. If φ is an analytic selfmap of U, fixing ω ∈ U, and equation (48) holds,
then Cφ is a closed range operator only if φ is constant.

Indeed, if φ is not constant and Cφ is a closed range operator, then Cφ is bounded
below (since it is an injective operator), that is there is some c > 0 such that

∥Cφf∥ ≥ c∥f∥ f ∈ H2.

Therefore, for all constants ω,

∥φ[n] − ω∥ = ∥Cnφ(z − ω)∥ ≥ cn∥z − ω∥ n = 1, 2, 3, . . .

and hence

lim inf
n→+∞

n

√
∥φ[n] − ω∥ ≥ c > 0.

The Hilbert Hardy space is the Hardy space of index 2. This means that Hp,
the Hardy spaces of index 0 < p < +∞, consist of all analytic functions f on U
with property

(53) ∥f∥p := sup
0<r<1

(∫
T
|f(rζ)|p dm(ζ)

)1/p

< +∞.

As observed in [5], a fast consequence of the fact that the fixed point ω ∈
U of some non-inner analytic selfmap φ is ∥ ∥–attractive (that is of property
∥φ[n] − ω∥ → 0) is the property

∥φ[n] − ω∥p → 0 0 < p < +∞
satisfied by all non–inner φ fixing ω. We will show that, if the ∥ ∥1–attractiveness
of ω is compatible to its ∥ ∥–attractiveness (note that we continue to denote ∥ ∥2
simply by ∥ ∥), then property (48) holds, provided φ′(ω) = 0.

More formally, we say that the ∥ ∥1–attractiveness of ω is compatible to its
∥ ∥–attractiveness and denote

{∥φ[n] − ω∥} ∼ {∥φ[n] − ω∥1}
if there are positive constants c1, c2 and some positive integer n0 so that

c1∥φ[n] − ω∥1 ≤ ∥φ[n] − ω∥ ≤ c2∥φ[n] − ω∥1 n ≥ n0

a fact that is equivalent to

lim sup
n→+∞

∥φ[n] − ω∥
∥φ[n] − ω∥1

< +∞

given that ∥ ∥1 ≤ ∥ ∥.
It is important to make the following:

Remark 6. If φ and ψ are related as in (9), then

(54) {∥φ[n] − ω∥p} ∼ {∥ψ[n]∥p}
for all fixed 0 < p ≤ +∞.
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Indeed, the argument linking (49)–(52) can be repeated, using ∥ ∥p instead of
∥ ∥. Keeping that in mind, we prove

Theorem 15. Let φ be a non–inner analytic selfmap of U fixing ω ∈ U and having

property φ′(ω) = 0. Then n
√
∥φ[n] − ω∥ → 0 if any of the conditions below hold:

(55) lim
n→+∞

∥φ[n] − ω∥√
∥φ[n] − ω∥1

= 0

(56) {∥φ[n] − ω∥} ∼ {∥φ[n] − ω∥1}
(57) ∥(φ− ω)(φ[2] − ω) . . . (φ[n] − ω)∥∞ → 0.

If ω = 0, then condition (57) is equivalent to the following

(58) ∥φφ[2] . . . φ[k]∥∞ < 1 for some k.

Proof. Assume first that ω = 0. Let ϕ(z) = φ(z)/z, z ̸= 0 and ϕ(0) = 0. The map
ϕ satisfies the assumptions of the Schwarz lemma in classical complex analysis, for
which reason, one can write for all z ∈ U and n = 1, 2, 3, . . .

|ϕ(φ[n](z))| ≤ |φ[n](z)|
that is

(59) |φ[n+1](z)| ≤ |φ[n](z)|2,
which leads immediately to√

∥φn+1∥1 ≤ ∥φ[n]∥ n = 1, 2, 3, . . .

On the other hand, Cφ is a contraction and hence

∥φ[n+1]∥ ≤ ∥φ[n]∥ n = 1, 2, 3, . . .

Therefore, one has that∣∣∣∣√∥φ[n+1]∥1 − ∥φ[n+1]∥
∣∣∣∣ ≤ ∥φ[n]∥ n = 1, 2, 3, . . .

In other words:

∥φ[n]∥
∥φ[n+1]∥

≥

∣∣∣∣∣
√
∥φ[n+1]∥1
∥φ[n+1]∥

− 1

∣∣∣∣∣ → +∞

which implies ∥φ[n+1]∥
∥φ[n]∥ → 0 and hence n

√
∥φ[n]∥ → 0, by (31).

If {∥φ[n]∥} ∼ {∥φ[n]∥1}, there is some c > 0 so that

∥φ[n]∥√
∥φ[n]∥1

≤ c
√
∥φ[n]∥1 → 0.

Let us write inequality (59) for successive values of n, that is, let us write

|φ[k+1](z)| ≤ |φ[k](z)|2, k = 0, . . . , n

then multiply those inequalities, and let |z| → 1. One gets

|φ[n+1]| |φ[n]φ[n−1] . . . φ[2]φ| ≤ |φ[n]φ[n−1] . . . φ[2]φ|2 a.e.

Given that

φ[n]φ[n−1] . . . φ[2]φ ̸= 0 a.e.,
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it follows that

|φ[n+1]| ≤ |φ[n]φ[n−1] . . . φ[2]φ| a.e.

and hence

∥φ[n+1]∥
∥φ[n]∥

≤ ∥φ[n−1] . . . φ[2]φ∥∞.

Therefore, if ∥φ[n] . . . φ[2]φ∥∞ → 0, then n
√
∥φ[n]∥ → 0.

If that is the case, then (58) holds. Conversely, if condition (58) holds, then that
fact implies that ∥φ[n] . . . φ[2]φ∥∞ → 0. Indeed, if one denotes ∥φφ[2] . . . φ[k]∥∞ :=
λ < 1 and Sn := ∥φ[n] . . . φ[2]φ∥∞, then clearly Sn is a decreasing sequence of
nonnegative numbers which contains the subsequence Snk convergent to 0. Indeed,
denote F := φφ[2] . . . φ[k] and observe that:

Snk = ∥φφ[2] . . . φ[nk]∥∞ = ∥F (F ◦ φ[k])(F ◦ φ[2k]) . . . (F ◦ φ[(n−1)k])∥∞ ≤

∥F∥n∞ = λn → 0.

For arbitrary ω ∈ U, consider ψ related to φ by (9) and note that the statements
in this theorem are consequences of the case ω = 0 and Remark 6. �

In conclusion, the dynamical behavior of sequences of iterates of a selfmap influ-
ences the spectra of the composition operator induced by that map, and vice versa,
spectral properties of composition operators lead to strong attractiveness properties
of the point fixed by their symbol (such as (48) for instance), thus exhibiting a nice
bilateral interaction of complex dynamics and the spectral theory of composition
operators.
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