
University of Nebraska at Omaha University of Nebraska at Omaha

DigitalCommons@UNO DigitalCommons@UNO

Computer Science Faculty Publications Department of Computer Science

10-4-2020

Effect of Implementing Subgoals in Code.org's Intro to Effect of Implementing Subgoals in Code.org's Intro to

Programming Unit in Computer Science Principles Programming Unit in Computer Science Principles

Lauren E. Margulieux
Georgia State University

Briana Baker Morrison
University of Nebraska at Omaha, bbmorrison@unomaha.edu

Baker Franke
Code.org

Hari Ramilison
hramilison@unomaha.edu

Follow this and additional works at: https://digitalcommons.unomaha.edu/compscifacpub

 Part of the Computer Sciences Commons

Please take our feedback survey at: https://unomaha.az1.qualtrics.com/jfe/form/

SV_8cchtFmpDyGfBLE

Recommended Citation Recommended Citation
Margulieux, Lauren E.; Morrison, Briana Baker; Franke, Baker; and Ramilison, Hari, "Effect of Implementing
Subgoals in Code.org's Intro to Programming Unit in Computer Science Principles" (2020). Computer
Science Faculty Publications. 75.
https://digitalcommons.unomaha.edu/compscifacpub/75

This Article is brought to you for free and open access by
the Department of Computer Science at
DigitalCommons@UNO. It has been accepted for
inclusion in Computer Science Faculty Publications by an
authorized administrator of DigitalCommons@UNO. For
more information, please contact
unodigitalcommons@unomaha.edu.

http://www.unomaha.edu/
http://www.unomaha.edu/
https://digitalcommons.unomaha.edu/
https://digitalcommons.unomaha.edu/compscifacpub
https://digitalcommons.unomaha.edu/compsci
https://digitalcommons.unomaha.edu/compscifacpub?utm_source=digitalcommons.unomaha.edu%2Fcompscifacpub%2F75&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/142?utm_source=digitalcommons.unomaha.edu%2Fcompscifacpub%2F75&utm_medium=PDF&utm_campaign=PDFCoverPages
https://unomaha.az1.qualtrics.com/jfe/form/SV_8cchtFmpDyGfBLE
https://unomaha.az1.qualtrics.com/jfe/form/SV_8cchtFmpDyGfBLE
https://digitalcommons.unomaha.edu/compscifacpub/75?utm_source=digitalcommons.unomaha.edu%2Fcompscifacpub%2F75&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:unodigitalcommons@unomaha.edu
http://library.unomaha.edu/
http://library.unomaha.edu/

Effect of Implementing Subgoals in

Code.org’s Intro to Programming Unit in

Computer Science Principles
LAUREN E. MARGULIEUX, Department of Learning Sciences, Georgia State

University, Atlanta, Georgia, USA

BRIANA B. MORRISON, Computer Science Department, University of Nebraska

Omaha, Omaha, Nebraska, USA

BAKER FRANKE, Code.org, Chicago, Illinois, USA

HARIVOLOLONA RAMILISON, Computer Science Department, University of Nebraska

Omaha, Omaha, Nebraska, USA

Abstract

The subgoal learning framework has improved performance for novice programmers in

higher education, but it has only started to be applied and studied in K-12

(primary/secondary). Programming education in K-12 is growing, and many international

initiatives are attempting to increase participation, including curricular initiatives like

Computer Science Principles and non-profit organizations like Code.org. Given that

subgoal learning is designed to help students with no prior knowledge, we designed and

implemented subgoals in the introduction to programming unit in Code.org’s Computer

Science Principles course. The redesigned unit includes subgoal-oriented instruction

and subgoal-themed pre-written comments that students could add to their

programming activities. To evaluate efficacy, we compared behaviors and performance

of students who received the redesigned subgoal unit to those receiving the original

unit. We found that students who learned with subgoals performed better on problem-

solving questions but not knowledge-based questions and wrote more in open-ended

response questions, including a practice Performance Task for the AP exam. Moreover,

at least one-third of subgoal students continued to use the subgoal comments after the

subgoaloriented instruction had been faded, suggesting that they found them useful.

Survey data from the teachers suggested that students who struggled with the concepts

found the subgoals most useful. Implications for future designs are discussed.

CCS Concepts: Social and professional topics → Computer science education;

Additional Key Words and Phrases: Subgoal learning, instructional design, Computer

Science Principles, K-12, Code.org

This work is funded in part by the National Science Foundation under grant 1712231.

Any opinions, findings, and conclusions or recommendations expressed in this material

are those of the authors and do not necessarily reflect the views of the NSF. Authors’

addresses: L. E. Margulieux, Department of Learning Sciences, Georgia State

University, Atlanta, Georgia, 30302- 7985, USA; email: lmargulieux@gsu.edu; B. B.

Morrison and H. Ramilison, Computer Science Department, University of Nebraska

Omaha, 6001 Dodge Street, Omaha, Nebraska, 68182, USA; emails: {bbmorrison,

hramilison}@unomaha.edu; B. Franke, Code.org, 1501 4th Ave, Suite 900, Seattle, WA

98101, USA; email: baker@code.org. Permission to make digital or hard copies of all or

part of this work for personal or classroom use is granted without fee provided that

copies are not made or distributed for profit or commercial advantage and that copies

bear this notice and the full citation on the first page. Copyrights for components of this

work owned by others than the author(s) must be honored. Abstracting with credit is

permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists,

requires prior specific permission and/or a fee. Request permissions from

permissions@acm.org. © 2020 Copyright held by the owner/author(s). Publication rights

licensed to ACM. 1946-6226/2020/10-ART26 $15.00 https://doi.org/10.1145/3415594

1 INTRODUCTION

The Advanced Placement (AP) Computer Science Principles (CSP) course was

designed to be an entry-level computer science course for high/secondary school

students [10]. One of the major goals was to create a course that appealed more

broadly than AP Computer Science A to increase the number and range of students

who engage in computing courses [8]. To engage new students in computing courses,

the number of teachers who taught computing courses also had to increase. Many

teachers, however, do not have deep computing content knowledge or experience

teaching computing [20]. To provide resources that enable novice computing teachers

to offer CSP, Code.org developed (1) a curriculum with a web-based delivery platform

that teachers could use with their students and (2) a professional development program

that prepared them to use these resources.

Code.org’s resources are widely used. In the 2017–2018 school year, approximately

45,000 students and 2,800 teachers were active in Code.org’s CSP course in the United

States. Approximately one-third of U.S. students who sit for the AP CSP exam use all or

part of Code.org’s CSP curriculum. Code.org’s professional development program for

CSP trains approximately 1,500 teachers each year, most of whom are new to teaching

computer science. The median teacher has 0–1 years of computer science teaching

experience prior to entering the program. Teachers’ general lack of experience (and

presumably CS content knowledge) is particularly germane for the subgoal learning

intervention that was used for this study.

We chose to employ subgoal learning in Code.org’s web-based CSP course for the unit

on programming to provide consistent, expertise-based explanations of problem-solving

procedures for students whose teachers might have little formal computing education.

The expertise-based explanations are provided in the form of subgoal labels—short

https://doi.org/10.1145/3415594

instructional explanations that focus on the tasks achieved within a problem-solving

procedure. We developed subgoal labels using a task analysis protocol and then

implemented them within the programming unit of Code.org’s CSP course. To explore

the efficacy of the intervention, we compared the work of students going through the

original content of the unit in parallel with those going through the unit with the subgoals

intervention embedded. We compared groups using data from open-ended response

and multiple choice assessment questions that are identical in both versions of the unit.

To augment these learning outcomes data, we collected data about the learning

process by examining how the subgoal students engaged with the subgoal comment

blocks in AppLab (the programming environment within Code.org’s CSP course). We

also surveyed the teachers in the intervention group to provide addition context. Our

research questions were as follows:

RQ1: How do students use subgoal comment blocks throughout the Intro to

Programming unit?

RQ2: What effect does the subgoal instructional material have on responses to

assessment questions?

RQ3: How do teachers perceive the usefulness of the subgoal-oriented

materials?

2 BACKGROUND LITERATURE

 The subgoal learning framework was designed to help students who are learning

problem-solving procedures by bridging the expert–novice gap [6]. The expert–novice

gap causes experts to have difficulty verbalizing problem-solving procedures at a level

that is understandable to novices, because they have automatized much of the

knowledge [3]. Knowledge that has been automatized seems like common knowledge

or intuition. For many people, trying to describe how to tie a shoe illustrates the difficulty

that experts can have verbalizing automatized knowledge about a procedure. The

subgoal learning framework bridges the expert–novice gap by identifying lowlevel

procedural knowledge and making it explicit in instructional materials about problem-

solving procedures, such as worked examples [6]. Making the knowledge explicit in the

instructional materials offloads this difficult task from instructors and ensures that all

students receive the same level of instructional support.

Subgoal labeling is a specific technique used to promote subgoal learning. It has been

used to help learners recognize the fundamental structure of the problem-solving

procedure [4–6]. Subgoal labels are function-based instructional phrases that explain to

the learner the purpose of that step, or subgoal, in the problem-solving process. Studies

[1, 2, 4–6, 13, 14] have consistently found that subgoal-oriented instructions improved

problem-solving performance across a variety of STEM domains, such as programming

(e.g., Reference [15]) and statistics (e.g., Reference [6]).

Giving subgoal labels in worked examples improves learner performance while solving

novel problems without increasing the amount of time learners spend studying

instructions or working on problems [15]. Subgoal learning was first applied to

programming education in the context of an experimental laboratory with psychology

undergrads as participants [15]. Due to this context, the programming procedure being

taught had to be accessible to absolute novices. Thus, participants were taught to

create apps in Android App Inventor. In this highly controlled environment, subgoal

labeled worked examples were found to improve problem-solving performance by 8%.

From that experiment, research has focused on testing subgoal labeled worked

examples in more authentic programming education environments, including online

learning with K-12 teachers [14], a gamebased K-3 setting [11], and in open educational

resources that crowdsource subgoal labels [12]. Our research applies subgoal learning

to an introductory programming course, specifically to students who were learning to

solve problems using while loops.

Decker, Margulieux, and Morrison have completed several studies implementing

subgoals in text-based programming [9, 16–19]. They have found that using subgoal

labels to teach while loops produced results similar to those achieved in other

disciplines. Their first study [19] found that students who learned with subgoal labels

(either given or self-created) performed better on the code writing assessments than

those who learned without subgoal labels. In a follow-up paper [18], the authors

examined the performance of students on a specific type of problem assessment,

Parsons problems, after having learned loop problem solving in one of the treatment

groups (with no subgoal labels, with given subgoal labels, or generating their own

subgoal labels). They found that students who were given subgoals performed

statistically significantly better than those who had no subgoals or who generated their

own subgoals, regardless of transfer condition. In Reference [17] the authors replicated

their initial study [19] with a third population of students. The results supported the

findings from the previous studies: Participants who learn by generating subgoal labels

performed the best.

Recent work on subgoal learning has applied the framework to programming education

[20], especially in web-based learning environments [15]. Given the success of these

recent applications, employing subgoal learning in Code.org’s web-based CSP course

for the unit on programming seemed like a natural fit, though the motivation was

different. In this case, the motivation was not to bridge the expert–novice gap but

instead to provide consistent, expertise-based explanations of problem-solving

procedures for students whose teachers might have little formal computing education.

The expertise-based explanations are provided in the form of subgoal labels—short

instructional explanations that focus on the tasks achieved within a problem-solving

procedure. Subgoal labels are expertise based, because they are identified through a

task analysis with an expert.

The task analysis protocol was created by Catrambone as a means for uncovering the

tacit knowledge of an expert in the problem solving process [7]. The protocol involves

an instructional designer working with a subject-matter expert to identify automatized

procedural knowledge, verbalize it, and then design a series of subgoal labels that can

be used in instructional materials. For a brief summary of the protocol, the instructional

designer asks the subject-matter expert to solve problems while explaining why they are

doing each step. As the expert solves multiple problems within a class, the designer

identifies common rules and decision points. When the expert has difficulty explaining

why a step was taken or why a decision was made, the designer asks questions to

extract this automated knowledge. Eventually, the designer tries to solve problems

using only the common rules and steps identified through the task analysis. When the

designer can consistently solve any new problem in a class, the task analysis is

complete [7]. A full description of the task analysis protocol can be found in Margulieux

et al. [16].

Block-based programming languages offer users menus of pre-formatted lines of codes

to eliminate the possibility of syntax errors and limit the search space for potential

actions. The task analysis protocol done for block-based programming languages yields

higher-order subgoals than those generated for text-based languages. For example,

while two of the subgoals for creating an app in block-based Android App Inventor are

“Handle input” and “Set output” [14], the subgoals for writing a selection statement in

text-based Java include “Write if statement with Boolean expression,” “Follow with true

bracket including action,” “Follow with else bracket,” and so on [16].

The difference in the level at which the subgoals apply are notably different. In a text-

based programming language the subgoals generated have been at the programming

construct level: how to design and implement a specific control structure or program

component. The block-based subgoals were at the level of problem-solving. In App

Inventor, learners who want to use a selection statement simply need to drag out an if

block from the menu. Deciding to use an if block is the major cognitive contribution in

App Inventor. However, in Java, the learner has to determine when a selection

statement is needed and then write the statement syntactically correct. The subgoals

identified for AppLab—Code.org’s block-based JavaScript programming environment—

were higher-order subgoals, like “Define function” and “Write a loop.” The Code.org

curriculum also makes use of turtle graphics, which led to subgoal labels like “Move

turtle” and “Orient turtle.”

To identify the subgoals for the programming unit of Code.org’s CSP course, the task

analysis protocol was completed between authors Margulieux and Morrison. Margulieux

has completed this protocol in a variety of STEM fields, such as programming and

chemistry, and Morrison has served as subject-matter expert in this protocol for topics in

introductory programming, such as writing loops and selection statements. The subgoal

labels designed through this process can be split conceptually into AppLab/turtle

graphics subgoals and general programming concept subgoals. This distinction was not

included in the instructional materials that students used, but we make it here for

readers to separate the subgoals that apply only in programming environments like ours

and the subgoals that apply more generally to programming procedures.

• AppLab/Turtle Graphics subgoal labels

◦ Move turtle

◦ Orient turtle

◦ Set pen properties

 • General programming concept subgoal labels

 ◦ Define function

 ◦ Call function

 ◦ Write a loop

Fig. 1. Hierarchy of components that are included in the Intro to Programming Unit of Code.org’s CSP

course.

3 IMPLEMENTATION IN THE PROGRAMMING UNIT

For the 2017–2018 school year, the Intro to Programming unit in Code.org’s CSP

course had three introductory lessons (1–3) and six interactive programming lessons

(4–9; see Figure 1). Each programming lesson starts (see Figure 2) with learning

objectives, vocabulary and new blocks to use in AppLab. Lessons comprised

sequences of small tasks, called a “level.” Each lesson has multiple programming levels

(see Figure 3) that include some instructions and ask learners to complete tasks or

solve problems in AppLab, like using turtle graphics to draw a square. Programming

levels can be configured in AppLab to have a blank workspace, include pre-populated

blocks to scaffold the activity, or use pull-through code that the learner builds up while

working through a sequence of multiple levels. Lessons also include several

assessment levels (see Figure 4) that include openended response and multiple choice

questions. Each lesson includes approximately 15 total levels.

To add subgoal labels to the Intro to Programming unit, we redesigned the six

interactive programming lessons to include subgoals. The initial redesign was

completed by author Margulieux, who has eight years of instructional design

experience, has taught instructional design, and is the coordinator of a Ph.D. program in

instructional design and technology. To design the subgoal integration, she used the

Dick and Carey model of instructional design [10] that is based on the fundamental

Analysis-Design-Development-Implementation-Evaluation (ADDIE) framework of

instructional design. The Dick and Carey model is an iterative model that starts with

analyzing the needs of the learners (i.e., the gap between current and desired

knowledge). This analysis is used to design the learning objectives, which are then used

to create the assessments. Then the instructional strategy and materials are developed

to bridge the learning objectives and assessments. Finally, formative and summative

evaluation of the instructional system are conducted. Formative feedback and iterations

of the redesign were completed by author Morrison, who has 23 years of experience

teaching programming; Baker Franke, who led the original design of Code.org’s CSP

course offered technical and engineering assistance to the researchers for the redesign

of the programming unit; and Bryan Cox, who is a former high school CS teacher and is

now the Computer Science Specialist at the Georgia Department of Education.

The first level of each lesson is a static student-facing page with a brief lesson summary

and important vocabulary. As part of the redesign of each lesson we added to this page

the new subgoals that corresponded to the new blocks (see Figure 2). To the

programming levels, we added a “Goals” category within the AppLab code toolbox,

which contained subgoal labels as comment blocks (see gray // blocks in Figure 3). The

subgoal blocks could be dragged into the workspace like any other block, and they

could also be edited. To the instructions (top right of Figure 3), we added which

subgoals were needed to complete the puzzle (e.g., in lesson 5, we added to a level’s

instructions, “To solve this puzzle, you’ll use three types of subgoals. You’ll define the

function, which will include calling 2 different functions and moving the turtle. Then you’ll

call the function that you defined”). We implemented a faded scaffolding approach by

adding these additional instructions only to the first four out of six lessons. In the first

two lessons we prepopulated the AppLab workspace with some subgoal blocks, to act

as an outline for the solution, as an example for students and to narrow the problem-

solving space. Therefore, the first third of lessons included both explanations of the

subgoals in the problems and prompts to use subgoal blocks (“Subgoal Prompted”), and

the second third of lessons included explanations but not prompts (“Subgoal

Explained”). For the final third of the lessons the scaffolding completely faded. The

subgoal blocks were still available in the toolbox, but the instructions did not specifically

discuss subgoals nor did the workspace have prepopulated subgoal blocks (“Subgoal

None”).

Fig. 2. First level of lesson 4 (first programming lesson), including learning objectives, vocabulary, new

subgoals, and blocks. Subgoals are near the bottom of the screen.

The assessment levels for the subgoal intervention were identical to the original

content; however, we added eight assessment items to both the original unit, which the

control group received and the subgoal intervention unit. The new assessments were

specifically designed to examine differences in thought processes between learners

who had subgoal labels and those who did not. One of these new items is in Figure 4,

and more are discussed in the presentation of the results.

Fig. 3. Programming level in lesson 9 (final lesson), including all subgoal comment blocks in the toolbox

and block code in the workspace at the bottom right.

4 METHOD

To address these research questions, we compared data from students who worked in

the redesigned subgoal-oriented unit and those who worked in the original unit during

the 2017–2018 school year. To make the learning experience as authentic as possible,

the researchers did not impose any restrictions on how students or their teachers

engaged with the unit. To recruit participants, Code.org emailed all active teachers of

the course to ask them if they would like to participate in a study. The recruitment email

explained the subgoal learning framework and that they should use Code.org’s

materials as they regularly would. The participants never directly interacted with the

researchers, though they were given their contact information in case they had

questions. If participants opted into the study, then author Franke added them into a

cohort grouping on the Code.org platform that transparently swapped out the original

unit for the redesigned subgoal unit. The control group were the remaining users of

Code.org’s CSP course.

Due to the recruitment procedures, the researchers could be given access only to data

that followed Code.org’s privacy policy and user agreement. Therefore, researchers

never received identifying information nor raw data that were created by students. For

example, the researchers could not receive the raw text of students’ open-ended

response answers or student-written code, because they might include personally

identifying information. Instead, the researchers were allowed to run queries for

keywords against the datasets of the open-ended response assessments. Anyone can

access the subgoal-based unit or the data used for analyses, but we are not permitted

to share them publicly. Interested parties can contact author Franke from Code.org. In

addition to data from Code.org’s platform, the researchers asked the teachers who had

opted into the study to complete a survey after finishing the programming unit. Due to

IRB consent procedures, these data cannot be shared outside of the research team.

Fig. 4. Open-ended response assessment level.

4.1 Data Collection Sources

Within Code.org’s privacy policy, researchers had access to three types of data sources

from the platform. The first type was the multiple choice assessment levels (i.e., product

data) that were built into the lessons. Because responses to the multiple choice

questions do not include information created by the student, we could collect student

answers to the questions. The multiple choice questions included in the lessons were

designed to provide formative feedback on the students’ progress to both the students

and teachers. Thus, these questions have a different goal than multiple choice

questions that would be designed to measure student performance in an experiment.

Instruments used in experiments aim for a mean score of 50% to avoid ceiling effects,

while instruments used for formative feedback aim to measure a base competency,

ideally with most students getting questions right on the first try. Therefore, the effect

size between groups on these questions were expected to be small due to ceiling

effects.

The other two types of data collected were (a) students’ answers to open-ended

response assessment questions (e.g., Figure 4, product data), and (b) student-written

code for AppLab programming levels (e.g., Figure 3, process data). Due to the

possibility of these data containing identifying information, we did not collect the raw

data, but we designed queries for Code.org to execute on our behalf against the data

and return the results de-identified. For both the open-ended response text and AppLab

code we queried for instances of whole or partial use of the subgoal comment names

and blocks. These are detailed more in the Results section.

In addition to data provided from Code.org, we asked teachers who opted into the study

to complete a survey. The survey included four fixed-response questions about their

students’ perception of the subgoal-oriented instruction and how this year’s students’

performance compares to last year’s if they taught CSP the previous year. The scale for

these questions was a classic Likert scale from “1, Strongly Disagree” to “5, Strongly

Agree.” Because we were asking the teachers about their students’ perceptions and

performance, we included an “Unsure” option to avoid a forced, inappropriate choice.

We also asked teachers an open-ended question: “Please tell us anything that you’d

like to share about the subgoal-oriented programming unit.”

4.2 Data Cleaning Methods

The data supplied to the researchers from Code.org came in multiple hierarchical

database tables. To run statistical tests, the data had to be “flattened” into a single

table. Data received from Code.org from the queries were stored in separate tables

according to the type of assessments (i.e., multiple choice, open-ended response, or

AppLab). Automated processes were developed to transform the hierarchical data into a

single table. Data transformation consisted of converting the structure of the multiple

tables into a unified structure that would link multiple pieces of data from the same

participant. This procedure extracted all the programming or assessment levels and

related responses provided by a single participant into separate columns. At the end of

the data transformation process, all participation responses were in a single large, table

with each row representing a participant and the columns containing the assessment

responses. This table then went through a data removal process that eliminated

incomplete data by applying certain rules.

Given that anyone with internet access can use Code.org’s resources, we examined the

data to determine typical usage. We found a large gap between users who engaged

with most of the content in the unit (i.e., likely assigned to complete the unit by their

teacher in a formal course) and those who engaged with only a few elements (i.e., likely

given the unit as an optional resource by their teacher or someone looking through the

unit). Based on this completion gap, we created rules to eliminate data from occasional

users. We removed students who did not answer at least one multiple choice question

and one open-ended response assessment. This initial data removal yielded a subgoal

group of n = 2,027 and a control group of n = 10,206. Based on the large sample size,

we then created more selective inclusion rules. In the second round of data removal, we

eliminated students who answered fewer than five multiple-choice questions, four open-

ended response levels, and six AppLab levels, leaving us data for students who

completed at least 70% of the unit. These rules narrowed the subgoal group from n =

2,027 to n = 1,413, a 30% decrease, and the control group from n = 10,206 to n =

6,740, a 34% decrease.

4.3 Threats to Validity

Because teachers elected to participate in the subgoal-oriented unit, the intervention

and controls groups were not randomly assigned, which introduces sampling bias. Due

to the sheer size of the sample, it is unlikely that sampling bias would be a major source

of systematic variance between groups, because there is a large amount of variance

within groups. The authors evaluated the groups for potential bias during analysis.

Details are discussed under “Results and Discussion,” but there does not seem to be a

substantial sampling bias based on demographics, teacher experience, or variance

within measurements due to elective assignment to the intervention group.

Our goal in the data elimination process was to focus the analysis on students who

completed all or most of the unit, likely representing students in a formal classroom

setting. Code.org’s CSP curricula is unlike an online course for informal learning, like a

Massive Open Online Course (MOOC). For Code.org’s CSP online resources, the

biggest predictor of completion was likely whether students were assigned to complete

items. Because the sample sizes are so large and because the attrition between groups

is about equal, we do not expect attrition to bias the data in favor of one group. In

support of this argument, we also compared the available demographic data for both

groups. We had access to basic demographic data (gender, race, and whether the

teacher had taken Code.org’s Professional Development (PD) or was in their first year

of teaching CSP). While much of these data were missing for our final samples, the data

available show that both groups are representative of the national population of CSP

students. The entire population of students who use Code.org’s CSP course is

representative of the national population of CSP students, which is around 30% girls

and 40% underrepresented minorities. The criteria we used also ensures that we have

more data points about each student in the analysis than if we included everyone who

participated in some part of the unit.

5 RESULTS AND DISCUSSION

This section is organized by the data sources used in this study. The first section

covering the AppLab data addresses the first research question about how the subgoal

group engaged with the subgoal blocks. The next two sections, multiple choice and

open-ended response assessments, address the second research question to compare

answers between the subgoal and control groups. The last section reports on the

teacher survey data and addresses the third research question about teachers’

perceived usefulness of the subgoal intervention.

5.1 Subgoal Comments Use in AppLab (Research Question 1)

Our first research question asks how students use subgoal comment blocks in the unit,

which will be addressed in this section. To explore how students engaged with the

subgoal label comment blocks in the AppLab programming levels throughout the

lessons, we queried the student code to produce a count of the number of occurrences

of each type of subgoal block present in the code. Due to Code.org’s privacy policy, we

were not able to analyze the complete code that students created, but Code.org does

use basic tests against program execution logs to ensure that students’ programs meet

critical criteria before they are marked as complete. Because we examined the number

of subgoal blocks used in programming levels, these data are only available for the

subgoal group, because the control group did not have the subgoal blocks. For this

analysis, we used data from participants who completed all of the programming levels,

regardless of whether they completed all of the assessments. Therefore, the n, 2,026, is

higher than that for the assessment data.

Because the data are for only one group, only descriptive statistics were used (see

Tables 1–5). The mean and standard deviation (SD) refer to the number of subgoal

blocks used per student, including students who did not use any subgoal blocks. The

data are generally split by how the students in the intervention were encouraged to use

the subgoal blocks. For the first two lessons, the subgoals needed for the tasks were

explained to the student, and the instructions asked students to use the subgoal blocks.

We use “Subgoal Prompted” to describe these lessons.

For the middle two lessons, the subgoals needed for the task were explained, but the

instructions did not prompt students to use the subgoal blocks. We use “Subgoal

Explained” to describe these lessons. For the final two lessons, the subgoals needed to

solve the puzzle were neither explained nor prompted. We use “Subgoal None” to

describe these lessons. For the Subgoal Prompted lessons, 88.5% of students used the

subgoal blocks at least once. This means that 11.5% of students did not use the

subgoal blocks at all, even though in some of the programming levels, the subgoal

blocks were already pre-populated in the workspace to guide problem solving. Most

students added additional subgoal blocks, and 22% of students added 25–40 more

blocks, meaning that they were frequently using the blocks.

Table 1. Subgoal Block Usage Comparing Instructions That Prompted Students to Use Blocks, Explained

Which Subgoals Were Used But Did Not Prompt Use or Did Neither

An asterisk indicates the number of pre-populated blocks in the workspace.

Table 2. Subgoal Block Usage for Subgoals Introduced in Later Lessons

Table 1 lists the number of subgoal blocks in students’ code for these levels. For

example, in the Subgoal Prompted lessons, the mean number of subgoal blocks used

was 24.5 per lesson, found in the left column. The middle column describes the number

of times students used blocks. The distribution of each level was manually evaluated for

trends to develop the bins that are reported. These trends are reported as the

approximate number of students in parentheses in the middle column. For example, the

number of students who used 1-6 blocks was about 30 for each (i.e., about 30 students

used the blocks once, about 30 students used the blocks twice, etc.). The right column

lists the total percentage of students who are included in the bin. For example, 10% of

students used the blocks 1–6 times. In Table 1, there is a spike for seven subgoal

blocks used, because that is the number of pre-populated subgoal blocks in the

workspace. Therefore, if students used fewer than seven blocks (10% + 12% who used

0 blocks), then they removed blocks; if they used seven blocks (17%), then they did not

add any blocks; and if they used more than seven blocks (61%), then they added some

blocks. Most students added additional subgoal blocks, and 22% of students added 25–

40 more blocks, meaning that they were frequently using the blocks.

Table 3. Subgoal Block Usage for Each Subgoal During Early Lessons When Students Were Prompted to

Use Blocks

An asterisk indicates the number of pre-populated blocks in the workspace.

After the two Subgoal Prompted lessons, no subgoal blocks were pre-populated in the

workspace for the remaining four lessons. For the Subgoal Explained lessons, 38.5% of

students continued to use subgoal comments at least once. The instructions for these

lessons were fairly well defined, and when students faced more open-ended problems

in the Subgoal None lessons, they were more likely to use the subgoal blocks. For the

Subgoal None lessons, 49.3% of students used subgoal comments.

To further explore how students continued to use subgoal blocks after they were

prompted to do so, we examined the use of subgoal blocks that were introduced after

the Subgoal Prompted lessons. “Set pen properties” was introduced in the Subgoal

Explained lessons, and “Write a loop” was introduced in the Subgoal None lessons.

Even though the instructions did not prompt their use, both of these subgoal comments

were used by many students, often multiple times. These results suggest that students

found the subgoal comments useful, because they continued to use them, and started

using new ones, after they were no longer required to (see Table 2).

Table 4. Subgoal Block Usage for Each Subgoal During Middle Lessons When Subgoals Were Explained

But Their Use Was Not Prompted

Table 5. Subgoal Block Usage for Each Subgoal During Later Lessons When Subgoals Were Neither

Explained Nor Prompted

Tables 3–5 show the progression of how individual labels were used among the

Subgoal Prompted, Explained, and None lessons. These data suggest that the number

of students who used many blocks reduced drastically in later lessons, but many

students continued to use blocks occasionally in later lessons.

Fig. 5. Multiple choice question for functional similarity.

Much of the later use of subgoals was in the final lesson that had more complex

programs (e.g., the seascape program in Figure 3) and an open-ended play level. This

usage aligns with the subgoal comment blocks’ purpose to decompose large problem-

solving spaces into smaller pieces that students can focus on yet still be aware of how

smaller pieces contribute to the whole program. The practice of decomposition is critical

in programming, and it is possible that the subgoal comments helped formalize

students’ development of that practice. This conclusion is not supported with the

AppLab data alone; it is further backed up by the surveys that teachers completed (see

Section 4.4).

5.2 Multiple Choice Assessments (Research Question 2)

Our second research question asks what effect the subgoal instructional material had

on assessments, which will be addressed in the next two sections. Throughout the six

interactive lessons of the programming unit, students answered 15 multiple choice

questions. Students who did not answer one of the questions were eliminated from

analysis, which eliminated 1% of the participants from both the subgoal group (final n =

1384) and control group (final n = 6,624). Because the percentage of participants

excluded from analysis is small, attrition was not considered a significant source of

error.

The questions were separated into three types. There were nine knowledge questions

(e.g., “Which of the following is NOT a true statement about functions?” or “What is an

API?”), five perception questions (e.g., “I like computer science,” or “I have the ability to

learn computer science,”), and two similarity questions (i.e., “Which of the following

blocks is least similar to the others?”). The two similarity questions were added by

researchers to both the original unit (being used as a control) and subgoal units to

determine whether subgoal learning encouraged students to recognize functional

similarities among different code blocks. In Figure 5, choices A, C, and D all deal with

moving or drawing with the turtle, and choice B deals with orienting the turtle. Choice C

is the distractor item of the list, because it both moves and changes the orientation of

the turtle. This explanation is not intended to say that B is the only correct answer, but

selecting B would indicate that the students are basing similarity on these functional

features, which are the features that the subgoal labels were intended to highlight.

Given this intent, the similarity data were coded for whether the student selected the

functionally different block, and the coded data were combined into a single score.

Levene’s test (mean) for homogeneity was non-significant despite the large difference in

sample sizes between the groups, so it was considered appropriate to use the entire

sample. In addition, due to the large sample size, the central limit theorem suggests that

the data are normally distributed, which we confirmed with visual inspection of

distributions. Students who learned with subgoal labels were more likely (78% of

participants answered both questions based on functionality) to make similarity

judgments based on functionality than students in the control group (67%), t (8006) =

39.4, p < .001, d = .22. This finding is meaningful, because categorizing blocks by

functionality can help students to transfer their knowledge to novel problem solving [7].

In addition, two-thirds of control group students also judged similarity on functionality,

suggesting that it is a useful categorization scheme. Therefore, the finding that the

subgoal group was more likely to use this categorization suggests that the subgoal

labels helped them to mentally organize blocks in a useful way.

The usefulness of subgoal labels is further supported by examining student responses

to the knowledge-based multiple choice questions. The responses to knowledge

questions were coded for whether the answer was correct or not and summed for a total

correct score. Levene’s test (mean) was again non-significant, so it was considered

appropriate to use the entire sample. Overall, the subgoal group performed better than

the control group, t (8006) = 25.5, p = .001, d = .18; however, an interesting distinction

between questions provides a more nuanced explanation of the difference.

The subgoal group performed better than the control group on questions that asked

about the problem-solving procedure (e.g., “Which of the following statements about

writing functions and top-down design is NOT true?” or “Which line of code should be

removed to make the program do what it’s supposed to?”). In contrast, the two groups

performed equally on questions about declarative knowledge (e.g., “Which of the

following is NOT a valid use of randomNumber?” or “What is a function parameter?”). If

only the four procedure-focused questions are included in the analysis, then the effect

size nearly doubles, t (8006) = 11.1, p < .001, d = .34. This distinction between

procedural and declarative knowledge aligns with the subgoal learning framework,

which is intended to help students learn problem-solving procedures. These data

indicate that, although the subgoal labels improved performance on procedural multiple

choice questions, they did not improve performance on declarative multiple choice

questions.

To explore subgoal labels’ effect on the experience of learning, we examined the five

perception multiple choice questions (listed below), which used a 5-point Likert scale

from Strongly Disagree to Strongly Agree. Overall, the subgoal group more strongly

agreed with the statements than the control group, F (1, 8006) = 3.69, p = .005, η2 =

.01, but again an interesting distinction among questions arose.

The subgoal group agreed more strongly than the control group with questions about

their attitudes about and self-efficacy toward computer science (i.e., “I like computer

science,” “I have the ability to learn computer science,” and “I want to take more

computer science classes in the future.”). In contrast, both groups responded similarly

for questions about their classroom environment (i.e., “I like this computer science

class” and “I feel comfortable in this computer science class.”). If only the three general

questions are included in the analysis, then the effect size increases again, F (1, 8006)

= 5.02, p < .001, η2 = .02. Therefore, the subgoal labels have a positive effect on

students’ general attitudes toward computer science, but they have no effect on their

attitudes toward this specific class.

Based on the authors’ experience with classrooms that use Code.org’s CSP course and

reports from teachers, these findings are likely due to students’ feelings about their local

classroom environment compared to their global feelings about computer science. In

general, the students in CSP like their computer science class and their teacher, and

these attitudes would be difficult to change with a subtle instructional manipulation.

However, the subgoal manipulation might help students feel that they understand the

problem-solving procedure, improving their sense of learning and self-efficacy. These

findings were unexpected, so more research would be needed to explore the effect of

instructional manipulations on local versus global perceptions of computer science.

In general, the effect size between groups for the multiple choice questions was small, d

= .18. As explained in Section 3.1 on data collection sources, we expected a small

effect due to questions’ design to provide formative feedback rather than measure

experimental performance. In addition, this effect size is reasonable for multiple choice

questions, because they inherently include significant error variance. Most of the

multiple choice questions had five choices; therefore, if students randomly selected

answers, then about 20% of them should be correct due to error, which decreases

effect size. Furthermore, we had no experimental control over the classroom

environment whiles students used the materials, meaning various sources of error could

also reduce the effect size. Because some items had a difference between groups on

means and some items had almost exactly the same means between groups, the items

with a difference, even though the effect size is small, represent a consistent,

meaningful difference due to subgoal labels.

5.3 Open-ended Response Assessments (Research Question 2)

To continue to address our research question about the effect of subgoal instructional

materials, we pair multiple-choice assessments with open-ended assessments.

Throughout the six interactive lessons of the programming unit, students answered 18

open-ended response questions. Due to Code.org’s privacy policy, the researchers

could not access original content created by the students. Instead, the researchers were

able to design and run queries that produced data about characteristics and features of

the responses, including total number of characters and counts of keywords. The

keywords selected for analysis were words from the subgoal labels—move, orient,

define, call, function, pen properties, and loop—to examine whether students who

received subgoal labels were more likely to use those words when answering the

questions, indicating that the labels affected their thought processes. Contrary to

expectations, however, there were few differences between the groups in how often

they used the keywords. For the AppLab/Turtle Graphic subgoals (move, orient, and

pen properties), students in either group did not use the words (i.e., each was found

fewer than 20 times). For the programming concept subgoals (define, call, function, and

loop), students in both groups used them at the same rate (i.e., most students used

them once or twice in questions that corresponded to each concept). We forgo a formal

statistical evaluation to preserve space and instead focus on differences between

groups in the total number of characters written.

In addition to previous data cleaning, participants who had 0–4 characters in any of the

18 openended response questions were excluded from analysis. Based on frequency

counts of number of characters for each question, there were several students who had

0–4 characters, indicating a superficial level of engagement with the question, and a

steep drop-off for 5+ characters, which is how this cutoff was chosen. From the subgoal

group, 3% of participants were excluded from analysis for a final n = 1,365, and from the

control group, 2% of participants were excluded for a final n = 6,573. Because the

percentage of participants excluded from analysis is small, attrition was not considered

a significant source of error.

The total number of characters for each of the 18 responses had a mean between 100

and 450, with most between 150 and 250, and different length responses were

appropriate for different questions. To normalize the number of characters across

different questions, z-scores were calculated. Creating z-scores allows for the

responses to be analyzed with a repeated-measures ANOVA. The z-scores exceeding

4 (i.e., 4 standard deviations above or below the mean) would have been removed as

outliers, but none were found. Repeated-measures ANOVA is ideal for this kind of

analysis, because it connects different responses from the same participant together to

disregard much of the personal variance among participants that is not due to the

intervention.

Despite the large difference in sample sizes, Levene’s test (mean) of homogeneity was

not significant for 16 of 18 open-ended response questions, so ANOVA was considered

appropriate. Researchers decided to keep the other two responses in the full analysis

rather than analyze them separately to better account for individual variance, but

responses for these two questions will be discussed in detail. Overall, the subgoal group

wrote more characters per question than the control group, F (1, 7936) = 61.7, p < .001,

η2 = .08.

Calculating an effect size for difference between means, like Cohen’s d or f, is not

possible for repeated-measures, but there were two levels of effect based on inspection

of the results. For eight of the questions, the difference between groups was a smaller

effect of about 15–20 characters— likely 4–5 words. These questions tended to be

about relating computing to everyday experiences, such as the following:

• “Describe the features of a programming language that make it different from

the language you typically use in everyday life. Explain why a programming

language must be created in this way,”

• “This lesson introduced the notion of ‘efficiency’ in programming, and that it

might mean different things at different times. Think of an example outside of

computer science in which you have heard the term ‘efficiency’ and compare it to

the ways we talked about efficiency in programming.”

For another eight of the questions, the difference between groups was a larger effect of

about 30–40 characters—likely 8–10 words. These questions tended to be about

programming knowledge or problem solving, such as the following:

 • “It is said that functions with parameters generalize the behavior of a more

specific command and allow programmers to use functions instead of duplicated

code. Explain what this means to you using the difference between turnLeft() and

turnLeft(angle) as an example,”

• “When breaking a problem down, you often encounter elements that you want

to use repeatedly in your code. Sometimes it’s appropriate to write a new

function; at other times it’s appropriate to write a loop. There is no hard-and-fast

rule as to which is better, but what do you think? What kinds of circumstances

would lead you to writing a function versus using a loop?”

 Similarly to the multiple choice data, the subgoal intervention had a larger effect on

questions related to problem-solving procedures than to other topics. Unlike in the

multiple choice data, the subgoal intervention still had a small effect on the other types

of questions. Because openended response questions are open ended, they are more

sensitive than fixed-response questions to differences between groups. These findings

paired with better performance on the multiple choice questions suggests that the

subgoal group had higher fluency when answering the openended response questions.

This possible explanation is particularly poignant for responses to the two open-ended

response questions that violated Levene’s test.

The two questions that violated Levene’s fell outside of the smaller and larger effect size

groupings. For one question, the subgoal group wrote 102 characters more (M = 451,

SD = 72) than the control group (M = 348, SD = 53) in response to a question presented

in a lesson as practice response to a prompt for the AP Exam Performance Task,

• “Try to write a response to this AP Prompt thinking about either how you

developed the idea for the snowflake drawing program, or how you resolved to

make the 3 × 3 grid program. You might have to use a little bit of imagination to

assume that it’s part of a larger program you created yourself. The point is to

practice writing about your development process.”

Table 6. Course Characteristics of Teachers Who Completed the Survey Course

Characteristics Most common response (% of
respondents)

Mean response

How often does your CSP class
meet per week?

5 times per week (55%) 4.56 times per week

How many weeks long is your
CSP class?

36 weeks (57%) 35.1 weeks

How many contact minutes per
week do you have?

225 minutes (17%) or 250
minutes (16%)

238.6 minutes

About what percentage of
Code.org’s CSP materials do
you use in your class?

>90% (68%) 4.73 (4 = 75–89%, 5 = >90%)

The subgoal group on average wrote about 100 words and 30% more than the control

group, which is likely more appropriate for this kind of complex question than a shorter

answer. Though we cannot qualitatively analyze the students’ responses, we consider

their performance better than the control group on this question, suggesting that

subgoals help students to more fluently express their knowledge.

The subgoal group did not always write more than the control group. For the other

Leveneviolating question, the two groups had only a three-character difference between

means in response to the question,

• “Consider the figure below. Use top-down thinking to design a solution to the

problem. In the space provided write a list of just the names of the functions that

you would write in a program that draws this figure.”

Given the constraints of the question, much variation would not be expected. Therefore,

this exception to the pattern of results suggests that the subgoal group is not more

verbose when they do not need to be. In the other questions, the subgoal group tended

to write more thorough answers to open-ended response questions than the control

group.

5.4 Teacher Perception Survey (Research Question 3)

Our last research question asked how teachers perceived the usefulness of subgoal

instructional materials, which will be addressed in this section. To gain more insight into

the perceptions and uses of the subgoal intervention, we asked teachers who had opted

into the study to complete a survey after they finished the programming unit. In total,

139 teachers completed the survey. Characteristics of their courses are described in

Table 6. Teachers also reported on their students’ demographic characteristics. The

average number of students per teacher (not per class) was 32.65 but varied greatly,

SD = 29, and ranged from 3 to 100. Most students were in 12th grade (39%) or 11th

grade (31%), with a smaller number in 10th (23%) or 9th (6%) and less than 1% in 8th

grade or unknown. The gender composition was 71% boys, 28% girls, and less than 1%

transgender, non-binary, agender, or unknown. Just over half of the students were

White or Caucasian (53%) with smaller percentages of students who were Hispanic or

Latinx (15%), Asian (13%), or Black or African American (11%) and a small percentage

of students who had multiple ethnicities (3%), another ethnicity (1%), or whose ethnic

background was unknown to the teacher (4%).

Teachers were asked, “Please tell us anything that you’d like to share about the

subgoal-oriented programming unit.” Half of the respondents, 71 teachers, responded to

this question. We analyzed these qualitative responses with content analysis to identify

themes. We did not approach the analysis with an a priori coding scheme. Instead, we

looked for common features that emerged from the responses and found six themes.

Multiple teachers commented that the subgoal-oriented materials seemed to particularly

help their students who had less prior knowledge or struggled more with the concepts.

Students were resistant to use sub-goals initially; however, once they realized it

was important to me and their grade was determined by sub-goal use, students

used the sub-goals. From empirical observation, I believe it strengthened weaker

students’ understanding and performance.

 I personally think the subgoals were helpful compared to not having them. It

helped students focus on the point they were supposed to take from each lesson.

“Generally, I thought the subgoal work seemed to help my students to prepare

better for the AP Exam. I think it guided them more slowly through the material,

which was helpful for some of my less experienced students.

In a similar theme, some of the teachers who were teaching CSP for the first time said

that they appreciated having the subgoals.

It was helpful to have the subgoal activities in my first year teaching this course.

I found the subgoals helpful as this is my first year teaching computer science

principles and teaching programming.

These comments suggest that the subgoal-oriented materials were fulfilling the purpose

of the subgoal learning framework to help novices learn problem-solving procedures by

emphasizing the structure of the procedures, which novices tend to overlook. More

advanced learners and more experienced teachers, however, found the subgoal

comment blocks more tedious than helpful, which is the third theme from the analysis.

My class seems to be broken into four groups:

1. Students who used the subgoals moved slowly but really got it by the end

 2. Students who used the subgoals relied heavily upon them and really didn’t

know what they were doing but "completed the task"

3. Students who didn’t use the subgoals initially did poorly, and when prompted

to go back and use them were not superpsyched about it, but their work got

better

4. Students who would fly through with or without the subgoals due to prior

knowledge.

Students with more programming experience found them to not be helpful and

slowed them down, and so it was hard [for] the teacher to show them the value in

it with so much prior experience.

Overall, I liked the added subgoals. However, for the stronger students that really

understand computer science I think it was too much extra information for them

and almost made it more confusing. I also think that it became more reading for

the students and that turned some of them off.

The pat "Orient Turtle" and "Move Turtle" were so vague as to be annoying. I

urged them to edit these phrases to more meaningful phrases right from the start.

Please be advised that I am a retired robotics engineer with more than a million

lines of code to my name.

Recognizing the diminishing usefulness of subgoals in later problem solving, several

teachers recommended fading subgoal comment blocks throughout the unit. This

recommendation aligns with the subgoal learning framework and design of the unit,

which prompted students to use subgoal comment blocks less in later lessons.

[Students] used the subgoals originally, and most of them eventually stopped

using them because they felt like it slowed them down. Now that we’re in Unit 5,

at least one of the students is using the comments feature but calling it

"subgoals." To me that says it’s useful to continue introducing subgoals early so

that they see how it’s helpful for organizing code.

 I think the subgoals were helpful in getting students to organize their thinking;

however, some students thought they were not helpful and created extra steps

they saw as unnecessary. I’d like to see subgoals introduced and used early on

and then as an optional piece later in the unit.

As they moved forward and understood, the students stopped using the

subgoals, because they felt like it slowed them down.

Despite diminishing usefulness for problem solving, many teachers appreciated that the

subgoal comment blocks prompted students to practice writing comments in their code.

I loved the rewritten Unit 3. Great improvement on abstraction / comments /

program documentation.

Even though most students thought the subgoals were kind of "in the way," I

thought they were useful to keep students focused on making good comments of

their own. That is, they weren’t as helpful for learning programming concepts as

much as they were helpful for practicing good documentation.

I LOVED that we were using comments! I sort of wish we would have called them

comments ("Use comments to define sub-goals of your program"). Some

students were confused if they were required for the program to run or if they

were optional. I think I needed to do more modeling of subgoals in class—

especially in the unit performance task. That would have been a good time to

really reinforce that skill. I will be doing that next year.

In addition to practicing using comments, some teachers appreciated that the subgoal

blocks helped their students learn to organize their programs, especially as they worked

on larger projects.

I think the subgoal was a nice structure to help organize their thoughts. But when

students saw that the coding for it was optional work that didn’t actually affect

their final code, they all opted to skip using them after the first couple instances.

And, honestly, while comments are really useful for organizing thoughts and

communicating what is going on to other humans who read your code, students

want to simply focus on the crux of the lesson. Additional work (with no reward)

seems a waste of mental energy to them.

Table 7. Likert-scale Questions Asked to Teachers Who Used Subgoal Blocks

Question Str.
Disagree

Disagree Neutral Agree Str.
Agree

My students found the subgoals in the
activities to be confusing.

26% 28% 23% 22% 3%

My students found the subgoals in the
activities to be helpful.

2% 14% 21% 39% 24%

This year’s students needed more help
during the subgoal-oriented
programming unit than previous year’s
students have needed in the previous
programming unit

29% 34% 27% 9% 1%

This year’s students performed better in
the subgoal-oriented programming unit
than previous year’s students have
performed in the previous programming
unit.

0% 16% 43% 30% 11%

I strongly feel my students benefited from using subgoals, although some of them

found having to use them cumbersome at times. Additionally, I think the use of

subgoals guides students into more organized programmers by including

appropriate comments along with their code.

My co-worker and I work together in CSP. However, her students did not use the

subgoals and my students did. I found that emphasizing the subgoals really

rolled over to emphasizing all the comments that should be used when

programming. Many of my students were in the habit of the subgoals

(comments), which really helped as we began the longer and more abstract

coding.

Of the 71 responses, 32 included only positive feedback about the subgoal redesign,

mostly on the themes of helping less experienced or lower-performing students, helping

less-experienced teachers, practicing commenting, or practicing organization in large

projects. Fourteen of the responses included only negative feedback, including a few

about technical difficulties but mostly on the theme of being tiresome to students with

prior knowledge. The remaining 25 responses either had neutral information, including

four people asking for “Unit 5–Building Apps” to include subgoal blocks, or both positive

and negative information, mostly on the theme of fading the subgoal-oriented materials

throughout the unit.

In addition to providing qualitative feedback, we asked teachers to complete four Likert-

scale (i.e., “1, Strongly Disagree” to “5, Strongly Agree”) questions about the redesigned

unit. Specifically, we wanted to know if the students found the subgoal-oriented

materials or subgoal comment blocks confusing and if the students found them helpful.

In addition, we asked the teachers to compare this year’s students who learned with

subgoals to last year’s students who learned with the previous version of the unit. We

asked them to compare their performance and the level of help they needed during the

unit. For each question, we included an “Unsure” option to avoid a forced choice, which

was excluded when calculating the mean. The distribution of responses is shown in

Table 7.

The first question was, “My students found the subgoals in the activities to be

confusing.” The mean was below the neutral point at 2.54, and only 25% teachers

agreed or strongly agreed with the statement. The teachers who agreed that their

students found the subgoals confusing largely overlapped with the teachers who said

that their students with prior experience found the subgoal cumbersome.

The second question was, “My students found the subgoals in the activities to be

helpful.” The mean was above the neutral point at 3.69, and only 16% of teachers

disagreed or strongly disagreed with the statement. Many of the teachers who gave

feedback that their students with little prior experience or who struggled with the

concepts benefitted from the subgoals also strongly agreed that their students found the

subgoals helpful. To compare this year’s subgoal redesign to the previous design, we

asked teachers to rate the statement, “This year’s students needed more help during

the subgoal-oriented programming unit than previous year’s students have needed in

the previous programming unit.” Many teachers were teaching CSP for the first time,

and 53 marked the “Unsure” option, which largely aligned to teachers who mentioned

being a first-time CSP teacher in the feedback. Of the remaining teachers, the mean

was below the neutral point at 2.61, and only 10% of teachers agreed or strongly

agreed compared to 63% who disagreed or strongly disagreed.

To continue the comparison, we asked teachers to rate the statement, “This year’s

students performed better in the subgoal-oriented programming unit than previous

year’s students have performed in the previous programming unit.” Again, many

teachers (58) marked the “Unsure” option, and of the remaining teachers, the mean was

above the neutral point at 3.48. 41% of teachers agreed or strongly agreed that this

year’s students performed better during this unit than last year’s students, and only 16%

disagreed. None strongly disagreed.

Based on the qualitative and quantitative results from the teacher survey, the subgoal

redesign seemed to be successful, particularly for supporting students who have less

prior knowledge or struggled with the programming unit. For students who had prior

knowledge of programming, however, the subgoals were tedious and likely provided no

value. This finding aligns with the subgoal learning framework, which posits that

subgoal-oriented instruction is most useful for absolute novices and less useful as

learners gain knowledge. Therefore, students who already have experience with

programming before starting CSP’s unit on programming should not be forced to use

the subgoal comment blocks.

For the same theoretical reasons and based on teachers’ recommendations, the focus

on subgoal learning should fade throughout the unit. However, we do not believe that

eliminating the subgoal comments all together in later lessons is the best choice. In the

quantitative data from AppLab about subgoal block usage, we found that students used

the newer subgoal blocks “Set pen properties” and “Write a loop” when they were not

required to, and many students continued to use all subgoal blocks throughout the

lessons, especially during more open-ended tasks. Therefore, while we agree that extra

support, such as subgoal-oriented instruction, should be faded throughout the lesson,

the fading should likely be based on when each individual subgoal is introduced.

Subgoaloriented instruction can continue to be used throughout a lesson, or even for

new units or courses as the quote below suggests, but it should be focused on only new

concepts. Then all subgoal blocks can remain in the environment as a feature to be

used when the student deems them useful.

I liked the sub-goals and am implementing that concept into my intro class and

revisiting it with my AP CSA (JAVA) class.

6 CONCLUSIONS

In this project, we applied the subgoal learning framework to redesign the introduction to

programming unit of Code.org’s CSP course. The redesign included adding subgoal

comment blocks to the AppLab programming environment and using subgoal-oriented

instruction to help students learn the subgoals of programming procedures. The

subgoal-oriented instruction was faded through six lessons within the unit from

prepopulating the workspace with subgoal blocks (two units) to stating the subgoals

required to achieve the solution (two units) to not explicitly stating subgoals but having

the blocks still available (two units).

The redesign was a novel application of the subgoal learning framework in three ways.

First, subgoal-oriented instructions have not been studied in a K-12 setting before, only

in higher education. Second, subgoal-oriented instruction had been used for block-

based programming, but it has not been implemented as comment blocks that students

can use in their code. Third, subgoaloriented instruction had mostly been used for short

instructional sections about 30–45 minutes long, and this implementation took students

multiple weeks to complete.

Regarding the first novel aspect and our research question about subgoals’ efficacy, we

found that subgoal-oriented instruction can be effective in a K-12 setting. Students who

used the subgoal redesigned unit performed better on multiple-choice questions about

procedures and wrote more on the open-ended response questions than students who

used the original version of the unit. In addition, many students who had access to

subgoal comment blocks continued to use those comments blocks after the instructions

no longer prompted them to do so. Based on the teacher survey, the subgoals were

likely most useful for students who had little prior knowledge or struggled with the

concepts and for teachers who had no prior experience teaching CSP. By collecting

data from a large group of learners with diverse learning backgrounds, we also found

that students with substantial prior knowledge found the subgoals more tiresome than

useful. Prior research controlled for prior knowledge [5, 6], so this finding identifies an

important condition for the effective implementation of subgoal learning—that learners

need to be novices.

Regarding the second novel aspect and our research questions about subgoals’ use by

students and teachers’ perceptions, we found that implementing the subgoals as

comment blocks had both benefits and detriments. Though many students found the

blocks useful enough to continue using them without being prompted to do so, many

students also opposed using the blocks and would even remove them if they were

prepopulated in the workspace. From the survey we heard teachers say that their

advanced students found the blocks burdensome from the beginning and that most

students eventually outgrew consistent use of the blocks. An important exception,

however, is that block usage increased when students worked on more open-ended or

collaborative programming tasks. Furthermore, many teachers said that using the

subgoal blocks, even when students did not like to, helped students to practice

commenting their code and helped students who were struggling to complete tasks.

Regarding the third novel aspect and our research question about subgoals’ efficacy,

we found that the differences between the subgoal and control groups did not change

throughout the unit. In the AppLab and teacher survey data, we found that use of

subgoal comment blocks decreased throughout the semester, following the fading of

subgoal-oriented instructions in the lessons. This decrease in subgoal use did not have

a concomitant decrease in the differences between groups on the multiple choice and

open-ended response data throughout all six lessons. The multiple choice and open-

ended response data likely represent formative assessments, and it is possible that

after students study for summative assessments, like exams, the differences between

groups would disappear. If this were the case, like it was in Margulieux et al. [8], then

the subgoal learning framework still has value in supporting students who might

otherwise be at risk of failing or dropping out of the course by integrating additional

guidance with existing instruction and activities. The goal of the subgoal learning

framework is to help novices in the earliest stage of learning so that they can achieve

later stages of learning, and it was successful in this case.

REFERENCES

[1] Robert K. Atkinson. 2002. Optimizing learning from examples using animated

pedagogical agents. J. Educ. Psychol. 94, 2 (2002), 416.

[2] Robert K. Atkinson and Sharon J. Derry. 2000. Computer-based examples designed

to encourage optimal example processing: A study examining the impact of sequentially

presented, subgoal-oriented worked examples. In Proceedings of the 4th International

Conference of the Learning Sciences.

[3] John Bransford. 2000. How People Learn: Brain, Mind, Experience, and School.

National Academies Press.

[4] Richard Catrambone. 1994. Improving examples to improve transfer to novel

problems. Mem. Cogn. 22, 5 (1994), 606–615.

[5] Richard Catrambone. 1996. Generalizing solution procedures learned from

examples. J. Exper. Psychol.: Learn. Mem. Cogn. 22, 4 (1996), 1020.

[6] Richard Catrambone. 1998. The subgoal learning model: Creating better examples

so that students can solve novel problems. J. Exper. Psychol.: Gen. 127, 4 (1998), 355.

[7] Richard Catrambone. 2011. Task analysis by problem solving (TAPS): Uncovering

expert knowledge to develop highquality instructional materials and training. In

Proceedings of the 2011 Learning and Technology Symposium 132–139.

[8] CollegeBoard. 2017. AP Computer Science Principles: Course and Exam

Description. Retrieved March 24, 2019 from http://secure-

media.collegeboard.org/digitalServices/pdf/ap/ap-computer-science-principles-

courseand-exam-description.pdf.

[9] Adrienne Decker, Lauren E. Margulieux, and Briana B. Morrison. 2019. Using the

SOLO taxonomy to understand subgoal labels effect in CS1. In Proceedings of the 2019

ACM Conference on International Computing Education Research. 209–217.

DOI:https://doi.org/10.1145/3291279.3339405

[10] W. Dick, L. Carey, and J. O. Carey. 2011. The Systematic Design of Instruction (8th

ed.). Allyn & Bacon, New York, NY.

[11] Joentausta Johanna and Arto Hellas. 2018. Subgoal labeled worked examples in K-

3 education. In Proceedings of the 49th ACM Technical Symposium on Computer

Science Education. ACM, 616–621.

[12] Juho Kim, Robert C. Miller, and Krzysztof Z. Gajos. 2013. Learner sourcing subgoal

labeling to support learning from how-to videos. In CHI’13 Extended Abstracts on

Human Factors in Computing Systems. 685–690.

[13] Lauren E. Margulieux and Richard Catrambone. 2014. Improving problem solving

performance in computer-based learning environments through subgoal labels. In

Proceedings of the 1st ACM Conference on Learning@ Scale. 149–150.

[14] Lauren E. Margulieux, Richard Catrambone, and Mark Guzdial. 2016. Employing

subgoals in computer programming education. Comput. Sci. Educ. 26, 1 (2016), 1–24.

[15] Lauren E. Margulieux, Mark Guzdial, and Richard Catrambone. 2012. Subgoal-

labeled instructional material improves performance and transfer in learning to develop

http://secure-media.collegeboard.org/digitalServices/pdf/ap/ap-computer-science-principles-courseand-exam-description.pdf
http://secure-media.collegeboard.org/digitalServices/pdf/ap/ap-computer-science-principles-courseand-exam-description.pdf
http://secure-media.collegeboard.org/digitalServices/pdf/ap/ap-computer-science-principles-courseand-exam-description.pdf

mobile applications. In Proceedings of the 9th Annual International Conference on

International Computing Education Research. 71–78.

[16] Lauren E. Margulieux, Briana B. Morrison, and Adrienne Decker. 2019. Design and

pilot testing of subgoal labeled worked examples for five core concepts in CS1. In

Innovation and Technology in Computer Science Education Proceedings, 7.

DOI:https://doi.org/10.1145/3304221.3319756

[17] Briana B. Morrison, Adrienne Decker, and Lauren E. Margulieux. 2016. Learning

loops: A replication study illuminates impact of HS courses. In Proceedings of the 2016

ACM Conference on International Computing Education Research. 221– 230.

DOI:https://doi.org/10.1145/2960310.2960330

[18] Briana B. Morrison, Lauren E. Margulieux, Barbara Ericson, and Mark Guzdial.

2016. Subgoals help students solve parsons problems. In Proceedings of the 47th ACM

Technical Symposium on Computing Science Education. 42–47.

DOI:https://doi.org/10.1145/2839509.2844617

[19] Briana B. Morrison, Lauren E. Margulieux, and Mark Guzdial. 2015. Subgoals,

context, and worked examples in learning computing problem solving. In Proceedings of

the 11th Annual International Conference on International Computing Education

Research. 21–29. DOI:https://doi.org/10.1145/2787622.2787733

[20] Y. Qian, S. Hambrusch, A. Yadav, and S. Gretter. 2018. Who needs what:

Recommendations for designing effective online professional development for computer

science teachers. J. Res. Technol. Educ. 50, 2 (2018), 164–181.

Received May 2019; revised June 2020; accepted July 2020

	Effect of Implementing Subgoals in Code.org's Intro to Programming Unit in Computer Science Principles
	Recommended Citation

	tmp.1648757103.pdf.VDTIB

