12-1-2016

Assessing data quality in citizen science

Margaret Kosmala
Harvard University, kosmala@fas.harvard.edu

Andrea Wiggins
University of Maryland, wiggins@unomaha.edu

Alexandra Swanson
Oxford University

Brooke Simmons
Oxford University

Follow this and additional works at: https://digitalcommons.unomaha.edu/isqafacpub

Part of the [Computer Sciences Commons](https://digitalcommons.unomaha.edu/isqafacpub)

Recommended Citation

Kosmala, Margaret; Wiggins, Andrea; Swanson, Alexandra; and Simmons, Brooke, "Assessing data quality in citizen science" (2016). *Information Systems and Quantitative Analysis Faculty Publications*. 77.
https://digitalcommons.unomaha.edu/isqafacpub/77

This Article is brought to you for free and open access by the Department of Information Systems and Quantitative Analysis at DigitalCommons@UNO. It has been accepted for inclusion in Information Systems and Quantitative Analysis Faculty Publications by an authorized administrator of DigitalCommons@UNO. For more information, please contact unodigitalcommons@unomaha.edu.
Assessing data quality in citizen science

Margaret Kosmala1*, Andrea Wiggins2, Alexandra Swanson3, and Brooke Simmons3,4

Ecological and environmental citizen-science projects have enormous potential to advance scientific knowledge, influence policy, and guide resource management by producing datasets that would otherwise be infeasible to generate. However, this potential can only be realized if the datasets are of high quality. While scientists are often skeptical of the ability of unpaid volunteers to produce accurate datasets, a growing body of publications clearly shows that diverse types of citizen-science projects can produce data with accuracy equal to or surpassing that of professionals. Successful projects rely on a suite of methods to boost data accuracy and account for bias, including iterative project development, volunteer training and testing, expert validation, replication across volunteers, and statistical modeling of systematic error. Each citizen-science dataset should therefore be judged individually, according to project design and application, and not assumed to be substandard simply because volunteers generated it.

The ecological and environmental sciences have been leaders in citizen science, boasting some of the longest-running projects that have contributed meaningful data to science and conservation, including the Cooperative Weather Service (first year of data collection: 1890), the National Audubon Society’s Christmas Bird Count (1900; >200 publications have relied on the resulting dataset), the North American Breeding Bird Survey (1966; >670 publications), the leafing and flowering times of US lilacs and honeysuckles (1956; >50 publications; Rosemartin et al. 2015), and the Butterfly Monitoring Scheme (1976; >100 publications). These and other successful citizen-science projects have increased ecological and environmental knowledge at large geographic scales and at high temporal resolution (McKinley et al. 2015). Specific advances include improved understanding of species range shifts, phenology, macroecological diversity and community composition, life-history evolution, infectious disease systems, and invasive species dynamics (Dickinson et al. 2010; Bonney et al. 2014).

Despite the wealth of information generated and the many resulting scientific discoveries, citizen science arouses skepticism among professional scientists. The root of this skepticism may be that citizen science is still not considered a mainstream approach to science (Riesch and Potter 2014; Theobald et al. 2015). Alternatively, some professionals may believe that unpaid volunteers (hereafter, simply “volunteers”) are not committed or skilled enough to perform at the level of paid staff. Professional scientists have questioned the ethics of partnering with volunteers (Resnik et al. 2015), the “motives and ambitions” of the volunteers themselves (Show 2015), and their ability to provide quality data (Alabri and Hunter 2010). The primary fear is that science and policy might be derived from unreliable data, since the quality of data produced by volunteers has long been a concern (Cohn 2008; Dickinson et al. 2010, 2012).

In a nutshell:
- Datasets produced by volunteer citizen scientists can have reliably high quality, on par with those produced by professionals
- Individual volunteer accuracy varies, depending on task difficulty and volunteer experience; multiple methods exist for boosting accuracy to required levels for a given project
- Most types of bias found in citizen-science datasets are also found in professionally produced datasets and can be mitigated using existing statistical tools
- Reviewers of citizen-science projects should look for iterated project design, standardization and appropriateness of volunteer protocols and data analyses, capture of metadata, and accuracy assessment

1Department of Organismic and Evolutionary Biology, Harvard University, Cambridge, MA *(kosmala@fas.harvard.edu); 2College of Information Studies, University of Maryland, College Park, MD; 3Department of Physics, University of Oxford, Oxford, UK; 4Center for Astrophysics and Space Sciences, Department of Physics, University of California–San Diego, San Diego, CA

© The Ecological Society of America

www.frontiersinecology.org
Because citizen science as a whole is often perceived as questionable science, even project results using high-quality data can be difficult to publish and are often relegated to educational or outreach portions of journals and conferences (Bonney et al. 2014). Many published peer-reviewed papers obscure the fact that citizen-science data are being used by mentioning a project or database by name and citation only or by consigning the methods to supplementary materials (Cooper et al. 2014). Further, some people believe that citizen science is worth more for its educational potential than for the science it can produce (Cohn 2008; Wiggins 2012). These views have made it challenging for scientists to obtain funding for potentially transformative citizen-science projects (Wiggins 2012), and project leaders often find it easier to obtain “experimental” startup funding than ongoing operational support for long-term projects (Wiggins and Crowston 2015).

Here we examine data quality practices across a wide range of ecological and environmental citizen-science projects and describe the most effective methods used to acquire high-quality data. We discuss current challenges and future directions in ensuring high-quality data. Our hope is that citizen-science projects will be judged on their methods and data stewardship as a whole and not simply on whether volunteers participated in the process (Panel 1).

What constitutes high-quality data?

The concept of data quality is multi-dimensional, consisting of more than a dozen possible non-exclusive metrics (Pipino et al. 2002). Some metrics are task-dependent, such as timeliness of data for a particular question or objective. Other measures focus on data management practices, including the provision of relevant metadata. We focus on two objective task-independent measures of data quality that prompt the most skepticism among professional ecologists and environmental managers: accuracy and bias (Panel 1). Accuracy is the degree to which data are correct overall, while bias is systematic error in a dataset.

Quality of data produced by professionals

A reasonable definition of high-quality data for citizen science is data of comparable accuracy and bias to that produced by professionals and their trainees (Bonney et al. 2014; Cooper et al. 2014; Theobald et al. 2015). However, few projects evaluate the accuracy and bias of professionally produced data within the same contexts as volunteer-produced data. Furthermore, much ecological data has a degree of subjective interpretation so that observations of the same sample or site vary when performed by multiple professionals or the same professional at different times.

Comparisons of data between two or more professionals can demonstrate substantial variation. For instance, percentage cover estimates of intertidal communities made in 0.25-m quadrats showed just 77.3% to 86.6% similarity (Bray-Curtis measure) between professionals (Cox et al. 2012). In Sweden’s National Survey of Forest Soils and Vegetation, observer identity explained nearly 20% of variance in vegetation percentage cover estimates in 100-m² plots (Bergstedt et al. 2009). The Australian Institute of Marine Science Long-Term Monitoring Program considers newly trained professionals to be proficient once their classifications of coral reef organisms (Figure 2a) reach 90% agreement with those of established professionals (Ninio et al. 2003). In wildlife population surveys, multiple observers increase transect-survey quality because of imperfect detection by single observers (Cook and Jacobson 1979). For example, under ideal conditions, single experienced observers in Alaska recorded only 68% of known moose present in aerial surveys (LeResche and Rausch 1974).

Even for observations where the correct answer is more concrete, professionals sometimes make mistakes. Experts examining trees in urban Massachusetts agreed on species identifications 98% of the time and on tree condition 89% of the time (Bloniarz and Ryan 1996). In one study recording target plant species, professionals had an 88% accuracy rate (Crall et al. 2011). Experts identifying large

Figure 1. The past decade has seen a rapid increase in citizen-science projects and volunteers. (a) Number of projects (a) listed on the citizen-science project directory website SciStarter and (b) created by the citizen-science portal Zooniverse (blue) and number of Zooniverse-registered volunteers (red).
African animal species from images in Snapshot Serengeti were found to have an accuracy of 96.6%, with errors due largely to identification fatigue and data-entry error (Swanson et al. 2016).

Because data produced by professionals and other experts can contain error and bias, comparisons between volunteer and professional data must be careful to distinguish between inter-observer variability and variability due to status as a professional or volunteer. We should also not expect the accuracy of individual volunteers to be higher than that of individual professionals.

Quality of data produced by volunteers

Despite differences in background and experience from professional ecologists, volunteers can perform at the same level for particular data gathering and processing tasks, with variation depending on task difficulty and volunteer experience. Rates of 70–95% accuracy are typical for species identification across a diverse array of systems and taxa (Gardiner et al. 2012; Fuccillo et al. 2015; Swanson et al. 2016). Volunteers’ accuracy varies with task difficulty (Table 1). For Snapshot Serengeti, volunteers were better at identifying iconic mammals such as giraffe and zebra than at identifying less familiar mammals such as aardwolf and a set of easily confused antelope species (Swanson et al. 2016). In anuran call surveys (Figure 2b), volunteers’ accuracy varied widely with species (Weir et al. 2005). The Monarch Larva Monitoring Project (Figure 2c) found reliable identification of 5th instar larvae, but not 1st and 2nd instar larvae (Prysby and
In identifications of plant species, volunteers had an 82% accuracy rate for identification of “easy” species, but just a 65% accuracy rate for “hard” ones (Crall et al. 2011). Volunteers could more reliably identify street trees (Figure 3a) to genus (94% accuracy) than to species (79%) (Bloniarz and Ryan 1996). Determining a crab’s species (Figure 3b) was easier (95% accuracy for seventh graders) than determining its sex (80% accuracy for seventh graders) (Delaney et al. 2008). Kelling et al. (2015) identified differences in bird detection (Figure 3c) and identification rates by volunteers for species that are secretive, hard to distinguish visually, or best identified by sound.

Volunteers often improve in accuracy as they gain experience with a project. New Snapshot Serengeti participants had an average of 78.5% accuracy, but most individuals who had classified hundreds of images had accuracies over 90% (Swanson et al. 2016). In the French Breeding Bird Survey, observers counted 4.3% more birds per hour after their first year of observation (Jiguet 2009), and an analysis of the North American Breeding Bird Survey also found a first-year effect (Kendall et al. 1996). Models relying on species accumulation curves to assess the performance of volunteers revealed that bird species detection and identification abilities improved with cumulative experience (Kelling et al. 2015).

Techniques for producing high-quality ecological citizen-science data

Effective methods for acquiring high-quality citizen-science data vary based on the type of data being created and the resources available to the project. In general, they are similar to the procedures used by professionals (Panel 2; Wiggins and Crowston 2015). The following techniques are used by existing projects to increase the quality of citizen-science data. Successful projects typically use multiple techniques.

Iterative development of task and tool design

Iterative refinement of tasks and tools for volunteers is often a critical step in project development (Crall et al. 2010). The Great Sunflower Project progressively reduced the duration of observations of pollinator service, and expanded the range of plant target species,
making the tasks more accessible without compromising data quality (Wiggins 2013). Mountain Watch saw a reduction in errors for hikers’ observations of alpine plant phenology (Figure 4a) when tasks and data sheets were changed to specify plots where the species were known to be present rather than at volunteer-selected locations along a trail (Wiggins 2013). The Virginia Save-Our-Streams program shifted from a presence-only protocol to a count-based protocol when analyses showed that the original protocol resulted in poor data quality that consistently overrated stream condition (Engel and Voshell 2002).

Volunteer training and testing

Perhaps the most obvious approach for improving data quality is to train volunteers or to require prequalification via a skills test. The Monarch Larva Monitoring Project provides an intensive training program of 4- to 11-hour workshops for volunteers and focuses on long-term engagement. Field observations and analyses of volunteer data suggest that trained and engaged volunteers produce data of similar or higher quality than hired field assistants (Prysby and Oberhauser 2004). Similarly, in monitoring tropical resources, local volunteers who received training over 2–3 days in addition to shorter, annual refresher training produced data of similar quality to that of professional scientists (Danielsen et al. 2014). Training may occasionally be self-initiated by volunteers. The Breeding Bird Survey, for example, relies on skilled birders, who have gained their expertise over a lifetime of bird watching (Sauer et al. 2013).

Ongoing training can be beneficial. BeeWatch volunteers are provided with ongoing feedback on their bee species identifications, based on professional validation of their photographs, and this feedback increases both volunteer accuracy and retention (van der Wal et al. 2016). Just-in-time training can sometimes be undertaken in conjunction with project tasks. Snapshot Serengeti provides initially untrained volunteers with a set of guiding filters, which allows them to learn likely species identifications based on a target animal’s morphological traits (Swanson et al. 2016). Similarly, eBird assists its volunteers with dynamically generated data-entry forms that list the most common birds for a volunteer's given location and time, increasing both volunteer awareness of the local species and data quality (Sullivan et al. 2014). Stardust@home uses known “seeded” images for ongoing assessment and provides feedback to volunteers on their success rate so that they may voluntarily try to improve their accuracy (Westphal et al. 2006).

Use of standardized and calibrated equipment

Standardization of measurement tools and collection of instrument calibration data are common strategies for promoting high-quality data and typically mirror established professional techniques. The CoCoRaHS precipitation monitoring network requires a standardized and reliable rain gauge (Moon et al. 2009). Many

Figure 2. Citizen-science data types are numerous. For example, (a) the Australian Institute of Marine Science Long-Term Monitoring Program collects percent cover data on coral reefs, (b) the North American Amphibian Monitoring Program identifies the vocalizations of amphibians such as the southern leopard frog (Rana sphenocephala), and (c) the Monarch Larva Monitoring Project counts larvae of the monarch butterfly (Danaus plexippus).
Panel 2. Data capture and data classification

We distinguish between data capture (collection and observation) and data classification (the interpretation of raw data into an analyzable form). An example of data capture is the collection of insects by pitfall trap. The corresponding data classification is the determination of their taxonomic identifications. These two steps are frequently conducted concurrently by professionals (eg percentage cover estimates), but separating the process into discrete tasks allows better control over statistical analyses of data error. In citizen-science projects, volunteers may conduct data capture, data classification, or both.

Volunteer capture, professional classification: Volunteers collect samples and send them to professionals for analysis. This method is typically employed to gather data at large spatial scales and when laboratory methods are required.

Examples: Clean Air Coalition of Western New York, Lakes of Missouri Volunteer Program, American Gut

Professional capture, volunteer classification: Professionals select subjects to evaluate, but lack capacity to classify all subjects. Projects that use large volumes of digital images produced by cameras set up by experts fall into this category. Examples: Snapshot Serengeti (camera traps), Floating Forests (satellite imagery), Season Spotter (automated near-Earth cameras).

Volunteer capture and classification: Volunteers collect samples, make observations, or set up automated collection devices. They also classify the observations, samples, or vouchers. Examples: Project FeederWatch, eBird, eMammal, Monarch Larva Monitoring Project, Nature’s Notebook.

Replication and calibration across volunteers

Some projects require multiple independent volunteer measurements of each subject to improve data quality. Projects on the Zooniverse platform show each digital voucher to multiple volunteers, and all resulting classifications are combined into a “consensus” answer. For instance, each image in Snapshot Serengeti (eg Figure 4c) is shown to 5–25 volunteers and its consensus answer is the plurality of identifications from all volunteers. Consensus improved accuracy from 88.6% to 97.9% over single classifications (Swanson et al. 2016).

When replication for all data points is not practical, calibration across volunteers using targeted replication allows for statistical control of data quality. In Mountain Watch, volunteers collect data at fixed locations as well as at self-selected locations, with trained staff also reporting data from the fixed plots; this permits verification of observations from volunteers against those of staff naturalists. The fixed plots also allow for statistical normalization across volunteers, and additional logger data from these plots provide covariates for data analysis (Wiggins 2013). Another calibration technique involves injecting professionally classified (eg Stardust@home; Westphal et al. 2006) or artificially generated (eg Planet Hunters; Schwamb et al. 2012) vouchers into voucher sets given to volunteers for classification in order to evaluate ongoing volunteer performance.

Skill-based statistical weighting of volunteer classifications

Methods are emerging for weighting volunteer classifications based on individual characteristics, such as skill level. For projects with multiple classifications per captured datum, volunteer skill can be assessed via frequency of agreement with other volunteers. For
Snapshot Serengeti data, weighting increased consensus accuracy from 96.4% to 98.6% (Hines et al. 2015). In cases where there is only one classification per captured datum, skill can be assessed by testing or other means. The observation skill of eBird users was assessed using species accumulation curves, and when skill was incorporated into bird species distribution models, model accuracy increased for approximately 90% of the 120 species tested (Kelling et al. 2015).

Accounting for random error and systematic bias

Data produced through citizen science may contain error and bias, but existing statistical and modeling tools can mitigate these errors and biases to produce meaningful inference. A common concern is that citizen-science data is too “noisy” – ie it has too much variability. For some projects, collecting a sufficiently large amount of data may be adequate to reduce non-systematic error in volunteer-produced data through the law of large numbers (Bird et al. 2014). eBird data accumulate at the rate of millions of observations monthly (Sullivan et al. 2014), and the resulting range maps and temporal distribution patterns concur with professional knowledge (Wiggins 2012). Similarly, with more than 750,000 individual reports, the US Geological Survey’s “Did You Feel It?” program yields highly accurate measures of earthquake strength when compared with readings from ground sensors (Atkinson and Wald 2007).

Many of the systematic biases in citizen-science data are the same biases that occur in professionally collected data: spatially and temporally non-random observations (biased by things such as time of day or week, weather, and human population density; eg Courter et al. 2013), non-standardized capture or search effort, under-detection of organisms (Elkinton et al. 2009; Crall et al. 2011), confusion between similar-looking species, and the over- or under-reporting of rare, cryptic, or elusive species as compared to more common ones (Gardiner et al. 2012; Kelling et al. 2015; Swanson et al. 2016). Because these biases are also found in professional ecological research, many methods have been developed for statistically controlling for and modeling them, as long as the relevant metadata are recorded (Bird et al. 2014).

The only known bias specific to citizen science is the potentially high variability among volunteers in terms of demographics, ability, effort, and commitment. Modeling characteristics that vary among volunteers such as age, previous experience, formal education, attitudes, and training methods may increase data reliability, although the magnitude of the effect may be project- or task-dependent (Galloway et al. 2006; Delaney et al. 2008; Crall et al. 2011). Bird et al. (2014) thoroughly described existing statistical methods – such as generalized linear

Figure 3. Citizen-science data are collected at multiple spatial scales. For example, (a) Bloniarz and Ryan (1996) had volunteers inventory urban trees such as the red maple (Acer rubrum) in a single neighborhood, (b) volunteers helped Delaney et al. (2008) identify species of crustaceans such as this invasive shore crab (Carcinus maenas) along the Atlantic coast from New Jersey to Maine, and (c) volunteers all across the US participate in eBird to record birds such as the American yellow warbler (Setophaga petechia).
models, mixed-effect models, hierarchical models, and machine learning algorithms – that can be used to properly analyze large and variable datasets produced by citizen-science projects.

Challenges and the future of high-quality citizen-science data

Technology is rapidly developing that will facilitate the implementation of best practices for high-quality citizen-science data, but challenges in project technologies and data management still remain. Online resource sites (e.g., Cornell’s Citizen Science Toolkit, US Federal Crowdsourcing and Citizen Science Toolkit), platforms for building online citizen-science projects (e.g., Zooniverse Project Builder, CrowdCrafting), and data-entry tools for field data (e.g., iNaturalist, CitSci.org, iSpot) are making it easier than ever to build citizen-science projects with online components. Yet research in the field of human–computer interaction is beginning to demonstrate direct and indirect impacts of online project and technology design on volunteer performance (Bowser et al. 2013; Eveleigh et al. 2014), and more such research is needed. The next generation of multipurpose data-entry platforms should allow for customized data constraints and real-time outlier detection to reduce data-entry error. Repositories to support terabyte-scale multimedia voucher sets are also increasingly needed (e.g., McShea et al. 2015). Other technological challenges include unreliable mobile device GPS performance, the need for offline functionality in mobile devices, issues of usability and accessibility, and user privacy protections (Bowser-Livermore and Wiggins 2015; Wiggins and He 2016).

Additional research is required on the application of existing statistical and modeling tools to citizen-science datasets, as these datasets sometimes present additional challenges (Bird et al. 2014). Currently, analyses of complex citizen-science data often require custom solutions developed by professional statisticians and computer scientists, using high performance or cloud computing systems (e.g., Yu et al. 2010; Hochachka et al. 2012) – resources that are not available to most projects. Generalizable and scalable methods to analyze variable spatiotemporal datasets will be increasingly valuable, and borrowing techniques from other fields may prove beneficial. The information science field has developed sophisticated methods for combining categorical classifications across multiple observers (e.g., Wozniak et al. 2014). Similarly, the social sciences have developed reliability and aggregation metrics that can be adapted to accommodate heterogeneous volunteer data. In the computer science field, optimal crowdsourcing has commercial applications, prompting new human computation journals and conferences (e.g., the journal Human Computation, the AAAI Human Computation conference). Task allocation algorithms, in particular, have the potential to improve both data quality and project efficiency by routing content to the best individuals (Kamar et al. 2012).
Conclusions

As citizen science continues to grow and mature, we expect to see a heightened awareness of data quality as a key metric of project success. Appropriate metrics of data quality compare data produced by volunteers against similar data produced by professionals, and distinguish inter-observer variability from variability due to observer experience. Evidence from across a diverse range of task types and study systems shows that volunteers can produce high-quality data, and that accuracy is particularly high for easy tasks and for experienced volunteers. High-quality data can be produced using a suite of techniques, and investment in additional research and technology has the potential to augment these techniques and make them more broadly accessible. We suggest that Panel 1 be used as a guide by citizen-science evaluators, project creators, and data users as a standard to gauge data quality. As we face grand challenges related to global environmental change, citizen science emerges as a general tool to support policy and resource management, conservation monitoring, and basic science.

Acknowledgements

MK was supported by a grant from the National Science Foundation, through the Macrosystems Biology Program (award EF-1065029). BS acknowledges support from Balliol College, Oxford, and the National Aeronautics and Space Administration (NASA) through Einstein Postdoctoral Fellowship Award Number PF5-160143 issued by the Chandra X-ray Observatory Center, which is operated by the Smithsonian Astrophysical Observatory for and on behalf of NASA under contract NAS8-03060.

References

