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COMPOSITION OPERATORS AND A PULL-BACK MEASURE FORMULA

VALENTIN MATACHE

A pull-back measure formula obtained in some particular cases by E. A. Nord-
gren and this author is generalized in the framework of boundary measures for
zero-free Nevanlinna class functions on the unit polydisk. The formula is used
to characterize the zero-free Nevanlinna class functions which are solutions of
Schröder’s equation induced by a polydisk automorphism φ (i.e. to determine
the zero-free functions f belonging to the Nevanlinna class which are solutions
of the functional equation f ◦ φ = λf , for some constant λ), thus generalizing
earlier results obtained by R. Mortini and this author.

1. INTRODUCTION

Our aim is to derive a formula that describes how certain measures on the dis-
tinguished boundary of the unit polydisk are transformed under composition by a proper
holomorphic self-map of the polydisk. Let U denote the unit disk in C and T its boundary,
the unit circle. For n a positive integer, we consider the measures on Tn associated with
the Nevanlinna class N(Un). By definition N(Un) consists of those holomorphic functions
f on Un such that log+ |f | has an n-harmonic majorant in Un. For each such f , the least n-
harmonic majorant of log |f | in Un is equal to the Poisson integral of a uniquely determined
real Borel measure βf on Tn, called the boundary measure of f , [1] and [8]. The Poisson
kernel for Un will be denoted by P . We recall that P is a function on Un×Tn. Its value at
(z, w) is the product of the Poisson kernels for U evaluated at the respective coordinates of
z and w.

We shall be concerned with the relation between βf and βf◦φ when f is a zero-free
Nevanlinna class function, and φ is a proper holomorphic self-map of Un. The latter means
that each of the coordinate functions φj is a finite Blaschke product depending on exactly
one of the variables z1, . . . , zn, and no two such coordinate functions depend on the same
variable; see also [8, Theorem 7.3.3]. We note that if f ∈ N(Un) and φ is proper, then
automatically f ◦ φ ∈ N(Un).

THEOREM If f ∈ N(Un) is zero-free and φ is a proper holomorphic self-map of Un, then

(1) dβf◦φφ
−1(w) = P (φ(0), w)dβf (w).



In the preceding formula, the measure on the left side is the pull-back of βf◦φ under φ,
the measure whose value on any Borel set E is βf◦φ(φ−1(E)). The proof of the theorem
will consist of checking that the measures involved in equality (1) have identical Fourier
coefficients. The second section of this paper is dedicated to the proof.

Special cases of the theorem have appeared before. When n = 1 and f is the
constatnt function f ≡ e, the theorem reduces to a result of E.A.Nordgren [7]. When n = 1
and f is a singular inner function, the theorem reduces to a previous result of the author
[5]. Now we wish to prove an immediate consequence of the theorem. First let us recall that
the functional equation

(2) f ◦ φ = λf

is called Schröder’s equation. In equation (2) λ denotes a fixed complex number.

COROLLARY If φ is a polydisk automorphism, then a zero-free function f ∈ N(Un) is
a solution of Schröder’s equation for some constant λ if and only if βfφ

−1 << βf and the
Radon-Nykodim derivative dβfφ

−1/dβf equals P (φ(0), w).

PROOF. By [1, Theorem 2.2], a zero-free function f ∈ N(Un) is a solution of Schröder’s e-
quation if and only if βf◦φ = βf . Since φ is an automorphism, this is equivalent to (βf◦φ)φ−1 =
βfφ

−1 which by the theorem above happens if and only if dβfφ
−1(w) = P (φ(0), w)dβf (w).

This corollary is a generalization of [5, Theorem 3.2], which says that a singular
inner function Sν is an eigenfunction of a composition operator Cφ whose symbol φ is a disk
automorphism if and only if d(νφ−1)(w) = P (φ(0), w)dν(w) . In that paper this author gave
examples of such singular measures ν on T for the disk automorphism ϕ(z) = (2z+1)/(z+2);
see [5, Example 3.4]. To build another simple example, on the bidisk this time, let’s consider
Sν as above, denote by λ1 the eigenvalue of Cϕ corresponding to the eigenfunction Sν ,
consider another singular inner eigenfunction Sµ of Cϕ corresponding to the eigenvalue λ2

and construct now the bidisk automorphism φ(z1, z2) = (ϕ(z1), ϕ(z2)). Clearly f(z1, z2) =
Sµ(z1)Sν(z2) is an eigenfunction of Cφ corresponding to the eigenvalue λ = λ1λ2. Therefore
its boundary measure βf will satisfy the condition described in the corollary. This fact can
be also obtained as a direct consequence of [5, Theorem 3.2]. Indeed, observe that

dβf (w) = (−dµ)× (dm1)(w) + (dm1)× (−dν)(w) w = (w1, w2) ∈ T2.

Now, by [5, Theorem 3.2], one obtains that dβfφ
−1(w) = P (φ(0), w)dβf (w). Earlier than

[5], R. Mortini obtained particular results in the same direction. In [6] he characterized
the singular inner functions induced by discrete, singular Borel measures on T that are
eigenfunctions of a hyperbolic composition operator.

2. THE PULL-BACK MEASURE FORMULA

This section is dedicated to proving the theorem. In order to make the proof easier to
read we need three preliminary lemmas. We begin by introducing some necessary notations.



For any z = (z1, z2, . . . , zn) ∈ Cn, and any k = (k1, k2, . . . , kn) ∈ Zn, we denote zk =
zk1

1 z
k2
2 . . . zknn , whenever the product makes sense. By |k| we mean |k| = |k1|+ |k2|+ . . .+ |kn|.

The notation z̄k means z̄k = z̄k1
1 z̄

k2
2 . . . z̄knn . For any λ ∈ C and any k ∈ Z, λ̃k will denote λk if

k ≥ 0, respectively λ̄|k| if k < 0. For any z ∈ Cn and any k ∈ Zn we denote z̃k = z̃k1
1 z̃

k2
2 . . . z̃knn .

It is both easy and useful to observe that if w = (w1, w2, . . . , wn) ∈ Tn and k ∈ Zn, then
w̃k = wk. For any Borel measure µ on Tn, and any k ∈ Zn, ck(µ) designates the Fourier
coefficient of µ of index k, i.e.

ck(µ) =
∫

Tn
w̄kdµ(w).

For absolutely continuous measures f(w)dmn(w), we write ck(f) instead of ck(f(w)dmn(w)).
For each function f on Un and each r, 0 < r < 1, fr designates the function on Tn given by
fr(w) = f(rw), w ∈ Tn. Finally, for each complex Borel measure µ on Tn, Pµ denotes its
Poisson integral.

LEMMA 1 Let µ be any complex Borel measure on Tn, u = Pµ, and k ∈ Zn, k =
(k1, k2, . . . , kn). For each fixed r, 0 < r < 1,

(3) ck(ur) = r|k|ck(µ).

PROOF. Recall first that for each v, w ∈ Tn, and r, 0 < r < 1, we have

P (rv, w) = P (rw, v) =
∑
j∈Zn

r|j|w̄jvj

and the series converges absolutely and uniformly as w, v ∈ Tn. Therefore we can write

ck(ur) =
∫

Tn
u(rv)v̄kdmn(v) =

∫
Tn

∫
Tn
P (rv, w)v̄kdµ(w)dmn(v) =

∫
Tn

∫
Tn

∑
j∈Zn

r|j|w̄jv(j−k)dmn(v)dµ(w) =

∑
j∈Zn

r|j|
∫

Tn
w̄j
(∫

Tn
v(j−k)dmn(v)

)
dµ(w) = r|k|

∫
Tn
w̄kdµ(w) = r|k|ck(µ)

since
∫
Tn v(j−k)dmn(v) = δjk.

For any k ∈ Zn, k = (k1, . . . , kn), we denote by φ̃k, the function
φ̃k(z) = φ̃k1

1 (z)φ̃k2
2 (z) . . . φ̃knn (z), z ∈ U

n
. By a previous observation, if φ(z) ∈ Tn, then

φ̃k(z) = φk(z). Suppose now that φ is a self-map of Tn with the property that there is
N > n/2 such that for each j = 1, 2, . . . , n, φj ∈ CN(Tn).

LEMMA 2 For any real Borel measure µ on Tn, any φ as above, and any k ∈ Zn,

(4) ck(µφ
−1) =

∑
s∈Zn

cs(µ)c̄s(φ
k)

and the convergence in (4) is absolute.



PROOF. By [3], pp. 163 and the fact that µ is real we have

ck(µφ
−1) =

∫
Tn
w̄kdµφ−1(w) =

∫
Tn
φk(w)dµ(w).

Now φ ∈ CN(Tn) so, by [10, Ch. VII, Corollary 1.9], φk has absolutely summable Fourier
coefficients, and one is allowed to integrate its Fourier series termwise with respect to µ.
One obtains

ck(µφ
−1) =

∑
s∈Zn

cs(φk)c̄s(µ) =
∑
s∈Zn

cs(µ)c̄s(φ
k).

The sequence {cs(φk)}s∈Zn is absolutely summable, and the sequence {cs(µ)}s∈Zn is bounded,
so the convergence in (4) is absolute.

In the next lemma we calculate the Fourier coefficients of βf◦φ.

LEMMA 3 If f ∈ N(Un) is zero-free, and φ is a proper holomorphic self-map of Un, then
for each k ∈ Zn

(5) ck(βf◦φ) =
∑
s∈Zn

cs(βf )ck(φ
s),

and the series in (5) converges absolutely.

PROOF. Since f ◦ φ is a zero-free Nevanlinna class function, log |f ◦ φ| is n-harmonic,
because there is some holomorphic h such that f ◦ φ = exp(h) and hence log |f ◦ φ| = Reh.
We deduce that log |f ◦ φ| = Pβf◦φ and, by the same kind of argument, log |f | = Pβf . By
Lemma 1 we can write

(6) ck(βf◦φ) = r−|k|ck(log |f ◦ φ|r)

for any r, 0 < r < 1. Let’s recall that the Poisson kernel is

(7) P (z, w) =
∑
s∈Zn

z̃sw̄s

and the convergence in (7) is absolute and uniform with respect to w ∈ Tn if z stays in any
fixed compact subset of Un. Integrating (7) with respect to dβf (w) one gets

log |f(z)| =
∑
s∈Zn

z̃scs(βf )

so
log |f ◦ φ(rw)| =

∑
s∈Zn

cs(βf )φ̃
s(rw)

with absolute and uniform convergence as w ∈ Tn if r is fixed. So one can multiply the
equality above by w̄k, integrate termwise the resulting series dmn, and get

ck(log |f ◦ φ|r) =
∑
s∈Zn

cs(βf )
∫

Tn
φ̃sr(w)w̄kdmn(w) =



∑
s∈Zn

cs(βf )ck(φ̃
s
r),

and the convergence above is absolute. On the other hand, one can easily see that

ck(φ̃
s
r) = r|k|ck(φ

s)

so
r−|k|ck(log |f ◦ φ|r) =

∑
s∈Zn

cs(βf )ck(φ
s)

which by (6) concludes the proof.

Denote by < ., . > the inner product in L2
Tn(dmn). We are ready to prove formula

(1).

PROOF. For any fixed k ∈ Zn we can write

ck(βf◦φφ
−1) =

∑
s∈Zn

cs(βf◦φ)c̄s(φ
k) =

∑
s∈Zn

∑
t∈Zn

ct(βf )cs(φ
t)c̄s(φ

k) =
∑
t∈Zn

ct(βf )

∑
s∈Zn

cs(φ
t)c̄s(φ

k)

 =

∑
t∈Zn

ct(βf ) < φt, φk >=
∑
t∈Zn

ct(βf )φ̃
t−k(0).

Above we used Lemmas 2 and 3, and the fact that

< φt, φk >=
∫

Tn
φt(w)φ̄k(w)dmn(w) =

∫
Tn
φt−k(w)dmn(w) = φ̃t−k(0),

since each component of φ is an inner function, holomorphic on an open neighbourhood of
U
n
, and depending on exactly one variable without repetition. Substitute now z by φ(0) in

(7), multiply by w̄k and integrate dβf (w). One obtains

ck(P (φ(0), w)dβf (w)) =
∑
t∈Zn

ct(βf )φ̃t−k(0),

so the measures βf◦φφ
−1 and P (φ(0), w)dβf (w) have identical Fourier coefficients.

The assumption that φ is proper seems pretty restrictive at first glance. Let’s
observe that it is essential, because if one drops it, formula (1) is not true any more, as one
can see from the following example.

EXAMPLE Let f ≡ e and φ(z1, z2) = (z1, z1), (z1, z2) ∈ U2. Formula (1) is not true for
this choice of f and φ.

PROOF. Let’s observe that f ◦ φ ≡ e, so both f and f ◦ φ are zero-free Nevanlinna class
functions, and φ leaves U2 invariant, so the only missing assumption in the hypothesis of



the theorem is the fact that φ is proper. It is obvious that βf = βf◦φ = m2. Therefore
βf◦φφ

−1 = m2φ
−1 and P (φ(0), w)dβf (w) = m2. These measures are different because they

have different Fourier coefficients. Indeed, c(1,−1)(m2) = 0 but

c(1,−1)(m2φ
−1) =

∫
T2
w̄1w2dm2φ

−1(w) =
∫

T2
w̄1w1dm2(w) = 1 6= 0
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