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ENTROPY ANALYSIS OF BOOLEAN NETWORK REDUCTION

ACCORDING TO THE DETERMINATIVE POWER OF NODES

MATTHEW PELZ AND MIHAELA T. MATACHE
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Omaha, NE 68182-0234, USA
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Abstract. Boolean networks are utilized to model systems in a variety of disciplines. The

complexity of the systems under exploration often necessitates the construction of model

networks with large numbers of nodes and unwieldy state spaces. A recently developed,

entropy-based method for measuring the determinative power of each node offers a new

method for identifying the most relevant nodes to include in subnetworks that may facil-

itate analysis of the parent network. We develop a determinative-power-based reduction

algorithm and deploy it on 36 network types constructed through various combinations of

settings with regards to the connectivity, topology, and functionality of networks. We con-

struct subnetworks by eliminating nodes one-by-one beginning with the least determinative

node. We compare entropy ratios between these subnetworks and the parent network and

find that, for all network types, the change in network entropies (sums of conditional node

entropies) follows a concave down decreasing curve, and the slightest reductions in net-

work entropy occur with the initial reductions which eliminate the nodes with the least

determinative power. Comparing across the three network characteristics, we find trends

in the rates of decrease in the entropy ratios. In general, the decline occurs more slowly in

networks with degree values assigned from a power-law distribution and canalyzing func-

tions of higher canalization depth. We compare results of the determinative-power-based

reduction with those of a randomized reduction and find that, in forming subnetworks

with maximal network entropy, the determinative-power-based method performs as well

as or better than the random method in all cases. Lastly, we compare findings based on

this conditional-entropy-based calculation of network entropy with those of an alternative

calculation using simple sums of (independent) node entropies to demonstrate the vast

differences resulting from the two approaches.

Keywords: Boolean networks, biological information theory, mutual information, determinative

power, Shannon entropy, network reduction, numerical simulations
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1. Introduction

The application of mathematical network modeling techniques in the analysis of dynam-

ical real-world systems has expanded with the growth of computational capacity. The ben-

efits of Boolean network modeling and other mathematical approaches are enticing. Such

models are more contained and often cleaner, safer, and less expensive to implement than

physical experiments. Yet the reliance on network models introduces a couple of substan-

tial challenges. First, informed network initialization in terms of connectivity, topology,

and functionality is crucial. Inappropriate choices with regards to any of these settings

could render a simulation irrelevant. Second, despite advances in computational power,

large networks continue to push the limits of our capacities. Consequently, the identifica-

tion of methods for simplifying networks while retaining their essential characteristics is a

pertinent area of research. In this study, we explore a method for reducing large networks

to their most relevant nodes. We demonstrate a reduction algorithm based on a previously

developed measure termed determinative power and deploy the algorithm on a variety of

network types to evaluate impacts under various conditions.

Researchers in multiple disciplines have found Boolean networks to be useful in modeling

complex systems. Developed most famously through the work of Stuart Kauffman [1],

Boolean networks feature interconnected nodes, which take on binary values such as 0 or 1,

on or off, or true or false, along with rules that define how nodes process information from

one or more inputs upon repeated iterations. The definitions in Sections 1 and 2 are

taken from Pentzien et al. [9].

Definition 1. A Boolean network includes a set {X1, X2, . . . , XN} of N nodes and a

set {f1, f2, . . . , fN} of N functions with one or more inputs from among the N nodes, such

that each node Xi takes a binary value based on the function fi governing its behavior upon

iteration. If Xi = 0 the node is considered to be off and if Xi = 1 the node is considered to

be on.

Definition 2. Each node Xi of a Boolean network has a set {Xi1 , Xi2 , . . . , XiK}, 1 ≤ i1 <

i2 < . . . < iK ≤ N of K associated inputs. The value of K is the node’s connectivity.

Then, for each i ∈ {1, 2, . . . , N}, the node Xi is assigned the Boolean function

fi(Xi1 , Xi2 , . . . , XiK ). Assuming synchronous updating for all network nodes, i.e. all
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nodes update at the same time, then for each node Xi and iteration or time step t,

Xi(t + 1) = fi(Xi1(t), Xi2(t), . . . , XiK (t)), using the notation Xi(t) to denote the state

of the node Xi at time t. Then the vector (X1(t), X2(t), . . . , XN (t)) represents the state of

the network at time t.

Boolean approaches have been adopted in modeling genetic regulatory networks [2–5],

signal transduction in cells [6], and neural networks [7]. In a study of the gene expression

network of the Drosophila embryo, Albert et al. [8] found that Boolean models represented

the real-world network as accurately as models that permitted more complicated, non-binary

values.

The study of Boolean networks tends to focus on behavioral patterns in four network

characteristics. First, the size of the network, designated by the number of nodes N ,

provides an upper limit on its scale and overall complexity. Second, the connectivity K

has substantial impacts on the dynamics of the network, particularly in regards to the

periodicity and stability of orbits. The value of K can be fixed so that each node has the

same number of inputs or it can represent the average of a variable connectivity. A third

network characteristic, topology, is especially important for networks in which K varies.

Each node has associated in-degree and out-degree attributes describing the number of

inputs the node receives (in) and the frequency with which it serves as an input for other

nodes (out). The topology of a network is described by the distributions of degree values,

and the differences among these distributions substantially impact the network dynamics.

The fourth characteristic governing network behavior is functionality. Boolean functions

may be homogeneous across all nodes of the network, meaning that all nodes obey the same

function, or they may vary.

One recent project modeling signal transduction in a fibroblast cell exemplifies the com-

putational burdens that emerge in large Boolean networks [9]. The model incorporates 130

nodes and, consequently, the state space has 2130 configurations. Every configuration could

serve as a potentially interesting set of initial conditions, one which we might like to inves-

tigate by iterating the network hundreds or even thousands of times. Characterization of

the behavior of this network according to associated mathematical functions would benefit

from an investigation of the truth tables of the nodes, which unfortunately grow in size

exponentially as in-degree values increase. As researchers strive to make models as realistic
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as possible, network sizes and maximum in-degree values are certain to increase. We can

easily foresee a 1000-node model in which several nodes have in-degrees of at least 20 and

truth tables with over a million entries each.

Researchers manage the challenges inherent in large, complex network models by utilizing

analytical and simulative tools that do not require a comprehensive accounting of network

dynamics for every configuration in the state space. Multiple strategies involve the reduction

of the network through the elimination of nodes. With each node removed from the parent

network, the size of the state space of the resulting subnetwork is halved. In this context,

the development of criteria for selecting nodes for elimination is a central concern. One

approach relies on the identification and elimination of frozen nodes, those that reach a

fixed value and remain there for any number of network iterations, along with nodes that

serve as inputs only for frozen nodes [10–12]. Related strategies involve the removal of

leaf nodes, those with zero outputs, and mediator nodes, those with exactly one input and

one output [13–15]. The common goal behind these approaches is the summarization of a

network according to its attractors and stable states [16].

A second, complementary strategy for network reduction emphasizes the role that nodes

play in information propagation. This strategy also has ramifications for network stability

as research has supported the conjecture that information propagation and stability are

intertwined [17]. Heckel et al. [19] built upon work by Ribeiro [20] to develop a method

for quantifying each node’s determinative power based on measures of Shannon entropy.

Matache and Matache [21] used this method to analytically show that knowledge of the

states of nodes with the highest determinative power reduces the entropy of the parent

network significantly. Other research projects [22, 23] have focused on the reducibility of

networks not restricted to Boolean structures. In addition, the entropy of the relevant

components of the network which are comprised of relevant nodes that eventually influence

each other’s state was used as a measure of uncertainty of the future behavior of a random

state of the network by Krawitz and Shmulevich [24, 25]. Shreim et al. [26] suggest that

the basin entropy may be a relevant and robust signifier of criticality, irrespective of the

specific dynamics. The authors of [26] find that both classical random Boolean networks

and asynchronous random Boolean networks exhibit a basin entropy that increases with

system size only for critical networks. This suggests that superuniversal features exist for
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the fluctuations in the structure of the state space of random Boolean networks, and these

are invariant with respect to the specific dynamics.

In the present study, we explore relationships between information and subnetwork size

for various network types. If we generate subnetworks by eliminating nodes with the least

determinative power, what are the ratios between the network entropies of the subnetworks

and those of the parent networks? We will label these ratios “sub-to-parent entropy ratios.”

As we eliminate nodes with the least determinative power, generating smaller and smaller

subnetworks, how rapidly do sub-to-parent entropy ratios decline for different types of

networks? If the ratios are declining gradually then the subnetwork can capture most of

the variability intrinsic to the parent network.

To explore these questions, we implement the determinative-power-based reduction al-

gorithm of [9] on 36 different network types. We compare results with respect to each

of the three network characteristics, connectivity, topology, and functionality, and identify

trends suggestive of patterns in information retention. We compare sub-to-parent entropy

ratios resulting from this determinative-power-based reduction algorithm with similar ra-

tios resulting from a randomized reduction process. We find that, in all cases, the slightest

decreases in sub-to-parent entropy ratios occur with the first node eliminations and that

the entropy ratios decrease more slowly when using the determinative-power-based reduc-

tion method, thus preserving better informational and variability attributes of the network.

In general, the decrease is most gradual in networks with topologies assigned by power-law

distributions and outputs determined by canalyzing functions. The value of average connec-

tivity K appears to be significant only in networks with topologies generated from Poisson

distributions, in which cases lower K values are associated with more gradual decreases

in sub-to-parent entropy ratios. Finally, we compare these findings, generated through

a conditional-entropy-based calculation of network entropy, with an alternate calculation

based on an aggregation of the node entropies within a network. We find that the shapes

of the sub-to-parent entropy ratio curves change drastically between the two methods, sug-

gesting that the choice of entropy measurement is pivotal in assessing the extent to which

node reduction impacts information measures.

The paper is structured as follows. In Section 2 we review the mathematical background

for the determinative power of nodes. Then, in Section 3, we describe the choices regarding
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the network characteristics. The construction of the subnetworks and computational details

are provided in Section 4, which is followed by the results of the numerical simulations in

Section 5. We conclude with a summary of the findings and directions for further research

in Section 6.

We find that for all network types, initial node reductions produce the small-

est change in sub-to-parent network entropy. This result provides evidence that

determinative power can be a useful tool in identifying subnetworks reflective

of parent networks.

2. Determinative Power

The concept of determinative power quantifies the importance of each node in governing

the state of the network as a whole. It offers an understanding of the extent to which a

reduction in uncertainty of the state of a particular node reduces the uncertainty of the state

of the network. Foundations of the determinative power measure date to 2008, when Ribeiro

et al. [20] explored how concepts from the field of information theory could be employed

in the calculation of each node’s contributions to uncertainty in the network. Their work

focused on Shannon entropy, referred to here simply as entropy, along with related concepts

conditional entropy and mutual information.

Definition 3. Denote as X a discrete random variable and as p(x) = P (X = x) its

associated probability mass function. In the general case, the entropy of X is defined as

H(X) = −
∑
x

p(x) log2 p(x)

If we confine our consideration of entropy to its application to Boolean networks, where Xi

represents a node that can take only binary values, we can offer a more precise definition:

H(Xi) = −p(0) log2 p(0)− p(1) log2 p(1)

If p(0) = 0 or 1, then H(Xi) = 0 by definition.

Definition 4. Consider two discrete random variables X and Y . The conditional en-

tropy of Y given knowledge of X is defined as

H(Y |X) = −E [log2 P (Y |X)] = −
∑
x,y

P (Y = y,X = x) log2 P (Y = y|X = x).



ENTROPY ANALYSIS OF BOOLEAN NETWORK ... 7

Using knowledge of the conditional entropies, we can calculate the reduction in the uncer-

tainty of nodes given knowledge of the states of their inputs.

Definition 5. The mutual information (MI) of a random variable Y with respect to

another random variable X is the reduction in the uncertainty of Y given knowledge of X.

MI(Y ;X) = H(Y )−H(Y |X)

For example, if X is the only input for Y , then

MI(Y ;X) = H(Y ).

If X is not an input for Y , then

MI(Y ;X) = 0.

In principle, mutual information is a measure of the “gain of information”, or the deter-

minative power of X over Y . Mutual information is useful in the analysis of real-world

complex networks, as demonstrated by a 2013 study of a siesmicity model. [18]

In 2013, Heckel et al. [19] adapted the work or Ribeiro et al. [20] on entropy, conditional

entropy, and mutual information to define determinative power as a measure of the mutual

information of X with respect to all nodes of the network.

Definition 6. The determinative power (DP) of a node Xj is the reduction of uncer-

tainty of the network given knowledge of the state of Xj. More precisely, the DP of the node

Xj is given by a summation of the MI over all outputs of node Xj, namely

DP (j) =
n∑

i=1

MI(Xi;Xj).

Heckel et al. [19] applied determinative power analysis to the regulatory network of E. coli

cells and found that knowledge of a small subset of nodes with the highest determinative

power reduces the uncertainty and the size of the state space significantly. Matache and

Matache [21] confirmed the general finding analytically. In 2018 Pentzien et al. [9] examined

36 models created in the Cell Collective network modeling platform (www.cellcollective.org,

[27, 28]). They calculated determinative power and performed biological function analysis

for each network. The authors found that “a large fraction of the most determinative

nodes are essential and involved in crucial biological functions.” The finding established
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a connection between theoretical determinative power computations and the behavior of

real-world networks.

3. Network Types

The behavior of networks depends to a great extent on the interactions of three charac-

teristics: connectivity, topology, and functionality. In studying random Boolean networks,

in which functionality and topology are randomly generated to approximate real-world phe-

nomena, Kauffman [29] found that differences in the values of K have substantial impacts

on network stability. Wherever 3 ≤ K ≤ N , networks exhibit chaotic behavior. Near

K = 2, networks exhibit some order and demonstrate robustness against perturbations.

Such networks are considered to exist in the critical phase. Due in part to their robustness,

biological systems are believed to operate in the critical phase [17]. In the current study,

we explore networks with K values equaling or approximating 2, 3, and 4. In each case, K

represents the average of a variable connectivity rather than a fixed degree value. Exam-

ination of these three values is sufficient to identify a possible trend in how choices of K

impact sub-to-parent entropy ratios.

The topology of a network–the arrangement of its connections–can vary widely in dif-

ferent network types. Previous research has identified and applied three topologies useful

in creating Boolean models of real-world systems. The Watts-Strogatz or “small-world”

model incorporates the localized clustering that tends to occur in social networks [30]. The

Barabási-Albert or “scale-free” model mimics the occurrence of “hubs”–nodes with very high

degree values–that characterizes many real networks including the world wide web [31,32].

A third topology, the Holme-Kim model, combines elements of the small-world and scale-

free models [33]. These three topologies are defined primarily by specific network-wiring

algorithms and by the resulting distribution of degree values. The Watts-Strogatz model

yields degree values with a Poisson distribution while the Barabási-Albert and Holme-Kim

models share a power-law distribution.

Recently, Wacker et al. [34] provided an in-depth correlation analysis between determi-

native power and two topological measures, the clustering coefficient and the betweenness

centrality of nodes. The authors found that for smaller size networks, determinative power

seems to be strongly correlated to the betweenness centrality and weakly or very weakly
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correlated to the clustering coefficient, depending on the underlying topology. The Barabási-

Albert and Holme-Kim topologies lead to fairly similar results, while the Watts-Strogatz

networks generate a different type of behavior. Apparently, the existence of hubs in the

network may be more important than the clustering of the nodes as far as determinative

power is concerned. The work in [34] has inspired the choices of topologies in this research.

To explore a broad variety of network types we assign degree values from uniform, Pois-

son, or power-law distributions. The latter two cases serve as approximations of the Watts-

Strogatz model (Poisson) and the Barabási-Albert and Holme-Kim models (power-law). All

networks constructed and examined are directed, meaning that the input-output relation-

ships between nodes are not necessarily reciprocal. To simplify the network initialization

process, we stipulate that the in-degree value must equal the out-degree value for each node.

For example, if a node has five inputs it must have five outputs. Assignments of the inputs

and outputs are performed by separate random processes. We also stipulate that each node

has at least one input and that self-inputs are not permissible.

With regards to functionality, research indicates that two categories of unate functions are

common in naturally occurring systems [19]. First, canalyzing functions, in which the value

of one particular input can determine the output regardless of the values of other inputs, are

believed to be essential in biological systems [29]. Nested canalyzing functions (NCFs), a

subcategory of functions in which multiple inputs have the potential to determine the output

according to their position in an input hierarchy, appear to be particularly common [35,36].

In NCFs, the depth d of canalyzation is a distinguishing parameter. For example, consider

a node with four inputs. If two of those inputs are canalyzing, then d = 2 and the function

is considered to be partially nested canalyzing. Alternatively, if d = 4, then the function is

fully nested canalyzing.

Research has found that while network stability increases as d increases, only a few

degrees of depth are necessary to mimic the behavior in real-world systems [35, 36]. With

this in mind, our study explores canalyzing functions of depths 1 and 2. In our d = 1

function, one canalyzing input in an on position turns the output node on in the next

iteration. Where d = 2, the function is nested canalyzing. A first canalyzing input in the

on position turns the output node on. If the first input is off, a second canalyzing input

in the on position turns the output node on. If the number of inputs is greater than d
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and no canalyzing inputs are in the on position, then our function determines the output

value according to an unbiased random function analagous to a coin flip. These choices

simplify our approach and make computations manageable. Future research will consider

other types of canalyzing functions.

A second function type explored here concerns thresholds or “switches.” Wittman et

al. [37] argue that threshold functions are the “least common denominator” of biologically

meaningful update rules. These functions toggle the output if the combined input values

reach a specified threshold. A function may have both canalyzing and threshold charac-

teristics. For instance, consider a node that has two inputs, either of which will toggle an

output of on if its input is on. The function associated with this node can be seen as having

both canalyzing depth of 2 and as having a threshold of 0.5. There are other cases in which

the principles of canalyzation and thresholds diverge. Inputs in threshold functions do not

strictly adhere to a hierarchy that characterizes canalyzing functions. The present study

explores two functions with threshold values of 0.5 and 0.25. If the proportion of a node’s

inputs in the on position is above the threshold, the node turns to on in the next iteration.

Our study includes 36 networks featuring every combination of the parameter settings

outlined above, including three K values, three topologies, and four functions. Because

the total number of network types increases exponentially with each additional parameter

setting, we limit the choice of settings to include only those most likely to reveal suggestive

patterns. We hold network size N constant at 100 across all cases.

4. Network Models and Reduction Algorithm

For all networks listed in Tables 1-A and 1-B, network initialization, reduction, calcula-

tion, and visualization was completed using the R programming language.1 In this section,

we provide a step-by-step explanation of the initialization, calculation, and reduction pro-

cedures. The visualization and discussion of the results are included in Section 5.

4.1. Initialization. The initialization process is consistent across all 36 network types.

For each type, we fix parameter settings and create 50 networks of size N = 100 and each

network is wired randomly per the specified topology setting. A summary matrix with 50

1In addition to base R, the project utilized the following packages: actuar, BoolNet, data.table, dplyr,

ggplot2, permute, poisson, poweRlaw. reshape2, tibble, and tidyr
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columns and 100 rows is associated with each network type. The summary matrix stores

the sub-to-parent entropy ratios calculated after each node elimination.

The entropy and mutual information calculations performed during the project rely on

data found in the truth tables that define functional logic. To facilitate simultaneous calcu-

lations across all nodes of the network, truth tables for each node are “stacked” to form a

single truth table matrix. If we denote as m the largest degree value of any node, then the

Table 1-A. The first half of the list of 36 studied network types. The

network types represent all combinations for three selected settings for K,

three selected topologies, and four selected functions (two canalyzing and

two threshold).

Network

Type
Average K

Topology

Distribution
Function

1 2 uniform threshold = 0.5

2 2 uniform threshold = 0.25

3 2 uniform canalyzing d = 2

4 2 uniform canalyzing d = 1

5 2 power-law threshold = 0.5

6 2 power-law threshold = 0.25

7 2 power-law canalyzing d = 2

8 2 power-law canalyzing d = 1

9 2 Poisson threshold = 0.5

10 2 Poisson threshold = 0.25

11 2 Poisson canalyzing d = 2

12 2 Poisson canalyzing d = 1

13 3 uniform threshold = 0.5

14 3 uniform threshold = 0.25

15 3 uniform canalyzing d = 2

16 3 uniform canalyzing d = 1

17 3 power-law threshold = 0.5

18 3 power-law threshold = 0.25
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Table 1-B. The second half of the list of 36 studied network types. The

network types represent all combinations for three selected settings for K,

three selected topologies, and four selected functions (two canalyzing and

two threshold).

Network

Type
Average K

Topology

Distribution
Function

19 3 power-law canalyzing d = 2

20 3 power-law canalyzing d = 1

21 3 Poisson threshold = 0.5

22 3 Poisson threshold = 0.25

23 3 Poisson canalyzing d = 2

24 3 Poisson canalyzing d = 1

25 4 uniform threshold = 0.5

26 4 uniform threshold = 0.25

27 4 uniform canalyzing d = 2

28 4 uniform canalyzing d = 1

29 4 power-law threshold = 0.5

30 4 power-law threshold = 0.25

31 4 power-law canalyzing d = 2

32 4 power-law canalyzing d = 1

33 4 Poisson threshold = 0.5

34 4 Poisson threshold = 0.25

35 4 Poisson canalyzing d = 2

36 4 Poisson canalyzing d = 1

truth table matrix will have m + 2 columns: one column identifying the node by index (1,

2,...,100), m columns specifying the values of various input nodes, and one column defining

the output based on the setting of the function parameter. By stacking truth tables in this

manner, we technically associate with each node an m x m truth table and, consequently,

the stacked truth table matrix has m x 100 rows. However, m is the maximum degree value

and the nodes with degree values (connectivities) less than m do not use a truth table of
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this size. If we denote as n the degree value for any node such that n ≤ m, then for each

truth table matrix column associated with input indices n + 1, n + 2, ...,m, an input value

of NA is assigned in all rows. The same procedure is performed in rows n + 1, n + 2, ...,m

so that each node has non-NA input values only in its associated n x n truth table.

In each of the four function types explored in the project, values in each row of the output

column are generated through calculations involving input values located in the same row.

For example, in the case of the 0.25 threshold function, if the mean of the input values in

a row is greater than or equal to 0.25, the output column in that row is set equal to 1. All

calculations ignore NA entries. We describe in detail this initialization method since it is

preferred for its facilitation of iterative calculations and summations of conditional entropies

across entire networks.

4.2. Entropy calculations. By stacking truth tables for all nodes into a single truth table

matrix, we simplify the administration of the formulas presented in section 2 to produce

determinative power measurements. To find mutual information for any relevant node

pairing {Xi;Xj}, where Xj is an input to Xi, we need to know six probabilities, each of

which is readily available via the stacked truth table matrix.

P (Xi = 1) and P (Xi = 0)

P (Xi = 1|Xj = 0) and P (Xi = 0|Xj = 0)

P (Xi = 1|Xj = 1) and P (Xi = 0|Xj = 1)

Of course, not all of these values need to be computed from the truth tables due to the

basic rules of probability.

We also assume that the networks are ergodic, that is all states of the network are equally

likely. Thus, any initial state of the network used in simulations has the same probability

of being chosen from the collection of all possible states. To find the mutual information

quantities used in the determinative power we employ the following formula from [21] and [9]:

MI(Xi;Xj)

= h

 ∑
x∈supp fi

p(x)

− P (Xj = 1)h

 ∑
x∈supp fi

P (X = x|Xj = 1)
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−P (Xj = 0)h

 ∑
x∈supp fi

P (X = x|Xj = 0)


where X = (X1, X2, . . . , XN ) with states x = (x1, x2, . . . , xN ) ∈ {0, 1}N , and supp fi =

{x : fi(x) = 1}. Although fi(x) in this formula is considered a function of the state of the

entire network, only the relevant inputs are actually of interest in the computations, namely

{xi1 , xi2 , . . . , xiK}, 1 ≤ i1 < i2 < . . . < iK ≤ N as in Definition 2.

A companion matrix contains topology information linking the input indices in the truth

table matrix to the input nodes designated randomly according to the distribution param-

eter setting. Using the companion matrix, we calculate the determinative power of Xj

by summing the mutual information MI(Xi;Xj) across all i. We store the determinative

power for each node and arrange them in ascending order so that the most determinative

node is in the 100th row.

Before initializing the node reduction process, we calculate the network entropy of the

parent network by adapting the chain rule for entropy, provided by Cover and Thomas [38] as

H(X1, X2, ..., Xn) =
∑N

i=1 H(Xi|Xi−1, ..., X1). The authors in [38] show that “the entropy

of a collection of random variables is the sum of conditional entropies.” For the Boolean

network context, in which the network nodes serve as the collection of random variables, we

take into account the one-step conditional entropy corresponding to the one-step iteration

of the network, or equivalently, to the Boolean functions associated with the nodes. We

modify the formula as follows:

Definition 7. The network entropy is given by

H(X1, X2, ..., Xn) =
N∑
i=1

N∑
j=1

H(Xi|Xj).

4.3. Reduction. Using a list of node indices ordered by determinative power, we reduce

the network one node at a time beginning with the least determinative node. Denote the

node to be removed as Xa. We “knock out” Xa, meaning that we freeze it in the off position,

by redefining certain entries in the truth table. This approach follows the procedure used in

Cell Collective for analysis of biological networks. First, we redefine the function associated

with Xa so that the output is 0 in all cases. Next, wherever Xa serves as an input for

another node, we define the output as NA because these cases are no longer possible.
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Table 2. Examples of the node reduction process in simplified network.

The stacked truth table matrix on the left defines the logic for each of three

nodes in the network. In the truth table matrix on the right, X2 is knocked

out, meaning that all of its output values are set to 0 and wherever it serves

as an input with value 1, the output is set to NA.

Node

Index

Input

1

Input

2
Output

1 0 NA 0

1 1 NA 1

2 0 0 0

2 1 0 1

2 0 1 1

2 1 1 1

3 0 0 0

3 1 0 1

3 0 1 1

3 1 1 1

Node

Index

Input

1

Input

2
Output

1 0 NA 0

1 1 NA 1

2 0 0 0

2 1 0 0

2 0 1 0

2 1 1 0

3 0 0 0

3 1 0 1

3 0 1 NA

3 1 1 NA

Table 2 demonstrates how this node reduction is represented in the stacked truth table

matrix. In this example, a simplified network uses a 0.5 threshold function to define outputs.

In a companion topology matrix (not shown), we declare that

X1(t + 1) = f1(X3(t)), X2(t + 1) = f2(X1(t), X3(t)), X3(t + 1) = f3(X1(t), X2(t)).

Notice in the truth table on the left that the Input 2 columns for X1 are defined as NA

because this node only has a single input. In the matrix on the right, we knock out X2.

The bolded entries show where changes are made as a result. All outputs in the X2 truth

table are set to 0. And because the topology matrix defines X2 as the second input for X3,

wherever Input 2 equals 1 in the X3 truth table, the output is set to NA.

After altering the truth table matrix, we recalculate conditional entropies across all net-

work nodes and sum the values as demonstrated in section 4.2 to find the entropy of the

subnetwork. We divide the subnetwork entropy by the parent network entropy to find a
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sub-to-parent entropy ratio. We store this ratio in the summary matrix. We repeat the

knock-out procedure on the node with the least determinative power of all remaining nodes

until no nodes remain. Where two nodes have equal determinative power values, they are

ordered randomly. The truth table matrix is never reset to its original state, so all alter-

ations to the matrix and consequent changes in ratios of entropies are cumulative. With

each reduction, the resulting entropy ratio is stored in the summary matrix. We obtain a

sequence R(N), R(N −1), . . . , R(1) of sub-to-parent entropy ratios starting with the parent

network and ending with the network reduced to the most determinative node. We repeat

this procedure for each network scenario under consideration.

To account for the variation between simulations with various random initial states we

consider a Monte Carlo approach. We repeat the initialization, calculation, and reduction

procedures 50 times for each network type and all ratios of entropies are added to one

summary matrix. The columns of the summary matrix correspond to the 50 networks

generated and the rows correspond to the 100 reductions performed on each network. More

precisely, given a generic network type, we construct the matrix

R =


R1(N) R2(N) . . . R50(N)

R1(N − 1) R2(N − 1) . . . R50(N − 1)
...

...
...

R1(1) R2(1) . . . R50(1)


where Ru(v) is the sub-to-parent entropy ratio corresponding to the random initial state

u ∈ {1, 2, . . . , 50} and the subnetwork with v ∈ {1, 2, . . . , N} nodes. As part of the Monte

Carlo procedure, we average the row values to find the mean sub-to-parent entropy ratios

associated with each subnetwork size, that is

R̄ =

(
1

50

50∑
k=1

Rk(N)
1

50

50∑
k=1

Rk(N − 1) . . .
1

50

50∑
k=1

Rk(1)

)T

where T stands for transposed. We plot the mean values. After gathering figures for all

network types, we compare trends in entropy ratios across the various network settings.

To assess more thoroughly the utility of the determinative-power-based reduction algo-

rithm described above, we prepare a control data set using a random reduction procedure

for each network type. We follow the same initialization, calculation, and reduction steps
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with only one exception. Rather than selecting knock-out nodes according to their de-

terminative power, we choose them at random. Comparison of the resulting ratio plots

offers insights concerning how the impacts of determinative-power-based reduction vary for

different network types.

Finally, we repeat the entire procedure replacing the conditional-entropy-based calcula-

tion of network entropy with a node-entropy-based measure. This means that, rather than

summing conditional entropies across the entire network, we simply calculate the entropies

of each node and sum them across the network assuming the nodes act independently. More

precisely, we define the aggregated network entropy as follows.

Definition 8. The aggregated network entropy is given by

AH(X1, X2, ..., Xn) =

N∑
i=1

H(Xi).

The results constitute the aggregated node entropies of the network. Just as we did

with the conditional-entropy-based network entropy measure, we compare the aggregated

node entropies of the parent network with those of each subnetwork to create a sequence of

entropy ratios which we then graph to identify patterns across network settings. We compare

patterns found in the aggregated node entropy graphs with those found in the network

entropy graphs to identify commonalities and discrepancies between the two approaches.

We note here that for computational purposes we have limited our analysis

to a maximum network size of N = 100, yet the reduction algorithm represents

basically an exercise of creating subnetworks iteratively, and could be considered

a study of the impact of network size despite de fact that the determinative

power of nodes is inherited from the previous parent network.

5. Results

In total, the research included initialization and reduction of 144 networks: 36 measured

by network entropy and reduced according to determinative power, 36 measured by net-

work entropy (Definition 7) and reduced randomly, 36 measured by aggregated node entropy

(Definition 8) and reduced according to determinative power, and 36 measured by aggre-

gated node entropy and reduced randomly. We begin by focusing on networks measured by

network entropy. The plots reveal that as reductions increase from 0 to 100, corresponding
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to a decrease of subnetwork size from 100 to 0, sub-to-parent entropy ratios for all network

types and both reduction methods follow a curve with a shape that is either generally con-

cave down decreasing or nearly diagonal. Figure 1 demonstrates the curve shapes using

examples from two network types.

Across all network types, the slightest changes in ratios of entropies tend to occur with

the initial node reductions. However, as we see in Figure 1, the slope of the curves varies for

different network types. By comparing the curves corresponding to each setting across the

three network characteristics of connectivity, topology, and functionality, we gain insights

into how relationships between entropy and subnetwork size differ for various network types

when using the determinative-power-based reduction method.

5.1. Connectivity. Figure 2 shows compares the shapes of entropy ratios curves with

relation to K across all tested combinations of topologies and functions. The plots show

that for networks with topologies generated from uniform and power-law distributions,

changes in the value of K have minimal effect on sub-to-parent entropy ratios since the

graphs are very close to each other. In networks with topologies generated from Poisson

distributions, however, lower K values are associated with higher sub-to-parent entropy

ratios. In this case, for subnetworks of all sizes, the highest sub-to-parent entropy ratios

are found in K = 2 networks. Put another way, when comparing subnetworks of similar

sizes, K = 2 subnetworks have greater entropy ratios than those with higher K values.

The difference is greatest between reductions 25 and 75, corresponding to subnetworks with

between 25 and 75 nodes.

Another interesting observation in Figure 2 are the inflection points where the graphs

change concavity and potential plateaus are occurring as seen in the plots associated with

power-law-distributed topologies. Each of the 12 curves associated with power-law distribu-

tions reveals a similar structure with two inflection points. The phenomenon is most easily

recognized in the plots associated with switch functions. Examination of the summary

matrices associated with each network types reveals that the networks with power-law-

distributed topologies go through periods in which their sub-to-parent entropy ratios are

“frozen” across multiple network reductions (plateaus). This means that even as nodes

are reduced, the sum of conditional entropies across the network remains unchanged. This

would happen whenever the mutual information between a reduced node and all other nodes
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Figure 1. Example plots of sub-to-parent entropy ratios showing the char-

acteristic curve shapes formed as subnetwork size decreases. Each curve

represents average ratio values for 50 networks. The plot on the left, rep-

resenting a network (type 5 in Table 1-A) with an average connectivity of

K = 2, degree values drawn form a power-law distribution, and a using a

homogeneous threshold = 0.5 function, depicts a concave decreasing down

curve. The plot on the right, representing a K = 4 network drawn from a

Poisson distribution and adhering to a canalyzing function of depth 1 (type

36 in Table 1-B), shows a curve closer to the diagonal. Both entropy ratio

curves are generated using the network entropy measure of Definition 7.

of the subnetwork equals 0, so that no further information is gained or lost with the re-

duction of that node. Note that these inflection points occur between the 40th and 80th

reductions, meaning that each of the relevant node reductions involves a node with initial

determinative power measurements high enough to rank it between 20 and 60 among all

100 nodes of its respective network. Thus, the node’s logic almost certainly contributes to

the sum of conditional entropies of the parent network (the network entropy). However, by

the time the node is reduced, preceding node reductions have reduced these conditional en-

tropies to 0, and the node has no effect on subnetwork entropy. Additional research should
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Figure 2. A plot of sub-to-parent entropy ratios for all 36 tested network

types, illustrating trends relative to K values. For networks with Poisson-

distributed topologies, the decline in entropy ratios becomes more gradual as

K decreases. For networks with uniform and power-law-distributed topolo-

gies, the choice of K does not appear to affect the shape of the entropy ratio

curve. All entropy ratio curves are generated using the network entropy

measure of Definition 7.

focus on these inflection points to determine if they are a general feature of determinative-

power-based reduction of power-law-distributed networks or are instead an artifact of our

network initialization process. The existence of inflection points in sub-to-parent entropy

ratio plots of networks generated from specific wiring algorithms, such as those dictated

in the Barabási-Albert topology, may indicate that such inflection points illustrate general

features of networks with power-law-distributed topologies.
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5.2. Topology. Figure 3 has a format similar to that of Figure 2, but in this case we

prioritize the visualization of patterns with respect to topology distribution. Each of the

12 subplots corresponds to a particular combination of K value and function settings.

Curves associated with topology distribution are differentiated by line type. We observe

that in all cases, networks with degree values drawn from a power-law distribution exhibit

more gradual declines in entropy ratios than networks relying on either uniform or Poisson

distributions. In all four K = 2 networks, the decline of entropy ratios is slightly more

gradual when degree values are drawn from Poisson distributions than when drawn from

uniform distributions. In K = 4 networks and K = 3 networks, separations between the

Poisson and uniform curves are not as apparent.

The explanation for differences in entropy ratios curves illustrated in Figure 3 is intuitive.

In networks with out-degree values generated from power-law distributions, a small number

of nodes hold a relatively large proportion of the network’s total number of outgoing links.

With each outlink comes the potential for added determinative power. Indeed, Pentzien

et al. [9] showed a fair correlation between out-degree links and determinative power. Fur-

thermore, because we have set the out-degree and in-degree values as equal for each node,

hubs have very large truth tables and state spaces. As the network is reduced, an increasing

proportion of inputs for any given node begins to freeze and state spaces become smaller.

For low-degree nodes with small state spaces, the freezing of input nodes can reduce the

uncertainty of the output very quickly. High-degree nodes, which are more numerous in

Power-Law-distributed networks, are more likely to retain some degree of uncertainty even

after a few inputs are frozen. The apparent distinction between the Poisson and uniform

curves where K = 2 or K = 3 owes to a similar principle. At small values of K, the Poisson

distribution is skewed and resembles a power-law distribution.

5.3. Functionality. Figures 4 and 5 concern entropy ratios with regards to the function

setting. To more clearly exhibit trends, we create separate facet plots to distinguish between

threshold and canalyzing functions. In Figure 4, the grid of nine subplots includes every

combination of the three degree-distribution settings and three K values. In each subplot,

threshold functions with threshold values of 0.25 and 0.5 are distinguished by linetype. In

networks with power-law-distributed topologies, networks using a 0.25 threshold exhibit a

more gradual decline in entropy ratios than those using a 0.5 threshold. Exploratory tests
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Figure 3. A plot of sub-to-parent entropy ratios for all 36 tested network

types, showing trends relative to topology distribution settings. For all net-

work types, the decline in the ratios of entropies is most gradual when degree

values are assigned from a power-law distribution. All entropy ratio curves

are generated using the network entropy measure of Definition 7.

regarding a 0.75 threshold function, not included in this visualization, revealed a curve very

similar to that of the 0.25 threshold function.

Figure 5 displays trends resulting from changes in canalyzing depth. In all nine combina-

tions of connectivities and topologies, entropy ratios in networks with d = 2 functions tend

to be greater than those with d = 1 functions across all subnetwork sizes. The difference ap-

pears to be largest for K = 2 networks and networks with power-law-distributed topologies.

Figure 5 suggests a possible link between canalyzing depth and information propagation

in that our determinative-power-based reduction algorithm, which prefers to retain nodes
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Figure 4. A plot of sub-to-parent entropy ratios for 18 tested network

types showing trends relative to choice of specification of threshold func-

tion. In networks with power-law-distributed topologies, curves correspond-

ing to 0.25 thresholds decline more gradually than those corresponding to

0.5 thresholds. All entropy ratio curves are generated using the network

entropy measure of Definition 7.

involved in numerous and high mutual-information pairings, sustains higher entropy ratios

in networks with higher canalyzing depth.

5.4. Summary of Network Entropy Trends. Across all 36 studied networks, topology

appears to be the most significant factor supporting higher sub-to-parent entropy ratios.

In particular, networks with power-law-distributed topologies reveal consistently higher en-

tropy ratios. In networks with canalyzing functions, canalyzing depth appears to also be a

consistent factor, with increasing canalyzing depth leading to higher entropy ratios in sub-

networks of all sizes. Elsewhere, combinations of network settings yield interesting results.

Lower K values lead to higher entropy ratios only in networks with Poisson-distributed
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Figure 5. A plot of sub-to-parent ratios of entropies for 18 tested network

types showing trends relative to depth of canalyzation. For K = 2 networks,

the decline in the ratios of entropies becomes more gradual as canalyzing

depth increases. All entropy ratio curves are generated using the network

entropy measure of Definition 7.

topologies. In networks with threshold functions, the choice of threshold appears to matter

only in networks with power-law-distributed topologies.

5.5. Comparison of Reduction Methods. Next, we repeat all initialization, calcula-

tion, and reduction steps with one change to randomize the reduction process. In the

determinative-power-based method, the algorithm selects the remaining node with the least

determinative power. In the random method, the algorithm selects a node randomly, irre-

spective of determinative power or any other measured attribute. Comparison of the two

reduction methods reveals an unambiguous and consistent trend. Across all network types,

sub-to-parent entropy ratios resulting from determinative-power-based reduction are greater
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than those ratios resulting from a random reduction. This suggests that determinative-

power-based reduction may be a useful approach for any case in which network entropy and

information retention are prioritized during network simplification.

Inspection of the sub-to-parent entropy curves associated with each network type is in-

formative. The relative sizes of the disparities between curve shapes highlight the instances

in which determinative-power-based reduction is particularly advantageous. Figure 6 illus-

trates curves for two network types. Subplots on the left pertain to networks with settings

of K = 2, power-law distribution, and threshold = 0.5 (type 5 in Table 1-A). The network

visualized on the right has settings of K = 4, Poisson distribution, and canalyzing depth

= 1 (type 36 in Table 1-B). Plots on the top row show the entropy curves yielded by the

respective reduction methods for both network types. We see here that in both cases the

decline in ratios is more gradual using the determinative-power method. The distance be-

tween the two curves, however, differs substantially. Where the difference is greatest, the

determiative-power-based reduction method yields particularly higher sub-to-parent entropy

ratios for the specified network type. The bottom row offers an alternative visualization

showing determinative-power-based reduction entropy ratios relative to random reduction

entropy ratios.

We quantify differences between the two reduction methods for various network types

by measuring the Euclidean distance between the associated vectors of entropy ratios. We

recall that the Euclidean distance between vectors u and v of length N is given by√√√√ N∑
i=1

(ui − vi)2.

Tables 3-A and 3-B sort network types by Euclidean distance, allowing us to easily identify

the types for which determinative-power-based reduction is particularly advantageous over

random reduction. We observe that of the 13 network types with the largest Euclidean

distances, 12 have power-law-distributed topologies. There does not appear to be a similar

ordering between network types with Poisson-distributed and uniform-distributed topolo-

gies. Trends in functionality among the top network types are apparent, though not as

blatant. The three network types with power-law-distributed topologies and threshold =

0.5 functions are at the top of the list and six of the top seven network types use threshold

functions rather than canalyzing functions. All of the eight network types with threshold
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Figure 6. A comparison of determinative-based network reduction and ran-

dom reduction for two example network types. Upper left: entropy ratio

curves for K = 2, power-law-distributed, threshold = 0.5 networks (type

5 in Table 1-A). Upper right: entropy ratio curves for K = 4, Poisson-

distributed, canalyzing depth = 1 networks (type 36 in Table 1-B). Bottom:

plots of the difference between the curves in the plots above. All entropy

ratio curves are generated using the network entropy measure of Definition

7.

= 0.5 functions appear in the top half of the table. As previously discussed in this section,

figures 4 and 5 did not show exceptionally high sub-to-parent entropy ratios associated with

threshold = 0.5 functions, so the ascendance of those networks in regards to this Euclidean

distance measure likely demonstrates that the entropy ratios generated by the random re-

duction method are particularly low. There are no apparent trends associated with K
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Table 3-A. Distances between determinative-power-based reduction en-

tropy ratios and random reduction entropy ratios, sorted by Euclidean dis-

tance. In these networks, calculations of network entropy relied upon the

conditional entropies of all node-node pairs in the network.

Network

Type

Euclidean

Distance

Average

K

Topology

Distribution
Function

5 5.0282 2 power-law threshold = 0.5

29 5.0120 4 power-law threshold = 0.5

17 4.9800 3 power-law threshold = 0.5

30 4.2614 4 power-law threshold = 0.25

7 4.2431 2 power-law canalyzing d = 2

18 4.1586 3 power-law threshold = 0.25

6 4.0553 2 power-law threshold = 0.25

20 3.6876 3 power-law canalyzing d = 1

19 3.5984 3 power-law canalyzing d = 2

31 3.4831 4 power-law canalyzing d = 2

8 3.3272 2 power-law canalyzing d = 1

9 3.1238 2 Poisson threshold = 0.5

32 3.1141 4 power-law canalyzing d = 1

25 2.9166 4 uniform threshold = 0.5

21 2.7868 3 Poisson threshold = 0.5

1 2.7062 2 uniform threshold = 0.5

13 2.4637 3 uniform threshold = 0.5

33 2.2538 4 Poisson threshold = 0.5

values, so connectivity does not appear to play a strong role in deciding which networks are

best suited for determinative-power-based reduction.

5.6. Aggregated Node Entropy Measure. Finally, we compare the results described

above, which relied upon conditional entropies to measure total network entropy, with a

second set of results relying upon the alternative measure of aggregated node entropies
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Table 3-B. Continuation of distances between determinative-power-based

reduction entropy ratios and random reduction entropy ratios, sorted by

Euclidean distance. In these networks, calculations of network entropy relied

upon the conditional entropies of all node-node pairs in the network.

Network

Type

Euclidean

Distance

Average

K

Topology

Distribution
Function

10 2.0608 2 Poisson threshold = 0.25

14 2.0022 3 uniform threshold = 0.25

11 1.9156 2 Poisson canalyzing d = 2

23 1.5032 3 Poisson canalyzing d = 2

22 1.4587 3 Poisson threshold = 0.25

27 1.3954 4 uniform canalyzing d = 2

12 1.3807 2 Poisson canalyzing d = 1

3 1.2747 2 uniform canalyzing d = 2

15 1.2699 3 uniform canalyzing d = 2

28 1.2345 4 uniform canalyzing d = 1

26 1.1650 4 uniform threshold = 0.25

16 1.1383 3 uniform canalyzing d = 1

24 1.0816 3 Poisson canalyzing d = 1

2 1.0238 2 uniform threshold = 0.25

34 0.9858 4 Poisson threshold = 0.25

35 0.9661 4 Poisson canalyzing d = 2

4 0.8801 2 uniform canalyzing d = 1

36 0.7817 4 Poisson canalyzing d = 1

(Definition 8). We repeat the procedures described in Section 4, including all initialization,

calculation, and reduction steps. And once again, for each of the 36 network types, we

perform the procedures two times: first using the determinative-power-based reduction

method and then using the random reduction. To calculate the aggregated node entropies of

all parent networks and subnetworks, we calculate the entropy for each of the N = 100 nodes

and sum. The sub-to-parent entropy ratios represent the proportional relationships between
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the aggregated node entropies of subnetworks and their corresponding parent networks. We

rleate these findings with those from the network entropy approach to gain insights into the

impacts of the choice of entropy measurement. We find substantial differences between the

two approaches. The most notable differences are the shape of the resulting sub-to-parent

entropy ratio curves, the impact of K values in determining the rate of entropy ratio decline,

and the scale of the differences between determinative-power-reduction entropy curves and

random-reduction entropy curves.

In contrast to the entropy ratio curve shapes resulting from the network entropy ap-

proach of Definition 7, which were either concave down decreasing or nearly diagonal, all of

Figure 7. Example plots of sub-to-parent ratios of aggregated node en-

tropies, showing the characteristic curve shapes formed as subnetwork size

decreases. Compare the plots with those in Figure 1, which features curves

of the same networks measured instead by network entropy. Where Figure

1 exhibits concave down decreasing curves, here the curves are concave up

decreasing. All entropy ratio curves are generated using the network entropy

measure (Definition 7) and exhibit similar shapes. The differences between

plots in Figures 1 and 7 suggest that sub-to-parent entropy ratios are higher

for subnetworks of all sizes when considering network entropy (Definition 7)

rather than aggregated node entropy (Definition 8).
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the curve shapes resulting from the aggregated node entropy approach are concave up de-

creasing. Figure 7 illustrates two such curves for comparison with Figure 1, which features

plots of the same network types. The drastic differences in the shape of the curves indicate

that the choice of entropy measurement has profound impacts on the apparent results of

network reduction. As explored earlier in this section, network entropy calculations indi-

cate that the initial node reductions, which remove the nodes with the least determinative

power, generally have minimal impacts on the entropy ratio of the resulting subnetwork.

In the aggregated-node-entropy approach, plots suggest the opposite. Initial reductions are

accompanied by the greatest decreases in sub-to-parent entropy ratios.

In analysis of the sub-to-parent entropy ratio curves associated with network entropy,

comparison of the relative rates of change provided key insights as to how network settings

impact the values of the ratios. Some of those patterns are also found in the aggregated-

node-entropy ratio curves. For instance, power-law-distributed topologies and increasing

canalyzation depth both tend to yield high sub-to-parent entropy ratios in both cases. The

most conspicuous divergence between the curves generated by the network entropy measure

(Definition 7) and those generated by the aggregated node entropy measure (Definition 8)

concerns the impact of the connectivity setting. When using the network entropy measure-

ment (Definition 7), the value of K appeared to have a significant impact only in networks

with Poisson-distributed topologies like in Figure 8. Per the aggregated node entropy ap-

proach (Definition 8), decreasing K values lead to higher sub-to-parent entropy ratios in

all network types. The effects of decreases in K are greatest in networks with canalyzing

functions and either Poisson or power-law-distributed topologies.

A third eye-catching difference between reduction informed by the network entropy of

Definition 7 as opposed to reduction informed by aggregated node entropy of Definition 8

lies in the comparison between reduction methods. Differences between the sub-to-parent

network entropy ratio curves of determinative-power-based and random reduction methods,

exemplified and Figure 6 and listed in Tables 3-A and 3-B, are much greater than the

differences in aggregated node entropy ratio curves of the same network types. Using

network entropy, the Euclidean distances between the two ratio curves range from 0.7817

to 5.0282 as the last and the first rows in Tables 3-A and 3-B. Aggregated node entropy,

however, produces Euclidean distances ranging from 0.2241 to 1.9780. Additionally, while



ENTROPY ANALYSIS OF BOOLEAN NETWORK ... 31

concerning network entropy the ratios generated by determinative-power-based reduction

are greater than those generated by random reduction for subnetworks of all sizes, in the

case of aggregated node entropy the two reduction curves intersect for all network types.

The intersection point occurs between the 46th and 92nd node reduction. Thereafter,

subnetworks generated by random reduction tend to have higher sub-to-parent entropy

ratios.
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Figure 8. A plot of sub-to-parent entropy ratios for all 36 tested network

types measured by aggregated node entropy, illustrating trends relative to K

values. Compare to Figure 2, which plots the same features according to the

network entropy measurement, which is based on a calculation of conditional

entropies. Here, there is a distinct trend in which decreasing K values result

in higher sub-to-parent entropy ratios for subnetworks of all sizes.
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6. Conclusion

Our research explores the application of the determinative power of nodes in the reduction

of Boolean network models, which can be large and computationally burdensome. We

develop a determinative-power-based reduction algorithm and test it on 36 network types

with various settings of connectivity, topology, and functionality. We evaluate the generated

subnetworks according to their network entropies as ratios of the network entropies of

their corresponding parent networks. We plot curves to investigate changes in sub-to-

parent entropy ratios as subnetworks decrease in size. We compare curves generated by

the determinative-power-based reduction algorithm with those generated by a randomized

reduction process. Lastly, we repeat the entire procedure using an alternate measurement

of aggregated node entropy.

The research yields three primary conclusions. First, using the determinative-power-

based reduction, for all 36 network types the initial node reductions effect the least change

in sub-to-parent network entropy ratios. This supports previous research [9, 19, 21] indi-

cating that determinative power is a usefulness tool in identifying subnetworks. Second,

for all network types, determinative-power-based reduction “outperform” random reduction

in that the sub-to-parent network entropy ratio curves generated via determinative power

reliably have higher values for subnetworks of all sizes. Third, simulation results differ sub-

stantially when using an aggregated node entropy measurement in lieu of network entropy.

This suggests that an accounting of the conditional entropies associated with a network can

drastically affect our understanding of the network’s behavior. In this paper, we emphasize

the network entropy approach, based on conditional entropy, because we feel it represents

a more nuanced view of network complexity and information-processing characteristics. It

is possible that for larger networks the two approaches would not generate the differences

seen in this paper due to diminishing local correlations.

The shapes of sub-to-parent entropy ratio curves for different network type suggest that

in some network types, subnetworks have a particularly high proportion of the parent’s

network entropy. The highest ratios are found in networks with topologies drawn from

power-law distributions. An increase in canalyzation depth also appears to lead to higher

sub-to-parent entropy ratios.
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Networks with power-law-distributed topologies also show the greatest difference in per-

formance between the determinative-power-based and random reduction methods, suggest-

ing that some degree of the improved overall performance of these networks in the main-

tenance of relatively high entropy ratios owes to interactions between their topology and

determinative power measurements of their nodes. The greatest differences between the two

reduction methods involve networks with power-law-distributed-topologies and threshold =

0.5 functions.

A useful next step in assessing the utility of a determinative-power-based reduction

method would involve a comparison between its performance and that of a stable-states-

based reduction method relying on the removal of frozen, leaf, and mediator nodes. Our

conjecture is that the two methods would have similar performance as both would tend to

target leaf nodes and nodes which serve as inputs only for frozen nodes. However, there are

cases in which the methods diverge. A mediator node, irrelevant to the stable states of a

network, may have an amount of determinative power that could result in its inclusion in

relatively small subnetworks. Conversely, the determinative power method may identify a

node that is not a frozen, leaf, or mediator node but nonetheless has little impact on the

dynamics of the network. An analysis of how these reduction strategies actually differ in

node selection would be of interest.

Additionally, future research could focus on determinative-power-based network types

more explicitly related to real-world phenomena. Specifically, topology and function settings

could be more finely tuned through the incorporation of small-world and scale-free wiring

algorithms or the implementation of heterogeneous functionality. One useful complication of

these simulations would involve the de-coupling of in-degree and out-degree values. While

it is intuitive that nodes with high out-degree values tend to have higher determinative

power, Epstein and Bazzan [39] identified cases in which “simpler” nodes–those with fewer

inputs–are generally more influential. Perhaps nodes with low in-degree values and high

out-degree values tend to have the most determinative power.

Pentzien et al. [9] performed determinative power analysis on many biological models

found on the Cell Collective platform, with intriguing results. A categorization of the models

on the platform according to topology and functionality would offer a helpful understanding

of the relationships between determinative power and network settings in real-world systems.
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