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Dynamics of Directed Boolean Networks under
Generalized Elementary Cellular Automata
Rules, with Power-Law Distributions and
Popularity Assignment of Parent Nodes

Ray Goodman

Department of Computer Science,
University of Nebraska at Omaha, Omaha, NE 68198-2184

Mihaela T. Matache�

Department of Mathematics,
University of Nebraska at Omaha, Omaha, NE 68182-0243

This study provides an analysis of the dynamics of fixed-size directed
Boolean networks governed by generalizations of elementary cellular au-
tomata rules 22 and 126, under a power-law distribution of parent nodes
and a popularity parent assignment. The analysis shows the existence of
a two-piece chaotic attractor for smaller values of the power-law param-
eter which evolves into a “cloud”-like attractor for larger values of the
parameter. Values of the parameter for which the system exhibits an or-
dered behavior are indicated as well. The dynamics are investigated using
space-time diagrams, delay plots, bifurcation diagrams, and Lyapunov ex-
ponent computations. It is also shown that the children (out)links do not
obey a power-law distribution; more precisely, numerical investigations
indicate that the children links have a Gaussian-like distribution.

1. Introduction

A significant amount of work has been performed during the past few
years related to nondirected Boolean networks in which the connectivity
of the nodes is governed by a power-law distribution. Such networks led
to the so-called scale-free networks in which highly connected vertices
have a larger chance to occur than in the small-world network model
introduced by Watts and Strogatz [1] and variations of it generated by
authors such as Serra et al. [2], or in the classical random graph model
introduced by Erdös and Rényi [3]. The probability of finding a highly
connected vertex decreases exponentially with the connectivity in these
two models, whereas in scale-free networks the probability decreases
according to a power-law. The important work of Barabási et al. in [4]
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358 R. Goodman and M. T. Matache

was a turning point in the modeling and analysis of certain real net-
works. The existence of scale-free networks, or in general small-world
networks, has been identified in many real situations such as biological
networks in Jeong et al. [5], social networks in Wasserman and Faust [6],
or computer networks and the World Wide Web in Albert et al. [7], and
Barabási et al. [8]. For example, Aldana and Cluzel show that a certain
class of scale-free networks is more robust to perturbations than a clas-
sical Kauffman network in which every element interacts, on average,
with say K other elements of the network [9]. In that paper, although the
network is directed (i.e., the number of inputs is not necessarily equal to
the number of outputs for each node), the power-law distribution can be
used for either the distribution of input connections or that of the output
connections (or both). The authors focus on a Boolean rule that assigns
randomly a value of 0 or 1 to each node, with fixed probability, regard-
less of the number of inputs or their actual values. By contrast, in this
paper we assume that the nodes evolve according to rules that represent
generalizations of certain elementary cellular automata (ECA) rules. In
particular we will focus on ECA rules 22, 126, and a special rule called
the rule of density of ones that is described later. At the same time,
the network considered in this paper evolves according to a power-law
distribution for the input connections paired with a preferential choice
of the parent nodes based on the nodes’ popularity. We are interested in
identifying the distribution of the output connections and the dynamical
behavior of a system governed by the number of parents generated us-
ing a power-law paired with a popularity parent selection, and evolving
according to the ECA rules indicated. Thus we consider a case of a
directed network which is more common in real life than bidirectional
networks. Moreover, directed networks have been far less studied in
the literature compared to undirected networks. However, they have
been shown to occur in complex networks such as cells, networks of
chemicals linked by chemical reactions, or the Internet as observed by
Albert and Barabási [10], metabolic networks as seen by Jeong et al. [5],
or transcriptional networks as observed by Yook et al. [11].

Scale-free networks emerge in the context of a growing network in
which new vertices connect preferentially to the more highly connected
vertices in the network as shown by Barabási and Albert [12], and
Amaral et al. [13]. Examples of networks obtained by a preferential
attachment of links include the World Wide Web as shown in Barabási
et al. [8], the complex node attachments in biological and artificial
neural networks in Shiner and Davison [14], and Watt’s small-world
network [1], derived from Milgram’s small-world problem [15, 16].
Typically the number of connections of a new vertex is a fixed constant.
It has been shown by Amaral et al. [13] that the introduction of cer-
tain constraints, such as inactive vertices obtained either by aging or
by reaching a maximum number of links, may lead to cutoffs in the
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power-law decay of the tail of the connectivity distribution or even a
suppression of a power-law region [13]. In this paper, we include an
upper bound for the size of the network, and therefore the number of
links of a given node is bounded. This leads to a distribution of the
outgoing (children) links that is not a power-law, but has a bell shape.

Research has also shown that chaos can occur in random Boolean
networks. For example, Matache et al. [17–21] explore the behavior
of networks governed by generalized ECA rule 126 through mean field
models of the probability of finding a node in state 1 or ON at time t.
This is done for synchronous or asynchronous networks, with a fixed
or variable number of parents that are assigned randomly. In this paper
we explore the behavior of networks evolving under the constraints
specified earlier by considering the actual network, as opposed to an
associated mathematical model, despite the fact that this approach can
be cumbersome due to the more involved computations. A network
with N nodes has a set of 2N possible states.

The networks presented in this paper fall in the category of the so-
called quenched networks since the Boolean functions do not change
with time; also the inputs to the Boolean functions are fixed but ran-
domly chosen among the existing nodes (except for the ECA parent
assignment). On the other hand the category of annealed networks
implies that at each time step the Boolean functions and their inputs
are randomly chosen. Studies such as the well-known book by Kauff-
man [22], or the paper by Derrida and Pomeau [23], have shown that
the quenched and annealed models exhibit very similar dynamics of
state transitions, especially for large networks. Thus one could deal
with any of the two approaches (under suitable hypotheses) and obtain
results that are valid for the other approach as well.

The goals of this paper are to first describe the children distribution
of a directed network of size N in which the number of parents is given
by a power-law distribution and the parents are assigned based on node
popularity and then analyze the dynamics of such a network evolving
under certain generalized ECA rules.

In section 2 we describe the network in detail and introduce the
power-law distribution, the parent assignment procedure, and the
Boolean rules used. Then in section 3 we consider the probability distri-
bution of the children (out)links. In section 4 we study the dynamics of
the network under various scenarios using space-time diagrams, delay
plots, Lyapunov exponent computations, and bifurcation diagrams. We
finish with conclusions and further directions of investigation.

2. Network description

In this section we describe the network. Namely, we discuss the power-
law distribution of parent nodes and their assignment. Then we focus

Complex Systems, 14 (2008) 357–379
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on the actual Boolean rules used to determine the evolution of nodes
from one time step to the next.

2.1 The power-law parent distribution

We consider a network with N nodes so that each node can be in one
of two states 0 or 1 at any time t. The evolution of node i from time
t to t � 1 is determined by the states of the nodes in the target node’s
neighborhood, that is, by its parent nodes. The number of parents is
generated using a truncated power-law distribution,

P(k) �
1

Ζ(Γ)kΓ
k � 1, 2, . . . , N (1)

where Ζ(Γ) � �N
k�1 1/kΓ is the scaling factor. The parameter of the distri-

bution is Γ > 0. Thus each node is assigned k parents with probability
P(k).

The parameter Γ is varied in steps of 0.01, from 1 to 3 and thus various
networks are constructed and their behavior analyzed. This covers the
ranges of Γ typically found in complex networks. For example, in the
case of scale-free networks the usual range is 2 < Γ � 3, while 1 < Γ < 2
is typical for biological networks (e.g., genes, proteins, and metabolism).

2.2 Parent assignment

We assume that each node is its own parent. So if a node i has a total of
k�1 parents, then only the remaining k parents need to be assigned. The
parent assignment is achieved through a popularity procedure. Popular-
ity is based on the number of children nodes associated with each node,
that is, the number of nodes for which the node under consideration is
a parent. More precisely, the popularity of a node is the proportion of
the number of its children to the total number of children in the system.
We will call this quantity the node popularity probability (NPP).

The NPP is defined for each node i as follows:

NPPi �
Ci

�N
n�1 Cn

(2)

where Cn is the number of children of node n, n � 1, 2, . . . , N.
The parents are assigned in order from node 1 to node N, so the NPP

of each node may change at each step of the parent selection.
In the simulations we compare this parent assignment procedure with

a random parent assignment in which the k parents of a node are ran-
domly selected from the N nodes of the network with probability 1/�Nk �,
as well as an ECA assignment with exactly three parents: node i itself
together with nodes i 	 1 and i � 1.

Complex Systems, 14 (2008) 357–379
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2.3 Boolean rules

Once all the parents of all nodes are assigned, we are interested in
evolving the network according to various Boolean rules.

Three different rules are tested: generalized cellular automaton
rule 22, generalized cellular automaton rule 126, and a rule based on
the density of ones. In the simulations, each of the rules is processed on
the initial node data sets using varying initial conditions for 200 time
steps. We assume a synchronous update of all nodes. Future work will
focus also on asynchronous networks.

As observed in [17] rule 126 is one of several which exhibit ran-
domly distributed triangular shapes of arbitrarily large size. This makes
rule 126 a class III complexity generating rule [24]. Rule 126 is both
legal, reflection symmetric and quiescent, and totalistic, where the rule
depends only on the relative number of ON and OFF states and not
their order [25]. There are 32 legal rules and 16 totalistic rules. Only
eight of these rules, including rule 126, are in both classes: 0, 22, 104,
126, 128, 150, 232, and 254. They separate into Wolfram’s four classes
as class I: 0, 128, 254; class II: 104, 232; class III: 22, 126, 150; and
class IV: none. Besides the automata in classes I and II which have rel-
atively simple behavior [24], this leaves only three: 22, 126, and 150.
But rule 150 is additive (linear in algebraic form) which simplifies its
analysis by transferring unusual effects from the structure of the au-
tomata to the initial conditions only. As well as rules 22 and 126 both
being in Wolfram’s class III, they are also both in the same Κ � 2 in a
new classification, regarding separating planes for the basic eight-point
hypercube (along with rule 104) [26].

Both rules 126 and 22 have a natural and simple interpretation in
terms of the growth of cell colonies. For rule 126, complete crowding
of live, ON, cells causes death, OFF, in the next generation. Complete
isolation of a potential cell prevents birth in the next generation. A
similar interpretation holds for rule 22, it just is not quite as complete.

It is natural then to study these rules and extend them to networks
of an arbitrary size N. We do this as follows.

Generalized cellular automaton rule 22

The generalized cellular automaton rule 22 is based on Wolfram’s ECA
rule 22 [24]. Wolfram’s rule is defined for a node that has three parents.
If one and only one of the parent nodes has a state of 1, then the child
node will have its state set to 1. We use the following generalization
applicable to any number of parent nodes: if the proportion of nodes in
state 1 in the target node’s neighborhood is nonzero and less than 1/3,
then the node will be set to 1 at the next time point, otherwise, it will be
set to 0. Hung et al. [27] have used a straightforward generalization of
rule 22, namely a node is turned ON if and only if a single node is ON
in the neighborhood of the node under consideration. They use this rule

Complex Systems, 14 (2008) 357–379
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Figure 1. ECA rule 22.
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� � � � � � � �

Figure 2. ECA rule 126.

in the context of synchronizing stochastically coupled random Boolean
networks. The extension used in this paper is more general. Figure 1
shows the ECA rule 22.

Generalized cellular automaton rule 126

The generalized cellular automaton rule 126 is based on Wolfram’s ECA
rule 126. If the state of all of the parent nodes is either 0 or 1; that is,
the nodes are all ON or all OFF, then the child node will have its state
set to 0 or OFF (i.e., complete crowding or complete isolation generates
death in the next time step). Observe that this rule can be easily applied
to any number of parent nodes without any further changes, and has
been studied in [17–21] for a network in which the number of parents
is either fixed or variable and in which the parents are chosen randomly.
However, no previous paper involves a power-law parent distribution
paired with a popularity based parent assignment. Figure 2 represents
the ECA rule 126.

Density of ones rule

The third Boolean rule we use is called density of ones and is a further
generalization of rules 22 and 126. The rule states that a certain per-
centage of the parent nodes must be in state 1, for the child node to be
set to 1 at the next time point. The density of ones for node i at time t
is defined as:

di(t) �
1
ki

ki

�
n�1

cn(t) (3)

where i identifies the node under consideration, cn(t) is the state of the
parent node n at time t, and ki is the number of parents of node i.

The rule is stated as

ci(t � 1) �
��
�

1 if 0 < di(t) < P

0 otherwise
(4)

where P � (0, 1] is a fixed parameter.

Complex Systems, 14 (2008) 357–379
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Observe that P � 1 is the generalized ECA rule 126, while P � 1/3
yields the generalized ECA rule 22.

3. The distribution of children links

Given the procedure described in section 2, we generate a variety of
networks for various values of Γ. In Figure 3 we generate a log–log
plot of the parent and child distributions for two separate values of the
power-law parameter, namely Γ � 1.6 and Γ � 2.6. The network has
N � 256 nodes and for practical purposes the number of parents is at
least three. Observe the almost linear plot of the parent distribution
which corresponds to a power-law distribution in a log–log plot. How-
ever, the children distribution is far from linear, which suggests that it is
not a power-law. Thus, when the links are directed, and the power-law
distribution of parents is paired with a popularity assignment of parents,
the resulting children distribution clearly departs from a power-law.

We provide fit plots for the children distribution in the case Γ � 1.6,
using the actual frequencies instead of the log–log plots. Figure 4 shows
the results of using the distribution fit feature of Matlab® [28]. It can be
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Figure 3. Parent and children empirical distributions obtained from a network
with N � 256 nodes, in which the number of parents is generated with a power-
law distribution with parameter Γ � 1.6 and Γ � 2.6 as specified in the plots.
The parents are assigned based on popularity. The results in these graphs are
obtained by averaging over a number of realizations of the network with a given
Γ. We observe a clear departure of the children distribution from a power-law.
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Figure 4. Children empirical probability distribution obtained from a network
with N � 256 nodes, in which the number of parents is generated with a
power-law distribution with parameter Γ � 1.6. The fit is obtained using a
normal, a logistic, and a t location-scale distribution. The parameters of the
fitted distributions are estimated as follows: normal with Μ � 17.8 and Σ � 3.3;
logistic with Μ � 17.7 and Σ � 1.87; t location-scale with Μ � 17.7,Σ � 3.15,
and Ν � 22.4. Observe the similarities between the fitted distributions.

observed that several different distributions provide a reasonably good
fit: a t location-scale distribution (which is known to be applicable for
heavy tailed distributions), a normal, and a logistic distribution. All of
them are plotted on the same graph for easy comparison.

Recall that the t location-scale probability density is given by

f (x) �
�( Ν�1

2 )

Σ
�
ΝΠ�( Ν2 )

������������

Ν � � x	ΜΣ �2
Ν

������������

	�(Ν�1)/2�

with location parameter Μ, scale parameter Σ > 0, and shape parameter
Ν > 0. This distribution approaches the normal distribution as Ν � �,
and smaller values of Ν yield heavier tails. Recall also that if X is
a t location-scale random variable, then (X 	 Μ)/Σ has a Student’s t
distribution with Ν degrees of freedom.

We recall the logistic distribution as well. A random variable X has
a logistic distribution if its probability density function is of the type

f (x) �
e(x	Μ)/Σ

Σ �1 � e(x	Μ)/Σ�2
with location parameter Μ and scale parameter Σ > 0 for all real x.
This distribution has longer tails and a higher kurtosis than the normal
distribution.

The parameters of the fitted distribution are indicated in the caption
of Figure 4 and are obtained using a maximum likelihood estimation
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procedure. Given that both the logistic and the t location-scale distribu-
tions approach a normal distribution for certain parameter behavior, we
can deduce that the children distribution is close in shape to a Gaussian
distribution.

To understand if the empirical observations are supported by the ac-
tual mathematical distribution of children, we observe that the number
of children links evolves in time according to the following formulae.

At time t � 0, we have that Ci(t) � 1, i � 1, 2, . . . , N. This is because in
the beginning the N nodes are set as parents (children) of themselves.

At time t > 0, the kt parents of node Ct obtained from a power-law
distribution with parameter Γ are assigned according to the popularity
procedure. This means that the number of children of node t does not
change, so Ct(t) � Ct(t 	 1), while the number of children of any other
node changes as follows:

Ci(t) � Ci(t 	 1) � kt !NPPi(t), where NPPi(t) �
Ci(t 	 1)
�j"t Cj(t 	 1)

. (5)

It is easy to see that

N

�
i�1

Ci(t) � N � k1 � k2 �� � kt (6)

as expected since once kt parents are selected, kt new children links are
formed as well. Thus the total number of children links in the network
at time t is given by equation (6).

Observe that the given formulae can be written as a composition
g � gN � gN	1 �� � g2 � g1 of maps

gt # RN � RN

given by

gt(p1, p2, . . . , pN) � (gt
1(p1, p2, . . . , pN), gt

2(p1, p2, . . . , pN), . . . ,

gt
N(p1, p2, . . . , pN))

where

gt
t(p1, p2, . . . , pN) � pt

and

gt
i(p1, p2, . . . , pN) � pi � kt

pi

N � k1 � k2 �� � kt 	 pt
for i " t.

Since the network starts with the initial condition (p1, p2, . . . , pN) �
(1, 1, . . . , 1) we are interested in g(1, 1, . . . , 1). More precisely, we would
like to determine the distribution of the ith component of this composi-
tion.

Complex Systems, 14 (2008) 357–379
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Notice that the computations become cumbersome from the very
first step of the composition. However, the results are in terms of sums
of the type k1 � k2 �� � kN which represent values of independent
and identically distributed random variables with the same power-law
parameter. It is known [29] that this kind of sum converges to a Lévy
distribution as N increases, by the central limit theorem. Recall also that
Lévy distributions (and in particular Gaussian distributions which are a
special case of Lévy distributions) are stable since they are “fixed points”
of the convolution operation, and are also attractors. Any distribution
convoluted with itself a large number of times converges to a stable
law. In general, Lévy distributions have heavier tails than Gaussian
distributions, although they have the same symmetric shape. They are
useful in describing multiscale phenomena; that is, when both very
large and very small values of a quantity can commonly be observed, as
stated in [29]. Although we cannot conclude that the final distribution
is Lévy or Gaussian given that the computations also involve other
transformations of the independent and identically distributed random
variables giving the number of parents at each time t, we can expect a
Lévy- or Gaussian-like distribution given the empirical results obtained
so far. Observe that repeated compositions yield transformations of the
type: sums, differences, products, quotients, or squares of independent
power-law distributions, which clearly may lead to distributions that
are not of the power-law type. To understand the combined effect of
these transformations, we perform a numerical investigation of the final
distribution as follows.

We perform the composition numerically for the given initial con-
dition with various values of the parameter Γ. Thus we start with a
network with N � 256 nodes for simplicity and compute g256 �g255 �� �
g2 � g1(1, 1, . . . , 1) for 10,000 different sets of parents $k1, k2, . . . , k256%
with a given Γ. Then we generate a density plot of these 10,000 rep-
etitions for each of the 256 nodes on the same graph. In Figure 5 we
provide these plots for Γ � 1, 1.2, 1.4, 1.6, 1.8, 2, 2.2, 2.4, 2.6, 2.8, and
3 respectively. The graphs become more narrow and are condensed to
the left with increased Γ. Since all 256 density plots for each given value
of Γ are very similar and overlap a lot, we can see that any node has a
generic bell-shaped children distribution.

To emphasize the Gaussian-like distribution, we select node 1 and
plot its distribution in the form of a histogram with a fitted normal
distribution on top in Figure 6. We do this for Γ � 1, 1.2, 1.4, 1.6, and
1.8 only for more clarity. Observe that indeed the normal distribution
provides a very good fit. Thus we conclude that a power-law parent
distribution paired with a popularity parent assignment for directed
networks of finite size generates a Gaussian-like distribution for the
number of children.
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Figure 5. Children probability distribution obtained from a network with N �
256 nodes, in which the number of parents is generated with a power-law
distribution with parameter Γ � 1, 1.2, 1.4, . . . , 3. The distribution for each of
the 256 nodes is graphed and we observe the similarities of the distributions for
distinct values of Γ. We conclude that there is a unique children distribution
that corresponds to any node of the network given that the plots are very similar
or overlap for all of the 256 nodes and any given Γ. We also observe that as Γ
increases the graphs tend to become more narrow and to condense to the left of
the graph. We also note the bell-shaped graphs.
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Figure 6. Children probability distribution obtained from a network with N �
256 nodes, in which the number of parents is generated with a power-law
distribution with parameter Γ � 1, 1.2, 1.4, 1.6, and 1.8. The distribution for
node 1 is graphed and a fitted normal distribution is plotted on top. We observe
the excellent match which supports the conclusion that the children distribution
is bell shaped.
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In section 4 we are interested in the dynamics generated by networks
obtained as described and evolved under the generalized ECA rules
mentioned earlier.

4. Network dynamics

In this section we describe and provide samples of the extensive simula-
tions performed on networks generated according to the rules presented.
We study the dynamics of the network through an analysis of the fre-
quency of active nodes (i.e., nodes in state 1) paired with delay plots,
Lyapunov exponents, and bifurcation diagrams.

For the purposes of this study, various initial node sets are created
based on the power-law distribution and the popularity model discussed
earlier. Each network consists of N � 256 nodes with the number of
parent nodes assigned based on different Γ values using the power-law
distribution. The values for Γ range from 1.00 to 3.00 and are tested
in steps of 0.01. The number of parents assigned to each node is in the
range of 3 to 256. Once the number of parents is determined for each
node of the network, the parent nodes are then assigned based on the
popularity model.

In addition to the varying parent node configurations, the initial state
of the network is also under consideration. Each node could initially be
in state 1 or 0. In order to test various initial conditions of the network,
the concentration of nodes in state 1 is varied from 1/N (i.e., only one
node is initially in state 1) to 1 (i.e., all nodes are initially in state 1).
Except for this last case, the nodes to be set to 1 are randomly selected
from the N nodes. Thus if the frequency of ones is J/N then J nodes are
selected from the N nodes of the network with probability 1/�NJ �.

The algorithms for node initialization, dataset generation, rule imple-
mentations, time step processing, and analysis were developed utilizing
Matlab [28]. Procedures for saving the data sets to Microsoft Excel®

were also created.
We compare the popularity method of assigning parent nodes to

random parent assignment and ECA parent assignment with exactly
three parents. In the figures that follow we show three choices for the
power-law parameter Γ, namely 1.2, 1.6, and 2.6, that yield typical
graphs.

First, let us take a look at some pattern formation plots obtained by
evolving a network with N � 100 nodes in a space-time diagram. Based
on numerous simulations, we note that larger networks yield similar
results and the quality of the rule evolution does not change with the
size of the network (provided that the network is large enough), the
number of time steps, the random parent assignment for say a fixed
Γ, or the initial conditions. Thus, as long as the parents are assigned
randomly and the network is large enough, the subnetwork topologies
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CA126, γ = 1.6 CA126, random CA126, ECA

CA22, γ = 1.6 CA22, random CA22, ECA

Figure 7. Pattern formation plots (space-time diagrams) for a network of
N � 100 nodes evolved according to the specified generalized ECA rules and
the specified parent assignment (popularity, random, and ECA). Observe the
differences between the plots. The generalized ECA rule 22 generates zeros
for a random parent assignment which is a typical feature as observed by the
authors in numerous experiments.

yield similar overall dynamical behavior for a given rule and parameter
selection. However, a change of parameter can yield a modification of
the behavior. At the same time we note that if the network is small, the
correlations between nodes become more significant, and the patterns
may indicate an orderly behavior with convergence to a fixed state or
a cycle of states. In Figure 7 we present a network evolving under
the generalized ECA rule 126 in the first line and the generalized ECA
rule 22 in the second line. The first column is obtained under the
popularity method for parent assignment with the number of parents
given by a power-law with Γ � 1.6, the second column is obtained using
a random parent assignment, while the third column represents the
usual ECA neighborhood of three parents. We observe the differences
in the evolution of the network under the six different scenarios, and
the rather ordered evolution under the random parent assignment with
convergence to zero for the generalized ECA rule 22. This is a feature
observed for most cases of random parent assignment as we will indicate
later. As Γ increases more order is observed in the plots. We will
supplement these plots with the analysis that follows.

Next we provide 200 time steps of the network evolution for five
different rules. The rules are: density of ones 50%, density of ones 20%,
density of ones 80%, generalized ECA rule 126 (CA 126), and general-
ized ECA rule 22 (CA 22). At each time step the density (or frequency)
of ones, labeled x(t), is calculated and plotted as a percentage in the
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Figure 8. Frequency of nodes in state 1 and corresponding time-1 delay plots
for a network with 256 nodes, evolved 200 time steps, with a power-law parent
distribution with Γ � 1.2. Each line represents a different rule as specified in the
titles of the first column.

first column of Figures 8 through 11. The second column in each figure
represents the corresponding time-1 delay plot of the number of ones,
that is, the plot of x(t	1) versus x(t). The delay plots are a useful graph-
ical tool that can reproduce the periodic orbit of the system space and
can indicate the existence of stable or chaotic attractors. For example,
if stability is reached and x(t) � x(t 	 1) for all t, then the plot would
show only one point. Similarly, two points indicate a stable period two
orbit. On the other hand, a collection of points that do not follow a
clear pattern could suggest the existence of chaos, or chaotic attractors.

Observe that increasing Γ makes it less likely to have a large number
of parents. It can be seen that for smaller Γ values most of the plots
are spread out, while for Γ � 2.6 the plots are tighter for some of the
scenarios considered. Observe the rather clear chaotic attractors for
Γ � 1.2. For the ECA parent assignment we observe order only for
density of ones 20%, in which case the frequency of ones converges to
zero. For the random parent assignment the frequency of ones converges
to zero in all cases, except CA 126 for which the plot is similar to that
of CA 22 for Γ � 1.2, but with higher values of the frequency. We do
not include a separate figure for this case. Note also that larger values
of Γ mean that most of the nodes will have exactly three parents as
in the case of ECA. However, the parents need not be the immediate
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Figure 9. Frequency of nodes in state 1 and corresponding time-1 delay plots
for a network with 256 nodes, evolved 200 time steps, with a power-law parent
distribution with Γ � 1.6. Each line represents a different rule as specified in the
titles of the first column.
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Figure 10. Frequency of nodes in state 1 and corresponding time-1 delay plots
for a network with 256 nodes, evolved 200 time steps, with a power-law parent
distribution with Γ � 2.6. Each line represents a different rule as specified in the
titles of the first column.

Complex Systems, 14 (2008) 357–379



372 R. Goodman and M. T. Matache

 

0 200
0

100

x(
t)

Density of Ones 50%

20 50
20

50

x(
t−

1)

Delay plot

0 200
0

100

x(
t)

Density of Ones 20%

−0.5 0.5
−0.5

0.5

x(
t−

1)

0 200
0

100

x(
t)

Density of Ones 80%

30 70
40

80

x(
t−

1)

0 200
0

100

x(
t)

CA 126

30 70
40

80

x(
t−

1)

0 200
0

100

x(
t)

t

CA 22

20 50
20

60

x(t)

x(
t−

1)

Figure 11. Frequency of nodes in state 1 and corresponding time-1 delay plots
for a network with 256 nodes, evolved 200 time steps, such that each node i
has three parents, namely nodes i 	 1, i, i � 1, which represents the case of the
classical ECA. Each line represents a different rule as specified in the titles of the
first column.

neighbors of the nodes or the nodes themselves, so the case of large Γ
resembles a spatially scrambled ECA. We observe that the delay plots
corresponding to these two situations are in general tighter and some
exhibit fixed points, as in Figures 10 and 11.

We now focus on Lyapunov exponent computations for a one-dimen-
sional time series as in our case. A time series is said to be chaotic if
the series is not asymptotically periodic and the Lyapunov exponent
(LyE) is greater than zero [30]. The LyE is a measure of the rate of
separation of two points that are in the same neighborhood. A positive
LyE indicates the points of the time series are diverging, while a negative
LyE indicates the points are coming closer together. The LyE can be
generated by taking two nearby orbits and calculating the logarithmic
rate of separation of the orbits. We briefly explain how this is done
following the terminology of [31, 32].

For example, consider two orbits, a “reference” orbit and a “test”
orbit, separated at time t0 by a small phase space distance D(t0). If we
denote by D(t) the distance between the points of these two orbits at
time t, then the LyE can be expressed as

Λ � lim
t��

1
t 	 t0

ln
D(t)
D(t0)

.
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Density of Density of Density of
CA 22 CA 126 Ones 20% Ones 50% Ones 80%

Popularity Γ � 1.2
0.260 ' 0.111 0.454 ' 0.099 0.436 ' 0.131 0.411 ' 0.120 0.540 ' 0.133
Not Periodic Not Periodic Not Periodic Not Periodic Not Periodic

Popularity Γ � 1.6
0.409 ' 0.106 0.175 ' 0.180 No LyE 0.066 ' 0.079 0.610 ' 0.090
Not Periodic Not Periodic Converges Not Periodic Not Periodic

Popularity Γ � 2.6
	0.028 ' 0.112 0.713 ' 0.095 No LyE 	0.051 ' 0.102 0.593 ' 0.100

Periodic Not Periodic Converges Periodic Not Periodic
Neighborhood 3 parents

0.437 ' 0.094 0.503 ' 0.119 No LyE 0.437 ' 0.094 0.503 ' 0.119
Not Periodic Not Periodic Converges Not Periodic Not Periodic

Random 3 parents
No LyE 0.004 ' 0.007 No LyE No LyE No LyE

Converges Periodic Converges Converges Converges

Table 1. Lyapunov exponents and periodicity. LyE are calculated utilizing the
software Chaos Data Analyzer. The LyE values are expressed as a value with an
estimated error. Italics indicate chaos since the time series is nonperiodic and
exhibits positive LyE. Observe that chaos is present mostly for smaller values of
Γ, whereas for the random parent assignment the behavior is mostly ordered.
In some cases the software could not produce a LyE, while in other cases the
error obtained for the LyE is larger and thus one has to take care when drawing
conclusions.

In practice, we cannot afford infinitely long time spans, so we instead
calculate the instantaneous LyE

Λ(t) �
1

t 	 t0
ln

D(t)
D(t0)

after waiting long enough for Λ(t) to settle to approximately its asymp-
totic value. For an actual computation of the instantaneous LyE from
a time series see [31] or [32]. The algorithm explained in those papers
is implemented in the Chaos Data Analyzer software [33] which is used
in this study for calculations of the LyE as shown next.

Table 1 shows the resulting LyE with a calculated error (shown as
LyE ' error). The table also shows which data sets converge to a single
point (labeled “Converges”), to a periodic orbit (labeled “Periodic”), or
are nonperiodic (labeled “Not Periodic”), based on simulations. The
combination of a positive LyE and nonperiodic orbits indicate chaotic
behavior in the system. Observe that this occurs mostly for smaller
values of Γ.

To continue this analysis, a bifurcation diagram is created for rules
CA 22, CA 126, and density of ones 50% against the parameter Γ.
Networks of 256 nodes are generated and the number of parents de-
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Figure 12. Bifurcation diagram for rules CA 22, CA 126, and density of ones
50% against the parameter Γ.

termined by using the power-law distribution and assigned utilizing the
popularity model. In total, 201 different networks are generated, one
for each of the Γ values from 1.00 to 3.00. Each network is initialized
and iterated 200 time steps. The resulting density of ones for the 200th
iteration is graphed against Γ, producing the bifurcation diagram in Fig-
ure 12. The shades of colors displayed indicate the number of nodes
that are initially in state 1, as specified at the right of each graph. From
the diagrams, we can identify a reversed bifurcation as Γ approaches
1.6. This supports the observations of mostly chaotic behavior.

To further investigate this behavior and the chaotic attractors, delay
plots are created again for each of the rules used for the bifurcation
diagram for a unified view. The initial density of ones used for each
of the delay plots in Figure 13 is 50/256 which shows the delay plots
for each of the rules by lines. The rule is indicated in the left plot of
each line. For simplicity, plots are generated only for Γ � 1, 1.5, 2, and
2.5. The plots show the strange attractors that are split for Γ < 1.60.
Around Γ � 1.60, the split in the attractor vanishes. This supports the
observations in the bifurcation diagram and previous delay plots.
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Figure 13. Time-1 delay plots for each of the three rules used in the bifurcation
diagram of Figure 12. Four representative values of Γ are displayed for each
rule, namely Γ � 1, 1.5, 2, 2.5, and the rules are specified above each row of
plots. For all the rules we observe an evolution from a two-piece attractor to a
cloud-like attractor as Γ increases. These plots support the results displayed in
the bifurcation diagram.

5. Conclusions

This study provides an analysis of the dynamics of directed Boolean net-
works governed by various extensions of elementary cellular automata
(ECA) rules, under a power-law distribution of parents and a popularity
parent assignment in comparison to a random or ECA parent assign-
ment. The analysis shows that chaos can occur in more instances under
the scenario of the popularity parent assignment with a smaller power-
law parameter than in the other cases considered. The existence of a
two piece chaotic attractor is observed for smaller values of the power-
law parameter which evolves into a “cloud”-like attractor for larger
values of the parameter. It is shown that the distribution of the children
links is Gaussian-like. These results have significance, for example, in
the development of artificial neural networks and in understanding the
behavior in more complex biological neural networks.

Further study is required that can model more complex behaviors,
such as varying rules on different nodes, asynchronous processing of
time steps, and performing additional analysis of synchronization prop-
erties of such networks.
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At the same time it would be useful to identify a suitable mathematical
model for say the density map associated to a Boolean network evolving
according to the generalized rule 22 or the density of ones rule. This
work has actually started and one of the authors has provided an analysis
of a mathematical density map for a further generalization of these two
rules in [34] and identified the dynamics of the network under various
parameter combinations. In that model, corresponding to a quenched
network, it is assumed that the parent nodes act independently, so the
correlations between the Boolean functions and their inputs are ignored
as in the case of annealed networks. A noise procedure is also applied
to study robustness to perturbations. The quenched and the annealed
dynamics are equivalent in that scenario.

It would also be of interest to analyze the robustness to asynchronism
or noise induction of such networks. Similar studies have been per-
formed such as Fatès and Morvan [35] where robustness to asynchro-
nism of one-dimensional ECA is studied using a statistical approach,
Cornforth et al. [36] where various updating schemes are shown to af-
fect the overall dynamics and that global synchronization can arise from
local temporal coupling, and Goodrich and Matache [21] who study the
robustness to noise induction of a synchronous Boolean network gov-
erned by ECA rule 126. In [34] a stochastic noise procedure is applied
to analyze the robustness of Boolean networks under certain forms of
the generalized rule 22 and to identify possible dynamical phase transi-
tions. Further studies could extend this analysis to more sophisticated
generalizations.

At the same time the topic of synchronization of chaotic networks,
in particular scale-free networks, has applications in physics, complex
systems, electrical engineering and laser physics, neuroscience and bi-
ology as observed by Newth and Brede in [37] where they study the
fitness landscape of coupled oscillators over several types of networks
including scale-free. They provide an optimization algorithm to deter-
mine network structures that lead to an enhanced ability to synchro-
nize. Although their approach involves differential equations, it would
be interesting to use some of their ideas and techniques in studying the
synchronization properties of networks considered in this paper.

An additional area of interest is modeling the concept of node–parent
degradation and reassignment. This is a phenomenon that is observed in
biological neural networks when synapses between neurons, strengthen
(long-term potentiation) and weaken (long-term depression), including
the establishment of new node connections and dissolution of lesser
used connections. This phenomenon is being utilized in today’s arti-
ficial neural networks to simulate the learning process. It would take
this research closer to understanding the extent to which an annealed
approximation is similar to the quenched network in this paper.

Complex Systems, 14 (2008) 357–379



Dynamics of Directed Boolean Networks 377

References

[1] D. J. Watts and S. H. Strogatz, “Collective Dynamics of ‘Small-World’
Networks,” Nature, 393 (1998) 440– 442.

[2] R. Serra, M. Villani, and L. Agostini, “A Small-World Network Where
All Nodes Have the Same Connectivity, with Application to the Dynamics
of Boolean Interacting Automata,” Complex Systems, 15(2) (2004)
137–155.

[3] P. Erdös and A. Rényi, “On the Evolution of Random Graphs,” Pub-
lications of the Mathematical Institute of the Hungarian Academy of
Sciences, 5 (1960) 17–61.

[4] A. L. Barabási, R. Albert, and H. Jeong, “Mean-Field Theory for
Scale-Free Random Networks,” Physica A, 272 (1999) 172–187.

[5] H. Jeong, B. Tombor, R. Albert, Z. N. Oltvai, and A. L. Barabási, “The
Large-Scale Organization of Metabolic Networks,” Nature, 407 (2000)
651–654.

[6] S. Waserman and K. Faust, Social Network Analysis (Cambridge
University Press, Cambridge, UK, 1994).

[7] R. Albert, H. Jeong, and A. L. Barabási, “Diameter of the World-Wide
Web,” Nature, 401 (1999) 130–131.

[8] A. L. Barabási, R. Albert, and H. Jeong, “Scale-Free Characteristics of
Random Networks: The Topology of the World-Wide Web,” Physica A,
281 (2000) 69–77.

[9] M. Aldana and P. Cluzel, “A Natural Class of Robust Networks,”
Proceedings of the National Academy of Sciences, 100(15) (2003)
8710–8714.

[10] R. Albert and A. L. Barabási, “Statistical Mechanics of Complex
Networks,” Review of Modern Physics, 74 (2002) 47–97.

[11] S.-H. Yook, Z. N. Oltvai, and A. L. Barabási, “Functional and Topolog-
ical Characterization of Protein Interaction Networks,” Proteomics, 4(4)
(2004) 928–942.

[12] A. L. Barabási and R. Albert, “Emergence of Scaling in Random
Networks,” Science, 286 (1999) 509–512.

[13] L. A. N. Amaral, A. Scala, M. Barthélémy, and H. E. Stanley, “Classes
of Small-World Networks,” Proceedings of the National Academy of
Sciences, 97(21) (2000) 11149–11152.

[14] J. S. Shiner and M. Davison, “Quanitifying the Connectivity of Scale-Free
and Biological Networks,” Chaos, Solitons, and Fractals, 21 (2004) 1–8.

[15] S. Milgram, “The Small World Problem,” Psychology Today, May 1967,
60–67.

Complex Systems, 14 (2008) 357–379



378 R. Goodman and M. T. Matache

[16] J. Travers and S. Milgram, “An Experimental Study of the Small World
Problem,” Sociometry, 32 (1969) 425.

[17] M. T. Matache and J. Heidel, “Random Boolean Network Model
Exhibiting Deterministic Chaos,” Physical Review E, 69, 056214 (2004)
10 pages.

[18] M. T. Matache and J. Heidel, “Asynchronous Random Boolean Network
Model Based on Elementary Cellular Automata Rule 126,” Physical
Review E, 71, 026232 (2005) 13 pages.

[19] X. Deng, H. Geng, and M. T. Matache, “Dynamics of Asynchronous
Random Boolean Networks with Asynchrony Generated by Stochastic
Processes,” BioSystems, 88 (2007) 16–34.

[20] M. T. Matache, “Asynchronous Random Boolean Network Model with
Variable Number of Parents Based on Elementary Cellular Automata Rule
126,” International Journal of Modern Physics B, 20 (2006) 897–923.

[21] C. S. Goodrich and M. T. Matache, “The Stabilizing Effect of Noise on
the Dynamics of a Boolean Network,” Physica A, 379 (2007) 334–356.

[22] S. A. Kauffman, The Origins of Order: Self-Organization and Selection
in Evolution (Oxford University Press, New York, 1993).

[23] B. Derrida and Y. Pomeau, “Random Networks of Automata: A Simple
Annealed Approximation,” Europhysics Letters, 1 (1986) 45– 49.

[24] S. Wolfram, A New Kind of Science (Wolfram Media Inc., Champaign,
IL, 2002).

[25] S. Wolfram, “Statistical Mechanics of Cellular Automata,” Review of
Modern Physics, 55 (1983) 601.

[26] L. O. Chua, S. Yoon, and R. Dogaru, “A Nonlinear Dynamics Perspective
of Wolfram’s New Kind of Science. Part I: Threshold of Complexity,” In-
ternational Journal of Bifurcation and Chaos, 12(12) (2002) 2655–2766.

[27] Y-C. Hung, M-C. Ho, J-S. Lih, and I-M. Jiang, “Chaos Synchronization
of Two Stochastically Coupled Random Boolean Networks,” Physics
Letters A, 356 (2006) 35– 43.

[28] MATLAB software by The MathWorks, Natick, MA.

[29] J.-P. Bouchaud and M. Potters, Theory of Financial Risks. From Statistical
Physics to Risk Management (Cambridge University Press, 2000).

[30] K. T. Alligood, T. D. Sauer, and J. A. Yorke, CHAOS An Introduction
to Dynamical Systems (Springer-Verlag, New York, Heidelberg, Berlin,
1996).

[31] A. Wolf, J. B. Swift, H. L. Swinney, and J. A. Vastano, “Determining
Lyapunov Exponents from a Time Series,” Physica D, 16 (1985) 285–317.

Complex Systems, 14 (2008) 357–379



Dynamics of Directed Boolean Networks 379

[32] M. A. Murison, “Notes on How to Numerically Calculate the Max-
imum Lyapunov Exponent,” Astronomical Applications Department,
U. S. Naval Observatory, Washington DC, 1995.
http://www.alpheratz.net/murison/papers/Notes/LyapCalc/LyapCalc.pdf

[33] Chaos Data Analyzer (CDA) software by Julien C. Sprott and George
Rowlands, distributed by Physics Academic Software, Raleigh, NC.

[34] G. L. Beck and M. T. Matache, “Dynamical Behavior and Influence of
Stochastic Noise on Certain Generalized Boolean Networks,” submitted.

[35] N. A. Fatès and M. Morvan, “An Experimental Study of Robustness to
Asynchronism for Elementary Cellular Automata,” Complex Systems,
16(1) (2005) 1–27.

[36] D. Cornforth, D. G. Green, and D. Newth, “Ordered Asynchronous
Processes in Multi-Agent Systems,” Physica D, 204 (2005) 70–82.

[37] D. Newth and M. Brede, “Fitness Landscape Analysis and Optimization
of Coupled Oscillators,” Complex Systems, 16(4) (2006) 317–331.

Complex Systems, 14 (2008) 357–379


	Dynamics of Directed Boolean Networks under Generalized Elementary Cellular Automata Rules, with Power-Law Distributions and Popularity Assignment of Parent Nodes
	Recommended Citation

	984833.dvi

