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We investigate relationships between the sign of the discrete frac-
tional sequential difference

(
�ν

1+a−μ�
μ
a f
)
(t) and the convexity of

the function t �→ f (t). In particular, we consider the case inwhich the
bound (

�ν
1+a−μ�

μ
a f
)
(t) ≥ εf (a),

for some ε > 0 and where f (a) < 0, is satisfied. Thus, we allow for
the case in which the sequential difference may be negative, and we
show that even though the fractional difference can be negative, the
convexity of the function f can be implied by the above inequality
nonetheless. This demonstrates a significant dissimilarity between
the fractional andnon-fractional cases.Weuse a combinationof both
hard analysis and numerical simulation.
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1. Introduction

Denote by Na, for  any  a ∈ R, the set  Na := {a, a + 1, a + 2, . . .  }. Then recall that for a 
function f : Na → R the first-order forward difference (or first-order delta difference) is 
defined by

(�f )(n) := f (n + 1) − f (n).

By composing this operator one obtains the second-order forward difference, �2f , which
is defined by (

�2f
)
(n) := f (n + 2) − 2f (n + 1) + f (n).

It is well known that there is a strong connection between the signs of these functions and,
respectively, the monotonicity and convexity of f. That is, f is monotone on Na if and only
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http://orcid.org/0000-0003-2058-216X
mailto:c.goodrich@unsw.edu.au


if (�f )(n) ≥ 0 for n ∈ Na, and f is convex on Na if and only if (�2f )(n) ≥ 0 for n ∈ Na
– see Atici and Yaldiz [13] for additional results as concerns the convexity or concavity of
discrete time maps.

At the same time in the past 10 years much interest has been cultivated in understand-
ing a fractional-order analogue of the nth-order forward difference operator�n. One such
definition, initially investigated in great detail byAtici and Eloe [7–11] and then later devel-
oped in many different directions by Abdeljawad, Al-Mdallal, and Hajji [2], Abdeljawad
and Atici [3], Agarwal et al. [5], Anastassiou [6], Ferreira [21,22], Goodrich [25], Jonnala-
gadda [44,45], Lizama [48], Lizama and Murillo-Arcila [49], and Wu and Baleanu [51],
among others, is defined (see Section 2 for additional details) by

(
�ν

af
)
(t) := 1

�(−ν)

t+ν∑
s=a

(t − s − 1)−ν−1f (s),

where t ∈ Na−ν+N , N − 1 < ν ≤ N, a ∈ R, and the function t �→ tα is defined by

tα := �(t + 1)
�(t + 1 − α)

.

Note that owing to the fact that (�ν
af )(t) is defined in terms of a linear combination of

values of f (n) at previous time points, the operator �ν
af is inherently non-local. As a con-

sequence of this non-local structure the relationship between the sign of (�ν
af )(t) and the

monotonicity or convexity of t �→ f (t) is both subtle and complex. For example, in case
2 < ν < 3 it is known that (�ν

af )(t) > 0 does not necessarily imply the convexity of f –
see Jia et al. [41].

It is also the case that compositions of fractional differences have been studied exten-
sively in recent years. A composition of fractional differences of the form

�ν
1+a−μ ◦ �μ

a

is known as a sequential fractional difference since the fractional differences are composed
in a particular sequence – to the best of our knowledge this type of fractional difference
operators was first considered by Goodrich [23] in the context of the analysis of certain
discrete fractional boundary value problems. As with a single fractional difference, there
is a very subtle and complex relationship between the sign of a sequential difference and
whether the associated function is, say, monotone or convex.

For example, with 0 < μ < 1, 1 < ν < 2, and 2 < μ + ν < 3, in Goodrich [28] and
later in Dahal and Goodrich [18] it was shown that there is a sharp dichotomy between the
region of the (μ, ν) parameter space on which there is a connection between the sign of
the sequential fractional difference (�ν

1+a−μ�
μ
a f )(t) and the convexity of f, and the region

of the parameter space on which such a connection fails to exist. This is illustrated by the
drawing shown below.



Thedark grey region,M2, is the subset of the admissible parameter space onwhich there
exists a strong connection between the sign of (�ν

1+a−μ�
μ
a f )(t) and the sign of (�f )(t).

By contrast, the light grey region, M1, is the subset of the admissible parameter space on
which no such connection exists. Thus, whether one can produce a convexity-type result
is related in a complex way to the values of μ and ν.

In both Dahal and Goodrich [18] and Goodrich [28] it was assumed that

(
�ν

1+a−μ�μ
a f
)
(t) > 0, (1)

for each t ∈ N3+a−μ−ν . Our goal in this paper is to explore what happens when
the zero lower bound in inequality (1) is replaced by a negative lower bound –
specifically,

(
�ν

1+a−μ�μ
a f
)
(t) > εf (a) (2)

for some ε > 0 and in case 0 < μ < 1, 1 < ν < 2, and 2 < μ + ν < 3. Since we will
assume (as in [18,28]) that f (a) < 0, it follows that εf (a) < 0. We will show that
one can still obtain convexity-type results even if the sequential fractional difference
is negative and, in particular, satisfies inequality (2) instead of the stronger inequal-
ity (1). However, we note that as εf (a) decreases (i.e. as the negative lower bound
becomes ‘more strongly negative’) it occurs (as we will show later in Section 4)
that

∣∣M2
∣∣ → 0.

In particular (see Section 4 for additional details and other relevant figures), the drawing
below shows the effect of choosing ε = 1

20 in inequality (2).



As the drawing above suggests, for this value of ε, which by Lemma 3.9 is actually
relatively large, the ‘good region’, which is to say the region on which a convexity-type
result can be deduced, has shrunk considerably from the natural configuration shown ear-
lier when ε = 0. This is what we mean when we assert that as the negative lower bound
becomes ‘more strongly negative’ it follows that we can deduce a convexity-type result on
a smaller and smaller subregion of the admissible parameter space.

Notice that this type of result is highly aberrant with respect to the integer-order differ-
ence calculus. Indeed, it absolutely cannot happen that (�2f )(n) < 0 and yet f is convex,
for if (�2f )(n) < 0, then (�f )(n + 1) < (�f )(n), which at once means that f is concave
at the point n rather than convex. Therefore, this illustrates a significant and, we believe,
interesting dissimilarity between the integer- and fractional-order difference calculus. We
would like to mention that this sort of ‘negative lower bound’ type of result was consid-
ered previously in a very recent paper by Goodrich et al. [34]. However, in that paper,
only monotonicity-type results were considered – not convexity-type results. As it turns
out, while the results are of a similar flavor, new arguments are needed – cf., the proof of
Lemma 3.2 in this paper with [34, Lemma 3.2], for example.

To conclude this section we would like to mention the broader literature inasmuch as
discrete fractional calculus is concerned, particularly with regard to monotonicity- and
convexity-type results. As already suggested earlier in this section there has been much
progress in characterizing the precise relationship between the sign of the fractional differ-
ence of f and the qualitative properties (e.g. monotonicity and convexity) of the function f.
These investigations include papers in the non-sequential case by Abdeljawad and Abdalla
[1], Abdeljawad and Baleanu [4], Atici and Uyanik [12], Jia et al. [43], Dahal and Goodrich
[15], Du et al. [19], Erbe et al. [20], Goodrich [24,26], Goodrich et al. [31], Goodrich and
Lizama [33], Jia et al. [38–42], and Liu et al. [47]; and in the sequential case by Dahal
and Goodrich [16,17], Goodrich [28–30], Goodrich and Lizama [32], and Goodrich and
Muellner [35]. But other than the previously mentioned paper [34], none considers the
implications of a negative lower bound. So, we hope that the results of this paper help to
spur on a new direction in which to extend these types of monotonicity and convexity
results.

Let us conclude this section with a brief explanation of the organization of the paper. In
Section 2we briefly recall some basic definitions in discrete fractional calculus. In Section 3



we use hard analysis to deduce some convexity-type results in the case where the sequential 
difference has a negative lower bound. Finally, in Section 4 we provide a numerical investi-
gation of these same relationships. Using numerical simulations allow us to more broadly 
understand the relationships we investigate in this paper.

2. Preliminaries

In this brief section we mention some basic results in discrete fractional calculus. A wealth 
of additional results may be found in the recent textbook by Goodrich and Peterson [36], 
and we direct the reader to this resource for a more substantial presentation of the fun-
damental ideas in discrete fractional calculus. We begin with the definition of the falling 
factorial function.

Definition 2 .1: We put

tν := �(t + 1)
�(t + 1 − ν)

for any t and ν for which neither t+ 1 and t + 1 − ν is a pole of the Gamma function. We
also appeal to the convention that if t + 1 − ν is a pole of the Gamma function and t+ 1
is not a pole, then tν := 0.

Next we state the definitions of the discrete fractional difference and sum of Riemann-
Liouville type. We also state the definition of the fractional Taylor monomial of order ν.
Observe that the falling factorial function from Definition 2.1 is the kernel of the summa-
tion operators in Definition 2.2. Definitions 2.2 and 2.3 can be found in [36, Definition
2.25 and Theorem 2.33] and [36, Definition 2.24], respectively.

Definition 2.2: The ν-th fractional sum, ν > 0, of a function f : Na → R, where a ∈ R,
is

(
�−ν

a f
)
(t) := 1

�(ν)

t−ν∑
s=a

(t − s − 1)ν−1f (s),

for t ∈ Na+ν . The ν-th fractional difference of f, for ν > 0, by

(
�ν

af
)
(t) := 1

�(−ν)

t+ν∑
s=a

(t − s − 1)−ν−1f (s),

where t ∈ Na−ν+N and N ∈ N1 is the unique number satisfying N − 1 < ν ≤ N.

Definition 2.3: The ν-th fractional Taylor monomial based at s is the map (t, s) �→
hν(t, s) defined by

hν(t, s) := (t − s)ν

�(ν + 1)
,

whenever the right-hand side is defined.

The next lemma will be useful in Section 3.



Lemma 2.4: Assume that 0 < μ < 1, 1 < ν < 2, and 2 < μ + ν < 3. Suppose that
(�ν

1+a−μ�
μ
a f )(t) ≥ εf (a), for each t ∈ N3+a−μ−ν . Then it holds that

�2f (a + k + 1) ≥ −h−μ−ν(a + 3 − μ − ν + k, a)f (a)

− h−μ−ν+1(a + 3 − μ − ν + k, a)�f (a)

−
a+k∑
s=a

h−μ−ν+1(a + 3 − μ − ν + k, s + 1)�2f (s)

+ h−ν−1(a + 2 − ν + k, a)f (a)

+ εf (a),

for each k ∈ N0.

Proof: This lemmawas proved in [27, Lemma 2.12] in case ε = 0. In case ε > 0 a straight-
forward modification of that proof yields the statement of this theorem. Therefore, we
eliminate the details of this argument. �

We finally state the following result due to Holm [37]. The key fact expressed by this
result is that the fractional difference operator is, in general, a non-commutative operator,
a fact which is of considerable importance when considering discrete fractional sequential
operators.

Theorem 2.5: Let f : Na → R be given and suppose ν,μ > 0, with N − 1 < ν ≤ N and
M − 1 < μ ≤ M, where M, N ∈ N1. Then for t ∈ Na+M−μ+N−ν it holds that

�ν
a+M−μ�μ

a f (t)

= �ν+μ
a f (t) −

M−1∑
j=0

h−ν−M+j(t − M + μ, a)�j−M+μ
a f (a + M − μ), (3)

where N − 1 < ν < N. If ν = N, then (3) simplifies to

�ν
a+M−μ�μ

a f (t) = �ν+μ
a f (t),

where t ∈ Na+M−μ.

3. Analytical results

In this section we focus on what we can prove using hard analysis; in Section 4, by contrast,  
we will provide a numerical analysis of the problem. Throughout this section and the next 
we will denote by M ⊆ R2 the following set.

M := {
(μ, ν) ∈ R

2 : 0 < μ < 1, 1 < ν < 2, and 2 < μ + ν < 3
}

Geometrically this set is represented by the hatched region in the following drawing.



Thus, the set M is the admissible parameter space for the parameter pair (μ, ν).
Our first result provides a sufficient condition for a function f : Na → R to be convex

for at least one time step. Keep in mind that since f (a) < 0, it follows that

εf (a) < 0,

recalling that ε > 0.

Theorem 3.1: Let (μ, ν) ∈ M and assume that f : Na → R satisfies each of the
following:

(1) f (a) ≤ 0;
(2) (�f )(a) ≥ 0;
(3) (�2f )(a) ≥ 0;
(4) (�ν

1+a−μ�
μ
a f )(3 − μ − ν + a) ≥ εf (a); and

(5) ν > − 1
2 (μ − 3) +

√
−3(μ − 3)(μ − 1)2(μ + 1) + 24ε(3 − 3μ)

2(3 − 3μ)
.

Then (�2f )(a + 1) ≥ 0.

Proof: Similar to the beginning of the proof of [28, Theorem 2.5] and with the help of
Lemma 2.4 we begin by writing(

�2)f (a + 1) ≥ −h−μ−ν(a + 3 − μ − ν, a)f (a)

− h−μ−ν+1(a + 3 − μ − ν, a)�f (a)

−
a∑

s=a
h−μ−ν+1(a + 3 − μ − ν, s + 1)�2f (s)

︸ ︷︷ ︸
≥0 since

(
�2f
)
(a)≥0

+ h−ν−1(a + 2 − ν, a)f (a)

+ εf (a)



≥ −h−μ−ν(a + 3 − μ − ν, a)f (a)−h−μ−ν+1(a + 3 − μ − ν, a)�f (a)︸ ︷︷ ︸
≥0

+ h−ν−1(a + 2 − ν, a)f (a) + εf (a)

≥ [− h−μ−ν(a + 3 − μ − ν, a) + h−ν−1(a + 2 − ν, a) + ε
]
f (a), (4)

where we have used both the fact that

−h−μ−ν+1(a + 3 − μ − ν, a + 1) > 0

and that

−h−μ−ν+1(a + 3 − μ − ν, a)�f (a) ≥ 0.

Now, recall that f (a) < 0. Then note from (4) that

(
�2f

)
(a + 1) ≥ 0

provided that

− (3 − μ − ν)−μ−ν

�(−μ − ν + 1)
+ (2 − ν)−ν−1

�(−ν)
+ ε

= 1
6
(2 − ν)(1 − ν)(−ν) − 1

6
(3 − μ − ν)(2 − μ − ν)(1 − μ − ν) + ε ≤ 0. (5)

Note that inequality (5) is equivalent to

(−3μ + 3)ν2 + (− 3μ2 + 12μ − 9
)
ν + (− μ3 + 6μ2 − 11μ + 6 − 6ε

) ≥ 0. (6)

The left-hand side of inequality (6) is equal to zero only if

ν = −1
2
(μ − 3) ±

√
−3(μ − 3)(μ − 1)2(μ + 1) + 24ε(3 − 3μ)

2(3 − 3μ)
.

Considering that 3 − 3μ > 0 since μ ∈ (0, 1), it follows that

− 1
2
(μ − 3) +

√
−3(μ − 3)(μ − 1)2(μ + 1) + 24ε(3 − 3μ)

2(3 − 3μ)

> −1
2
(μ − 3) −

√
−3(μ − 3)(μ − 1)2(μ + 1) + 24ε(3 − 3μ)

2(3 − 3μ)
.



In addition, we note that

−1
2
(μ − 3) −

√
−3(μ − 3)(μ − 1)2(μ + 1) + 24ε(3 − 3μ)

2(3 − 3μ)
< 1,

for all ε > 0 and 0 < μ < 1. Therefore, keeping in mind that we require that 1 < ν < 2,
we conclude that inequality (6) holds for each (μ, ν) ∈ M such that

ν > −1
2
(μ − 3) +

√
−3(μ − 3)(μ − 1)2(μ + 1) + 24ε(3 − 3μ)

2(3 − 3μ)
.

But since this latter inequality was assumed in (5) in the statement of the theorem, it follows
that (

�2f
)
(a + 1) ≥ 0,

as claimed. �

In what follows it will be convenient to introduce some notation. Therefore, for each
k ∈ N3 and ε ≥ 0 define the set Fk,ε ⊆ M by

Fk,ε :=
⎧⎨
⎩(μ, ν) ∈ M :

1
k!

k∏
j=1

(j − 1 − ν) − 1
k!

k∏
j=1

(j − μ − ν) ≤ −ε

⎫⎬
⎭ .

We next state and prove a lemma, which shows that on a proper subset of the admissible
parameter space the collection {Fk,ε}∞k=3 forms a decreasing collection of sets.

Lemma 3.2: Let (μ, ν) ∈ M . Also assume that

ν > −1
2
(μ − 3) +

√
−3(μ − 3)(μ − 1)2(μ + 1) + 24ε(3 − 3μ)

2(3 − 3μ)
. (7)

Then

Fk,ε ⊇ Fk+1,ε (8)

for all k ≥ 3. Additionally,

∞⋂
k=3

Fk,ε = lim
k→∞

Fk,ε = ∅. (9)

Proof: Note that the definition of Fk,ε can be rewritten as

Fk,ε =
⎧⎨
⎩(μ, ν) ∈ M :

1
k!

k∏
j=1

(j − μ − ν) − 1
k!

k∏
j=1

(j − 1 − ν) ≥ ε

⎫⎬
⎭ . (10)

So, let (μ0, ν0) ∈ M and ε0 > 0 be arbitrary but fixedwhile satisfying (7).Wewill establish
the desired inclusion (8) by contradiction. In particular, we will show that for all k the



conjunction

(μ0, ν0) /∈ Fk,ε0 ∧ (μ0, ν0) ∈ Fk+1,ε0 (11)

is false. This conjunction can be rewritten as

1
k!

k∏
j=1

(j − μ0 − ν0) − 1
k!

k∏
j=1

(j − 1 − ν0)

< ε0 ≤ 1
(k + 1)!

k+1∏
j=1

(j − μ0 − ν0) − 1
(k + 1)!

k+1∏
j=1

(j − 1 − ν0), (12)

based on (10). To help us disprove (12) and thus (11) we define the sets W1 and W2 by

W1 :=
{
k ∈ N3 :

1
k!

k∏
j=1

(j − μ0 − ν0) − 1
k!

k∏
j=1

(j − 1 − ν0)

≥ 1
(k + 1)!

k+1∏
j=1

(j − μ0 − ν0) − 1
(k + 1)!

k+1∏
j=1

(j − 1 − ν0)

}

and

W2 :=
⎧⎨
⎩k ∈ N3 :

1
k!

k∏
j=1

(j − μ0 − ν0) − 1
k!

k∏
j=1

(j − 1 − ν0)

<
1

(k + 1)!

k+1∏
j=1

(j − μ0 − ν0) − 1
(k + 1)!

k+1∏
j=1

(j − 1 − ν0)

⎫⎬
⎭ .

Note that for all k ∈ N3, either k ∈ W1 or k ∈ W2. We will now state and prove two
properties of W1 and W2.

(1) If k0 ∈ W1, then for each k ∈ Nk0 it follows that k ∈ W1.

(2) If k0 ∈ W2, then (μ0, ν0) ∈
k0⋂
k=3

Fk,ε0 .

We first prove property (1). To start we will rewrite the inequality in the definition of
W1. So, notice that

1
k!

k∏
j=1

(j − μ0 − ν0) − 1
k!

k∏
j=1

(j − 1 − ν0)

≥ 1
(k + 1)!

k+1∏
j=1

(j − μ0 − ν0) − 1
(k + 1)!

k+1∏
j=1

(j − 1 − ν0)



holds if and only if

(k + 1)
k∏

j=1
(j − μ0 − ν0) − (k + 1)

k∏
j=1

(j − 1 − ν0)

≥
k+1∏
j=1

(j − μ0 − ν0) −
k+1∏
j=1

(j − 1 − ν0)

if and only if

(k + 1)
k∏

j=1
(j − μ0 − ν0) −

k+1∏
j=1

(j − μ0 − ν0)

≥ (k + 1)
k∏

j=1
(j − 1 − ν0) −

k+1∏
j=1

(j − 1 − ν0)

if and only if ⎛
⎝ k∏

j=1
(j − μ0 − ν0)

⎞
⎠((k + 1) − (k + 1 − μ0 − ν0)

)

≥
⎛
⎝ k∏

j=1
(j − 1 − ν0)

⎞
⎠((k + 1) − (k + 1 − 1 − ν0)

)

if and only if

−
k∏

j=0
(j − μ0 − ν0) ≥ −

k∏
j=0

(j − 1 − ν0).

Thus, we can redefine W1 as

W1 =
⎧⎨
⎩k ∈ N3 : −

k∏
j=0

(j − μ0 − ν0) ≥ −
k∏

j=0
(j − 1 − ν0)

⎫⎬
⎭ . (13)

Also note that

−
k∏

j=0
(j − μ0 − ν0) > 0

and

−
k∏

j=0
(j − 1 − ν0) > 0.

We will now use an induction argument to prove property (1). By the statement of case (1)
there exists some k0 ∈ N3 such that k0 ∈ W1. Thus, the base case is trivially established.



Now we assume that for some k ≥ k0, k ∈ W1, and we then show that k + 1 ∈ W1. First
notice that

k + 1 − μ0 − ν0 > k − ν0 > 0, (14)

which follows from the fact that μ0 + ν0 < 3 and k ≥ 3. Now, since we assumed that

0 < −
k∏

j=0
(j − 1 − ν0) ≤ −

k∏
j=0

(j − μ0 − ν0) (15)

in our induction hypothesis, we may use (14) to rewrite inequality (15) as

− (k + 1 − μ0 − ν0)

k∏
j=0

(j − μ0 − ν0) > −(k − ν0)

k∏
j=0

(j − 1 − ν0). (16)

But (16) is exactly

−
k+1∏
j=0

(j − μ0 − ν0) > −
k+1∏
j=0

(j − 1 − ν0),

which implies, together with (13), that k + 1 ∈ W1, as desired. Thus we have proven
property (1) by induction.

Next we prove property (2). So, assume that k0 ∈ W2. As a preliminary observation we
will show that (μ0, ν0) ∈ F3,ε . Consider the fact that (7) is just (6) forμ = μ0, ν = ν0, and
ε = ε0. Due to the reversibility of the steps, this is also (5) for μ = μ0, ν = ν0, and ε =
ε0. But (5) clearly implies that (μ0, ν0) ∈ F3,ε , as desired. Now we will prove the desired

implication – namely, that since k0 ∈ W2 it follows that (μ0, ν0) ∈
k0⋂
k=3

Fk,ε0 . To see that

this must be true, suppose that for some k̂ < k0 it held that k̂ ∈ W1. But then property (1),
which we have already proven, would imply that k0 ∈ W1, a contradiction. Consequently,
recalling that for all k ∈ N3 either k ∈ W1 or k ∈ W2, we get that N

k0
3 ⊆ W2, where N

k0
3 :=

{3, 4, 5, . . . k0 − 1, k0}. Therefore,

ε0 ≤ 1
3!

3∏
j=1

(j − μ0 − ν0) − 1
3!

3∏
j=1

(j − 1 − ν0)

< . . . <
1
k0!

k0∏
j=1

(j − μ0 − ν0) − 1
k0!

k0∏
j=1

(j − 1 − ν0)

Thus, for all k ∈ N
k0
3 ,

1
k!

k∏
j=1

(j − μ0 − ν0) − 1
k!

k∏
j=1

(j − 1 − ν0) ≥ ε0,



implying

(μ0, ν0) ∈
k0⋂
k=3

Fk,ε0 ,

as desired. Thus, we conclude that property (2) is true.
Finally, based on the two properties we have just proven we will show that for each k ∈

N3 and each ε0 > 0 inequality (12) cannot be true, which will establish the desired claim
– that is, we show that it cannot occur that (μ0, ν0) ∈ Fk0+1,ε0 and yet (μ0, ν0) /∈ Fk0,ε0 .
Solely based upon properties (1)–(2), three different cases exist:

(A) W1 = N3 and W2 = ∅;
(B) W1 = ∅ and W2 = N3; and
(C) For some k ∈ N3, W1 = Nk+1 and W2 = N

k
3.

We consider these cases in turn. Note that the case W1 = N
k
3 and W2 = Nk+1, for some

k ∈ N3, is excluded because of property (1). Indeed, by property (1) ifW1 = N
k
3, thenW1 =

N3 in contradiction of the claim that W2 �= ∅.
We will first consider case (A). Note that (12) implies

1
k!

k∏
j=1

(j − μ0 − ν0) − 1
k!

k∏
j=1

(j − 1 − ν0)

<
1

(k + 1)!

k+1∏
j=1

(j − μ0 − ν0) − 1
(k + 1)!

k+1∏
j=1

(j − 1 − ν0). (17)

But this is clearly impossible if for all k ∈ N3, k ∈ W1, based on the definition of W1. So,
(A) cannot be true if (12) is true.

Next, we consider case (B). Note that (12) requires that

1
k!

k∏
j=1

(j − μ0 − ν0) − 1
k!

k∏
j=1

(j − 1 − ν0) < ε0. (18)

That is, (μ0, ν0) /∈ Fk,ε . But based on the definition of case (B) as well as property (2) of
W1 and W2, this is impossible as well – that is, in case (B) by property (2) we have that

(μ0, ν0) ∈
k0⋂
j=3

Fj,ε0 for each k0 ∈ N3 so that, in particular, (μ0, ν0) ∈ Fk,ε0 . So, (B) also

cannot be true if (12) is true.
Lastly, we consider case (C). First we will prove that (12) cannot hold for k ∈ N

k
3. This

is so because of (18) being incompatible with property (2) of W1 and W2 – exactly as in
the previous paragraph. On the other hand, (12) cannot hold for k ∈ Nk+1. And this is so
because (17) is incompatible with property (1) of W1 and W2. So, we conclude that (C)
cannot be true if (12) is true.

In summary, none of (A), (B), and (C) can be true if (12) is true. Since exactly one of
these must be true, we arrive at the desired contradiction. Thus, (12) and therefore (11) is



disproven. Since (μ0, ν0) and ε0 were arbitrary, we may conclude that for all (μ, ν) ∈ M
and ε ≥ 0 satisfying the condition stated in the lemma,

(μ, ν) /∈ Fk,ε ∧ (μ, ν) ∈ Fk+1,ε

is impossible. Thus, (8) is proven true, as desired.
At the same time, to prove (9) define the sequences {Ak}∞k=1 and {Bk}∞k=1 by

Ak := 1
k!

k∏
j=1

(j − 1 − ν)

and

Bk := 1
k!

k∏
j=1

(j − μ − ν).

That Ak, Bk → 0 as k → ∞ was actually proved in [34, Lemma 3.2], and the proof in this
case is essentially identical, but we, nonetheless, mention the brief argument here for the
sake of completeness. So, recalling that (see, for example, Carlson [14, Theorem 3.4-1],
Kilbas, et al. [46, (1.5.15)], or Wong and Beals [50, Proposition 2.1.3])

lim
k→∞

�(k − ν)

�(k)k−ν
= 1

it follows that

lim
k→∞

Ak = lim
k→∞

1
k!

k∏
j=1

(j − 1 − ν) = lim
k→∞

[
�(k − ν)

�(−ν)�(k + 1)

]

= lim
k→∞

⎡
⎢⎢⎣ �(k − ν)

�(k + 1)k−ν−1︸ ︷︷ ︸
−→1

· k−ν−1

�(−ν − 1)

⎤
⎥⎥⎦

= lim
k→∞

k−ν−1

�(−ν)

= 0.

In a completely similar manner we deduce that

lim
k→∞

Bk = 0.

Therefore,

lim
k→∞

1
k!

⎡
⎣ k∏

j=1
(j − μ − ν) −

k∏
j=1

(j − 1 − ν)

⎤
⎦ = lim

k→∞
(
Bk − Ak

) = 0.

Consequently, since ε > 0, it follows that

k0 := sup
{
k ∈ N : Bk − Ak ≥ ε

}
< +∞,



which implies that Fk,ε = ∅ for all k ≥ k0. And this implies that
∞⋂
k=3

Fk,ε = ∅, as

claimed. �

Remark 3.3: Note that, in fact, (9) proves that case (B) in Lemma 3.2 is impossible, as

otherwise (μ0, ν0) would be a counterexample sufficient to show that
∞⋂
k=3

Fk,ε �= ∅.

Remark 3.4: The first claim of Lemma 3.2 may fail if (7) is not satisfied. For example, let
μ := 0.9, ν := 1.6, and ε := 0.01. Note that this doesn’t satisfy (7), as

−1
2
(0.9 − 3) +

√
−3(0.9 − 3)(0.9 − 1)2(0.9 + 1) + 24(0.01)(3 − 3(0.9))

2(3 − 3(0.9))
> 1.77 > ν.

Then (1 − 0.9 − 1.6)(2 − 0.9 − 1.6)(3 − 0.9 − 1.6) − (−1.6)(−0.6)(0.4) = −0.009 < ε,
so (0.9, 1.6) /∈ F3,ε , while (1 − 0.9 − 1.6)(2 − 0.9 − 1.6)(3 − 0.9 − 1.6)(4 − 0.9 − 1.6) −
(−1.6)(−0.6)(0.4)(1.4) = 0.0249 > ε, so (0.9, 1.6) ∈ F4,ε . Thus, in this case F3,ε �⊃
F4,ε .

We now present a corollary of Theorem 3.1 and Lemma 3.2.

Corollary 3.5: Let (μ, ν) ∈ M and ε ≥ 0 satisfy condition (7). Also assume that each of
the following is true for f and some k0 ∈ N3:

(1) f (a) ≤ 0;
(2) (�f )(a) ≥ 0;
(3) (�2f )(a) ≥ 0; and
(4) (�ν

1+a−μ�
μ
a f )(t) ≥ εf (a) for all t ∈ N

k0−μ−ν+a
3−μ−ν+a .

If (μ, ν) ∈ Fk0,ε, then (�2f )(t) ≥ 0 for each t ∈ N
a+k0−1
a .

Proof: From the proof of Theorem 3.1 we know that

(�2f )(a + k0 − 1) ≥ [Ak − Bk + ε]f (a) ≥ 0 (19)

holds for all 2 ≤ k ≤ k0 if and only if

(μ, ν) ∈
k0⋂
j=3

Fj,ε . (20)

But by Lemma 3.2,
k0⋂
j=3

Fj,ε = Fk0,ε .

We have assumed (μ, ν) ∈ Fk0,ε to be true. Therefore, both (20) and (19) are true. (19)
and the proof of Theorem 3.1 imply that (�2f )(t) ≥ 0 for each t ∈ N

a+k0−1
a , and so, the

proof is complete. �



The following example demonstrates that the set of functions

D : =
{
f : N0 → R : f (0) ≤ 0, (�f )(0) ≥ 0, (�2f )(0) ≥ 0,

(∃(μ, ν) ∈ M ) ∧ (∃ε ≥ 0) � (�ν
1+a−μ�μ

a f
)
(3 − μ − ν + a) ≥ εf (a)

∧ ν > −1
2
(μ − 3) +

√
−3(μ − 3)(μ − 1)2(μ + 1) + 24ε(3 − 3μ)

2(3 − 3μ)

}

is non-empty.

Example 3.6: Selectμ := 0.5, ν := 1.99, and ε := 1
20

. Also, let f : N0 → R be a function
that satisfies f (0) = −60, f (1) = −58, f (2) = −55, and f (3) = −50. This clearly satisfies
condition (1) of Theorem 3.1. Also note that (�f )(0) = 2 ≥ 0 and (�2f )(0) = 1 ≥ 0, so
conditions (2) and (3) are satisfied as well. To prove that condition (5) holds, calculate that

−1
2
(μ − 3) +

√
−3(μ − 3)(μ − 1)2(μ + 1) + 24ε(3 − 3μ)

2(3 − 3μ)
= 1.96589 < ν.

Lastly, consider condition (4). Note that

(
�ν

1+a−μ�μ
a f
)
(3 − μ − ν + a) =

(
�1.99

0.5 �0.5
0 f
)
(0.51)

= (�2.49
0 f )(0.51) − h−2.99(0.01, 0)

(
�−0.5

0 f
)
(0.5).

= − (0.49)(1.49)(2.49) + (0.01)(0.99)(1.99)
6

f (0)

+ (1.49)(2.49)
2

f (1) − 2.49f (2) + f (3)

= −2.2664

≥ −3

= εf (0).

Thus condition (4) is satisfied. Since we have proven that all of the conditions of
Theorem 3.1 are satisfied, Theorem 3.1 implies that (�2f )(1) ≥ 0. And this is indeed true,
as (�2f )(1) = 2.

Remark 3.7: It turns out that in Example 3.6, ε is close to the supremum value for which
F3,ε can be non-empty. We provide a graph to show the size ofF

3, 120
. We will explore this

idea further in Lemma 3.9 and Remark 3.10.



Our next theorem demonstrates that, a less restrictive version of condition (4) in
Theorem 3.1 exists that still guarantees the validity of the convexity result.

Theorem 3.8: Let (μ, ν) ∈ M and assume that f : Na → R satisfies each of the
following:

(1) f (a) < 0;
(2) (�f )(a) ≥ 0;
(3) (�2f )(a) ≥ 0;
(4) (�ν

1+a−μ�
μ
a f )(3 − μ − ν + a) ≥ −ε for some ε ≥ 0; and

(5) ν > − 1
2 (μ − 3) +

√
−3(μ−3)(μ−1)2(μ+1)−24

(
ε

f (a)
)
(3−3μ)

2(3−3μ)
.

Then (�2f )(a + 1) ≥ 0.

Proof: From condition (4), we can obtain an equation analogous to (5). First note that

(�2f )(a + 1)

≥ [− h−μ−ν(a + 3 − μ − ν, a) + h−ν−1(a + 2 − ν, a)
]
f (a) − ε

=
[
1
6
(2 − ν)(1 − ν)(−ν) − 1

6
(3 − μ − ν)(2 − μ − ν)(1 − μ − ν)

]
f (a) − ε. (21)

We will show that the right-hand side of (21) is non-negative. Keeping in mind that by
condition (1) it holds that f (a) �= 0, note that (21) is true if and only if

1
6
(2 − ν)(1 − ν)(−ν) − 1

6
(3 − μ − ν)(2 − μ − ν)(1 − μ − ν) − ε

f (a)
≤ 0. (22)

Now make the substitution ε := − ε
f (a) . Then we may use the exact same procedure as in

the proof of Theorem 3.1 to rewrite (22) as

ν > −1
2
(μ − 3) +

√
−3(μ − 3)(μ − 1)2(μ + 1) + 24ε(3 − 3μ)

2(3 − 3μ)
. (23)



But based on the definition of ε, inequality (23) is exactly the same as condition (5) in the
statement of the theorem. Therefore,

(�2f )(a + 1)

≥
[
1
6
(2 − ν)(1 − ν)(−ν) − 1

6
(3 − μ − ν)(2 − μ − ν)(1 − μ − ν)

]
f (a) − ε ≥ 0.

This completes the proof of the theorem. �

Our final analytical result, Lemma 3.9, gives a necessary condition for F3,ε to be non-
empty.

Lemma 3.9: Suppose that F3,ε is non-empty. Then ε <
√
3

27 .

Proof: We will show that F3,ε can only ever be non-empty if ε <
√
3

27 . From (7) it follows
that

ν > −1
2
(μ − 3) +

√
−3(μ − 3)(μ − 1)2(μ + 1) + 24ε(3 − 3μ)

2(3 − 3μ)
.

Therefore, since 1 < ν < 2, it follows that

2 > −1
2
(μ − 3) +

√
−3(μ − 3)(μ − 1)2(μ + 1) + 24ε(3 − 3μ)

2(3 − 3μ)
. (24)

Wewill nowmanipulate this inequality. So, using that 3 − 3μ > 0, we note that (24) is true
if and only if

4(3 − 3μ) > (3 − μ)(3 − 3μ) +
√

−3(μ − 3)(μ − 1)2(μ + 1) + 24ε(3 − 3μ)

if and only if

3(1 − μ)(1 + μ) >
√

−3(μ − 3)(μ − 1)2(μ + 1) + 24ε(3 − 3μ)

if and only if

9(1 − μ)(1 + μ)2 > 3(3 − μ)(1 − μ)(1 + μ) + 72ε.

So, we conclude that (24) is true if and only if

ε < −1
6
μ
(
μ2 − 1

)
.

Finally, noting that

sup
μ∈(0,1)

(
−1
6
μ
(
μ2 − 1

)) =
√
3

27
,

we deduce that ε <
√
3

27 . �

Remark 3.10: Since we determined in Lemma 3.2 that for k ∈ N4 it holds that Fk,ε ⊆
F3,ε , it follows from Lemma 3.9 that if ε ≥

√
3

27 , then
∞⋃
k=3

Fk,ε = ∅. And this demonstrates

the sufficiency of the condition.



Figure 1. Graphical representation of the set Fk,0.01 for k ≤ 97.

Figure 2. Graphical representation of the set Fk,0.001 for k ≤ 97.

4. Numerical simulations

In this section we investigate numerically the properties of the Fk,ε sets, which were stud-
ied analytically in Section 3. These numerical investigations will provide some additional
insight into their properties. Recall from Section 3 that the Fk,ε sets are the key to under-
standing the extent of the (μ, ν) parameter space to which the convexity results may apply. 
Each of the drawings presented in this section was produced with the assistance of Matlab.

We consider first Figures 1–5. These five figures show the set Fk, ε for ε = 10−m where
m ∈ N6

2 – in each case for each k ∈ {3, 5, 7, . . .  , 95, 97}; note that the set Fk,ε is shown in 
black, whereas the entire admissible parameter space is shown in light grey. Furthermore,



Figure 3. Graphical representation of the setFk,0.0001 for k ≤ 97.

Figure 4. Graphical representation of the setFk,0.00001 for k ≤ 97.

the k value associated to the plot is labelled only if Fk,ε �= ∅. So, for example, in Figure 1
we note that Fk,0.01 = ∅ for k>5, depicted in Figure 1 as plots with no black region.

Notice that as k increases the measure of the Fk,ε set decreases. However, we also see
that for smaller ε, the measure of the set stays larger (inmeasure) for more values of k. This
is congruent with the analytical observations made in Section 3. In addition, we see that
the setFk,ε tends to ‘shrink away’ from the boundaryμ = 1 as k increases. In other words,
as k increases we see that within the admissible parameter space the setFk,ε becomes ever
more confined to the upper-left region of the admissible parameter space – see especially
Figures 4 and 5, in which this phenomenon is most clearly observable. Interestingly, this is
not something which is not so easily discernible from the analytical results of Section 3.



Figure 5. Graphical representation of the set Fk,0.000001 for k ≤ 97.

Figure 6. Heat maps generated by the cardinality of the set {k : (μ, ν) ∈ Fk,ε} for ε = 0.01, 0.001, 
0.0001, 0.00001, 0.000001, 0.0000001. The cardinality increases from small (lighter shades) to large 
(darker shades) and the actual cardinalities are shown along the sidebar of each subplot.



Figure 7. Heat maps generated by the cardinality of the set {k : (μ, ν) ∈ Fk,ε} for ε = 1/100, 1/150, 
1/400, 1/650, 1/900, 1/1000. These six plots correspond to the interval of ε reflected in the top two 
plots in Figure 6.

On the other hand, Figures 6 and 7 provide heat maps, which are generated by the car-

dinality of the set {k : (μ, ν) ∈ Fk,ε} for a given ε ≤
√
3

27
. In other words, in Figures 6 and

7 we are visualizing the number of time steps to which the convexity-type results can, in
theory, apply. The warmer the colour the more time steps for which a given point remains
in the set Fk,ε , whereas the cooler the colour the fewer time steps for which a given point
remains in the set Fk,ε .

From these figures we immediately see that, just as we would expect from Figures 1–5
the warmer colours tend to be concentrated in, roughly speaking, the upper left part of the
admissible parameter space, and, correspondingly, the cooler colours tend to be concen-
trated near the right-boundary μ = 1. Figure 7 particularly illustrates this change since
the six plots in this figure are given over the smaller range of ε-values from ε = 0.01 to
ε = 0.001, whereas the six plots in Figure 6 range over the, relatively speaking, much larger
ε-value range from ε = 0.01 to ε = 0.0000001.

Notice, furthermore, that when ε is, relatively speaking, small (e.g. the two plots in the
upper row of Figure 7), few points are in Fk,ε for more than two or three values of k.
This means that the convexity results of Section 3 are only, in theory, applicable for a very



limited number of time steps when ε is close to its maximal value of
√
3

27
. As ε approaches

zero from above, however, more and more points remain in Fk,ε for a greater number
of time steps. And this means that in such cases the analytical results of Section 3 are, in
principle, applicable for a much greater number of time steps.

All in all, these observations confirm and enlighten the analytical observations made
in Section 3. In particular, our observations seem to be consistent with the following
assertions.

• For each fixed ε it holds that

lim
k→∞

∣∣Fk,ε
∣∣ = 0.

That is, for each ε > 0 fixed as k increases the measure of the set Fk,ε shrinks to zero.
• For each fixed k ≥ 3 it holds that

lim
ε→0+

∣∣Fk,ε
∣∣ = ∣∣M ∣∣.

That is, for each k ≥ 3 fixed as ε tends to 0 from above it follows that the set Fk.ε
approaches the set M in the sense that |M \ Fk,ε| → 0.

• The greatest ‘concentration’ of the Fk,ε sets tend to be deflected away from the right
boundary μ = 1 and, in fact, are concentrated in the upper right-hand region of the
admissible parameter space M . Mathematically, we do not have a precise explanation
for this apparent phenomenon. In particular, it is not a priori evident to us why the
Fk,ε sets should concentrate in this particular subregion of the admissible parameter
space M .
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