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Abstract 
Current methods of fractal analysis rely on capturing approximations of an 

images’ fractal dimension by distributing iteratively smaller boxes over the 

image, counting the set of box and fractal, and using linear regression 

estimators to estimate the slope of the set count line. To minimize the 

estimation error in those methods, our aim in this study was to derive a 

generalized fractal feature that operates without iterative box sizes or any 

linear regression estimators. To do this, we adapted the Minkowski-

Bouligand box counting dimension to a generalized form by fixing the box 

size to the smallest fundamental unit (the individual pixel) and 

incorporating each pixel’s color channels as components of the intensity 

measurement. The purpose of this study was twofold; to first validate our 

novel approach, and to then apply that approach to the classification of 

detailed, organic images of viruses. When validating our method, we a) 

computed the fractal dimension of known fractal structures to verify 

accuracy, and b) tested the results of the proposed method against 

previously published color fractal structures to assess similarity to 

comparable existing methods. Finally, we performed a case study of twelve 

virus transmission electron microscope (TEM) images to investigate the 

effects of fractal features between viruses and across the fac- tors of family 

(Orthomyxoviridae, Filoviridae, Paramyxoviridae and Coronaviridae) and 

physical structure (whole cell, capsid and envelope). Our results show that 

the presented generalized fractal feature is a) accurate when applied to 

known fractals and b) shows differing trends to comparable existing 



 

methods when performed on color fractals, indicating that the proposed 

method is indeed a single-scale fractal feature. Finally, results of the 

analysis of TEM virus images suggest that viruses may be uniquely 

identified using only their computed fractal features. 

 

Keywords: 
Fractal analysis, Virus classification, Color image fractal dimension, 

Minkowski-Bouligand fractal dimension 

 

 

 

 

 

 

 

 

 

 

 

 

1. Introduction 
Beginning with Mandelbrot in 1982, fractal geometry has been used to 

characterize various phenomena in the natural world, from sunspots [1] to 

the malignancy of tumors [2]. A structure can only be considered a fractal 

when the fractal dimension is found to be scale invariant, so that the ratio 

between log N(ε) and log 1/ε remains constant. Here, N(ε) represents the 

minimal number of identical boxes necessary to cover the fractal with square 

boxes of side length ε. This inherent power-law spatial correlation is what 

defines a fractal [1,3,4] and by approximating the fractal dimension of a 

structure, the underlying dynamical processes can be investigated. When 

considering the most common and accepted methods for approximating 
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fractal dimension (FD), it was a general requirement that the image be either 

in grayscale or binarized formats [5–8]. This allows the use of box-

counting methods that divide the image into discrete “boxes” of decreasing 

size and count the number of “on” boxes present in the image. The main 

drawbacks of this method are that box-counting’s iterative approach can be 

computationally intensive and/or time-consuming when expanded to higher 

dimension spaces [9], and a significant portion of the in- formation from the 

image is removed. Namely, the process of binarization removes most 

shading information for complex images while eliminating the full red, green, 

blue (RGB) color space [10]. Within the RGB color space there are sixteen 

million possible colors while within the binarization color space there are 

only eight colors; this difference in available information can mean a 

significant loss of variation depending on the threshold for the binarization 

algorithm, especially when images have many shades of one color, which 

can cause critical image details to be ignored [10]. While this could be 

mitigated by employing more complex binarization algorithms, a fractal 

dimension calculation compares how detail changes at different scales, 

providing a statistical index of complexity [11]. So, to lose any detail could 

wash out these changes from the calculation. 

To address the issues surrounding binarization for color image 

analysis, several techniques have been proposed and explored [12–15]. In 

general, these methods adapt a standard fractal dimension estimation 

strategy, such as differential box-counting [12– 14] or simplified Hausdorff 

Dimension [15] into a five-dimensional (x, y, r, g, b) space, and 

subsequently produce log-log plots within that 5D space for each color 

channel using boxes of variable size. These methods are, generally 

speaking, analogous to the analysis of binarized images in terms of their 

iterative and computationally intensive pipeline; this introduces challenges 

both in the relative complexity of calculating fractal dimension as well as the 

comparison of the color fractal dimension to well-known and documented 

binary fractal patterns (i.e. the Sierpinski Carpet). By extension, this is true 



 

for any n-dimensional fractal of greater complexity than that of a binarized 

image [16]. 

It is important to note that, historically, fractals were monochrome, 

composed of simply ‘on’ and ‘off’ pixels and com- posed of simple geometric 

shapes, such as lines and curves. While these estimation methods have 

been used in texture analysis and image segmentation of natural images 

since 1989, by using the lacunarity, or space-filling, metric [17], the extension 

to higher order structures has not been fully explored. Consequently, higher 

order fractals that exist in the color space are a topic of continuing 

investigation and research. Ivanovici has addressed some of the core issues 

surrounding color fractal generation and color FD estimation [18,19]. For a 

structure to be a fractal it must maintain the property of self-similarity [11,18]. 

This makes color fractals particularly difficult to generate, since natural 

images cannot be mathematically proven to be infinitely self-similar. Ivanovici 

addresses this by proposing a color fractal generator and linear regression 

estimators to compute the fractal dimension of the generated structures 

[18,19]. These proposed methods still rely on iterative box counting and 

regression estimators to compute the FD of images but show relative stability 

at varying scales and adherence to accepted limits.  

We propose the use of a novel single-scale fractal feature which 

can be adapted to n-dimensional space. By adapting the Minkowski-

Bouligand fractal dimension equation [6], i.e., box counting, to the 

individual pixel, a generalized equation can be derived for any image in any 

color space while simultaneously eliminating linear regression estimators 

and iterative box size calculations. 

 

2. Background 
When calculating the fractal dimension (FD) of any image or structure, 

the most common methods run in iterations, varying a window size and 

counting the number of one or zero value windows inside the image, placing 

results on a log-log plot, and then using the line of best fit to yield an 



 

estimated FD [7]. This is performed to accommodate for the scale variance 

that occurs when measuring the FD of natural images and by estimating 

the slope of the line, the scale variance can be compensated. According to 

Bisoi et al., there are multiple common methods to perform box-counting, 

including: reticular cell counting, Keller’s approach, and differential box-

counting [7]. There are also several variations and implementations of these 

algorithms, including the improved differential box-counting method which, 

by sliding boxes of various sizes across the image, can solve problems that 

exist with the differential box-counting method [8]. The main drawback of 

these methods (improved and original) is that they still generally operate 

using grayscale images [8,20,21,2]. 

Since all digital images generally have between one (monochrome) 

and four (ARGB, CMYK) pixel data channels, and all color images have 

at least three channels to represent color and/or intensity (i.e. RGB, YUV, 

HSV, etc.), [22] a way to flexibly represent this information for use in the 

calculation of FD is needed. Structurally, a digital image is comprised of a 

finite grid of cells represented as pixels that store the color values at a 

given location. There has been work done by other researchers, most 

prominently by Ivanovici, to adapt these grayscale algorithms to color 

images by extending the 2D vector to the RGB space and thereby 

generating a 5D vector. A general rule proposed in many of their papers is 

that the minimum color FD for an (x, y), or 2D, image would be Dmin  = 2, 

while for an (x, y, r, g, b), or 5D, image would be Dmax = 5. Here, (x, y) 

represents the pair of coordinates for a point in the xy-plane [19]. Ivanovici et 

al. did this through the extension of a probability density estimator to the 

RGB color space, which is then run through various regression estimators to 

provide a cohesive measure of an image’s FD [19]. The validation of their 

method was achieved by generating novel color fractals through the Hurst 

parameter and midpoint displacement [18]. These generated fractals act 

as a type of benchmark that can be used in the characterization of FD 

estimators. Additionally, [23] proposes an additional set of benchmarks that 



 

include the generation of increasingly random color images, and their 3D 

histograms, which are used to estimate the fractal dimension, similar to 

other studies [9]. 

Various other methods have been proposed to address FD estimation 

in the color space, intended for differing application cases. For instance, FD 

has been applied to the authentication of Jackson Pollock paintings [24], 

whose work has been the subject of interest due to the fractal nature of his 

paintings and their seemingly intentional application of self-similar 

structures. There has also been continuing work in the extension of the box-

counting dimension to an RGB color space for the purposes of roughness 

characterization and texture classification [25,26]. 

 

3. Methods 
For this study, our main interest was in developing a single-scale 

fractal feature estimation method that does not rely on regression estimators 

or iteratively sized boxes, while also providing accurate estimates of known 

FDs. To accomplish this, the parameter ε will be fixed at the size of a single 

pixel, meaning that N(ε) will equal the total number of pixels in the image 

[6,3]. 

 

3.1. Derivation of a generalized single-scale fractal feature equation 
Generally, the total number of pixels in a digital image can be 

represented by the product of the number of color channels in the image and 

the height and width of the image. In this notation, nCH is the total number 

of channels. This is comparable to the calculation of the total number of 

boxes used by methods such as box- counting. Our goal is to provide an 

alternative to the FD given by: 

(1)  

Recall that N(ε) represents the minimal number of identical boxes 



 

necessary to cover the fractal S with square boxes of side length ε. The 

retrieval of a pixel would be achieved by selecting a color channel (cCH ) and 

an index (i) in the associated image. If an image is single color, then cCH is 

fixed at zero, for a zero indexed array. The value of a pixel in the image is given 

by cCH ,i , representing the luminosity of the pixel selected at a specified 

index. Since our interest is to create an analogue to binary box counting for 

color images, we are going to sum the contents of the image pixels, across 

all channels. Assuming all pixels in the image are used and no filtering step 

was used, then we can find the average of the pixel intensity by dividing by 

the number of pixels in the im- age, denoted by ρA. Finally, the average can 

be normalized on a [0, 1] scale by dividing by the maximum possible pixel 

value, denoted by αD. 

(2)  

Eq. (2) is a direct analogue to binarization but performed on the 

color channels and allowing for the variations to remain. This can be used to 

determine the minimum value of a cell. An image that has ‘0’s across an 

entire channel would result in a domain error, so Eq. (3) provides a method 

to avoid this. 

(3)  

By using Eq. (3) as a replacement for pixel channels that yield 

a βC of ‘0’ the minimum fractal dimension results. Generally, this will not 

happen in a digital image, since pixels in a color channel are commonly 

represented as 8-bit or 16-bit values, so they have values that occupy a [0, 

255] and [0, 65535] space, respectively. The pixels cannot have fractional 

values in those spaces and unless the color channel is all ‘0’s, Eq. (3) will not 

be needed. So, this can be adapted to the Minkowski-Bouligand FD given in 

Eq. (1). In this approach, we avoid the limiting process so that N(ε) is 



 

defined as ρA · βC , applying the mean, normalized pixel value over the entire 

pixel space, and 1/ε is fixed at the number of pixels in the image raised to the 

root of the dimension of the image. Plugging the previous derivations into 

the above equation, the resultant experimental FD equation is obtained by 

considering: 

(4)  

Since the box size is fixed in our implementation, there is no limit to be 

tested over a continuous range of box sizes. Finally, the equation can be 

simplified by applying logarithm rules to the numerator and denominator. 

This is shown in Eq. (5). 

(5)  

  
3.2. Implementation of the novel color FD equation 

For simplicity, the proposed algorithm was implemented in the Python 

language. Considering there are non-square fractal geometries, this 

implementation also takes into consideration the alpha channel of a PNG 

image, which provides transparency. By removing the background of non-

square fractals, such as the Sierpinski Triangle, the pixels that are part of 

the background can be subtracted from the calculations to achieve a more 

accurate result. Additionally, we used MATLAB to compute the Minkowski-

Bouligand dimension developed by F. Moisy [27] and to use the estimator 

provided by Ivanovici [19]. 

 

3.3. Experimental methods 
For this study, three case studies were conducted to validate and 

evaluate the proposed single-scale fractal feature equation against the 

results of the Minkowski-Bouligand dimension and the estimator presented 

in [19]. These studies allow a comparison of the proposed method with 

those presented in the literature as well as show potential future avenues of 



 

research. To allow the comparison to other methods the proposed estimator 

will be run on known fractal structures to see its performance in estimating 

theoretical structures. Then, boundary testing will be performed on the 

estimator to evaluate its resolution and operation over its entire range of 

possible input values. These tests will also be accompanied by a timing test 

to assess its computational performance. Next, the dataset presented by 

Ivanovici in [18] will be tested to compare the affect the Hurst parameter has 

on the resultant fractal dimension of the proposed estimator. Finally, a case 

study looking at the statistical correlations between virus families, virus 

structures, and a virus’ FD will be performed using transmission electron 

microscope (TEM) images. 
 
4. Experimental results 
 

Four tests were performed for this study, comparing the proposed 

method and the box-counting dimension; the first of these was a validation 

study against known fractals, the second was a boundary test using 

randomly filled images of increasing size accompanied by a timing test, the 

third was a comparison study against the color fractals from [18], and the 

final test examined the three methods (box-counting, [19], and the proposed 

method) against color images. The fractal dimension estimator provided in 

[19] by Ivanovici has been made publicly available for research purposes as a 

MATLAB script and that is what will be used in this experiment, in addition to 

the script from [27]. 

The implementation of the Minkowski-Bouligand dimension method 

from [27] iteratively runs through the image with subsequently smaller 

squares, plots the results of each iteration, and finds the line of best fit to 

calculate the FD. By comparison, the proposed method performs a single 

calculation and has no iterative approach, meaning that its computational 

requirements are significantly reduced. An ideal fractal image would be 

one where there are only straight lines and each line is represented by a 



 

sequence of zero intensity pixels, representing the color black. Since 

this is generally not achieved in non-square fractals, an approximation is 

used to create the effect of angled lines with smooth edges, as in the 

Sierpinski Triangle. This will cause the calculated FD value to approximate 

the true FD, as in Minkowski-Bouligand box-counting. In summary, this 

means that a higher-resolution im- age yields a more accurate FD for any 

method, and to achieve high accuracy when compared against the 

theoretical value, square fractals are optimal. 

 

Table 1 
Results for known fractal calculations. 

 
 Fractal name Theoretical Composite Percent error 

Experimental Sierpinski Carpet 1.89278926071437 1.89278926071437 0.0000000% 

 Sierpinski Triangle 1.58496250072115 1.57634370604398 0.5437854% 

Box Counting Sierpinski Carpet 1.89278926071437 1.89180000000000 0.0522647% 

 Sierpinski Triangle 1.58496250072115 1.59440000000000 0.5954399% 

 

4.1. Known fractals 

For the first assessment, the FD of two common fractals (the 

Sierpinski Triangle and Sierpinski Carpet) was computed and com- pared 

using both the Minkowski-Bouligand box-counting method and the 

proposed method. These two fractals are well-known and have theoretical 

FDs of 1.89278 and 1.58496, respectively. They are also monochrome, 

which in the image is represented as all three- color channels being at 

either zero intensity (“black”) or full intensity (“white”). This means that, 

when compared against methods that binarize the image, the results 

should be similar since they both deal with a theoretical zero and one 

value, with zero being no intensity for the pixel and one being full intensity 

for the pixel.  

Before testing known fractals, a simple theoretical benchmark is 

necessary. For a full luminosity image, an all-white image, the FD should be 



 

2. Alternatively, for a no luminosity image, an all-black image, the FD should 

be 0. This was tested for both methods to see their output and their 

handling of these boundary cases and both came back consistent. Per 

Section 3.1, Eq. (2) was used in the pro- posed method to calculate the 

minimum intensity for each color plane. The results for the fractal analysis 

of these structures are shown in Tables 1 and 2 for the eleventh iteration 

of each fractal. 

Note that the experimental dimension specifies red, blue, and green 

color channel calculations, with composite being the com- bination of the 

three channels, which the box counting dimension does not have. If all four 

calculations are the same, then the image is grayscale. The percent error 

is the percent difference between the theoretical FD and the calculated FD 

using the respective equation. The composite dimension is the proposed 

method (Table 2). 

 

Table 2 
Percent error for known fractal calculations and theoretical values. 

 

 Box counting error Composite error Improvement 

Sierpinski 

Carpet 

0.0522647% 0.0000000% 100% 

Sierpinski 

Triangle 

0.5954399% 0.5437854% 9% 

 

Shown above (Fig. 1) is the output of the MATLAB implementation of 

the Minkowski-Bouligand dimension, with the input image and the plotted 

iteration dimension [27]. Shown above (Table 2) are the tabulated results 

for the testing, including comparisons. 

Shown above (Table 2) is the comparison between the two methods 

for each fractal. The box counting and experimental error is pulled from 

Table 1. The improvement column shows the increase or decrease in the 



 

FD estimation towards or away from the theoretical value. An ideal case 

would be when the error goes to 0%, which means it matches the 

theoretical value. Results for known fractals show a significant improvement 

in accuracy for square fractals such as the Sierpinski Carpet, with results 

being identical to theoretical calculations up to fifteen decimal places. 

Essentially, it gives a perfect calculation of the FD of the ideal fractal 

structure. For a non-square fractal, the Sierpinski Triangle, there is a loss of 

accuracy which is due in part to the size of the fractal structure and the 

amount of approximation that is present to digitally represent an angled line. 

In the case of the eleventh iteration Sierpinski Triangle, the estimated FD 

has improved but it is still not exact. The approximation of the angled lines 

makes it where the true structure of the fractal is obscured from this 

approximation, leading to a slightly lower FD being estimated. 

 

4.2. Boundary testing & timing tests 

There are some published experiments that demonstrate the application 

of a FD estimator to digital color images. The ones used and expanded on 

here are from Chauveau et al. and Nikolaidis et al., where an image with an 

x-dimension gradient from [0 – 255] is placed in the red channel, a y-

dimension gradient from [255 – 0] is placed in the green channel, and the 

blue is channel is set to a constant of 128 [23]. This image is proposed to have 

a fractal dimension of 2. Then, going from the blue to green to red channels, 

each color plane is randomized, and their fractal dimensions tested. Nikolaidis 

et al. calculates these to have a fractal dimension of 3, 4, and 5, respectively 

[9]. In addition to these tests, we are going to also test solid color images of 

red, green, and blue. Finally, we will test filling an image with solid values 

across each color channel in increasing increments to perform a boundary 

test, to see the minimum and maximum fractal dimension estimated by the 

proposed estimator. These fill bounds are defined as [ cCH ,iMIN , 255] in 

increments of 0.001, leading to a total of over 250,000 iterations. These results 

are shown below, (Fig. 2, Table 3, Table 4, Fig. 3). 



 

 

 
Fig. 1. Plotted output of the MATLAB implementation. 

 

 

 
Fig. 2. From left to right, the gradient image has each channel 

randomized. 



 

While there is a significant difference between the results of the 

proposed estimator and the estimators presented in [23,9], it is important 

to note that color images are not fractal structures proper. This is the 

foundation laid by Ivanovici in his 2010 and 2020 papers where color 

fractal images with correlated color com- ponents can be generated. 

These tests provide an interesting way to compare two estimators to see 

how their outputs may vary and how their measurements may be 

contrasted or compared. Since the proposed method eschews the use of 

regression estimators and varying box sizes, it can be expected that the 

estimator will tend towards higher FD estimations. 

 

Table 3 
Color testing for the solid color and gradient images. 

 
                            Red     Green               Blue                     Gradient  

Dimension   4.504712977      4.504712977       4.504712977    4.688088951 

 

 

Table 4 
Color testing results for random images. 

                      Blue random Green blue random Full random  

Dimension 4.687716884  4.687644164               4.688462452 

 

 

Shown above (Fig. 4 and Table 5) are the results of the computation 

testing, where the estimator was run on randomized im- ages of increasing 

sizes for 1000 iterations and the execution time was averaged after all 

computations were completed. Even at the largest image size tested, it still 

took slightly less than 500 milliseconds to complete the estimation. While 

the other two estimators, [19] and [27], were provided as MATLAB scripts, they 

still took several to tens of seconds to perform their estimation.



 

 

 

 
Fig. 3. The left figure is the increase in fractal dimension in each 

iteration and the right is a zoomed in view of the change in variation 

between successive fractal dimension estimations. 

 

 
Fig. 4. Plotted results of the timing tests showing a roughly linear 

increase in the computation time vs. image size. 



 

 

Table 5 
Results of the timing tests with increasing image size and randomly 

filled images. 
Image Size (h x w)    256 × 256 512 × 512 768 × 768 1024 × 1024 1280 × 1280 
Image Size (h x w)    16.3731243 74.849884 162.4125342 285.076265 491.9684485 
   

Fig. 5. Examples of the generated color fractals [18], the left being with 

an H = 0.1, the middle with an H = 0.5, and the right with an H = 0.9. 

 

4.3. Ivanovici dataset comparison 

Ivanovici made the dataset used in their color fractal study open 

source for other researchers to use in validation of their own methods for 

color FD (CFD) estimation [18]. They provide nine color fractal images 

generated using a midpoint displacement method that was adapted from 

grayscale to the color domain. By varying the Hurst parameter (H), which is 

a measure of long-term memory usually associated with a time series, the 

texture of the structure is made either rougher or smoother on a zero to 

one scale, respectively. As part of our investigation, we compared their color 

FD with our own using the same images. 

The images used above, and their corresponding computed fractal 

dimensions (Fig. 5 and Table 6), had their Hurst parameter varied by 0.1 on 

each iteration, so the first image has an H = 0.1 and the last image has an H 

= 0.9. The column to the right of each CFD is the difference between the 

current and the last CFD. This shows the variation that the Hurst parameter 

introduces on each successive iteration. For the method in [18], the 

increase of the Hurst parameter reduces the FD significantly on each 



 

 

iteration, while for our proposed method it increases the FD slightly on each 

iteration.  

 

Table 6 
CFD estimation results with their corresponding difference with 

changing Hurst parameter. 
Image [18] CFD [18] Variation Proposed CFD Proposed variation 

H01 3. 8268  4.6446  

H02 3.9134 0.0866 4.6572 0.0125 

H03 3.9113 −0.0021 4.6744 0.0172 

H04 3.6373 −0.2740 4.6834 0.0090 

H05 3.2692 −0.3681 4.6876 0.0042 

H06 2.8623 −0.4069 4.6910 0.0035 

H07 2.5673 −0.2950 4.6942 0.0032 

H08 2.3573 −0.2100 4.7031 0.0090 

H09 2.2372 −0.1201 4.7144 0.0112 

 

 

 
 

Fig. 6. The plotted variation introduced by the Hurst parameter for 

both methods. 



 

 

 

 

Fig. 7. Plotted CFD and variation in each individual color channel 

calculated when using the proposed method. 

 

Fig. 6 above show the change in variation over different Hurst scales. 

The changes in CFD follow a similar curve, where it initially decreases but 

then increases at higher scales. This shows that as the image gets 

smoother, the FD shifts approximately in tan- dem. The main difference 

between the two methods is that for the method in [18], the FD shifts 

significantly over Hurst scales, but for our proposed method the variation is 

significantly dampened. With the limitations imposed by a single-scale fractal 

feature, this indicates the impossibility of an appropriate estimation. Fig. 7 

shows the same estimations and variations for each of the color 

channels. There is no direct comparison available between the individual 

color channels and the CFD provided by [18], but it does show the 

significant variation that occurs when accounting for individual color 

channels, rather than all color channels simultaneously. 

 

4.4. Virus images and methodology 



 

 

While fractal analysis has been applied extensively to a variety of 

fields, it has relatively little penetration into virus classification and 

characterization. When considering the visual structure of a virus as seen 

through a transmission electron microscope (TEM), the envelope of the 

virus has the most variety. The viral load of a virus is delivered through the 

glycoproteins on the envelope, which give each family of virus a distinct 2D 

outline [28]. Additionally, the genome sequence of a virus is a unique 

representation of a strain of virus and has been used in fractal and 

entropy analysis to classify strains of viruses [29,30]. For clarification, there 

are two important sub-structures that are exposed through a TEM im- age: 

the capsid and envelope. The capsid is the protein shell that encapsulates 

the viral RNA payload and nucleic acid, and the envelope is the outer shell 

that has glycoprotein projections, which are used to anchor the virus and 

deliver the RNA payload [31]. Across different viruses, there is significant 

variation on the structure, distribution, and size of the envelope and its 

glycoproteins. Following these studies, fractal analysis was performed 

across a variety of viruses using Minkowski-Bouligand dimension, the 

estimator proposed in [19], and the experimental dimension to see fractal 

dimension estimation differences between the three methods and determine 

if there are any significant group effects across the dataset variables. 

 

Table 7 
Tabulated results for the single variable statistical measures. 
 Across family Across virus Across structure 

 X2 dF p X2 dF p X2 dF p 

Red 10.91 3 0.012 29.16 11 0.002 0.194 2 0.908 

Green 2.872 3 0.412 24.31 11 0.011 0.176 2 0.916 

Blue 3.693 3 0.297 30.99 11 0.001 0.272 2 0.873 

Composite 1.951 3 0.583 28.65 11 0.003 0.047 2 0.977 

Box Counting 11.49 3 0.009 27.46 11 0.004 4.679 2 0.096 

Ivanovici 21.190 3 0.000 29.15 11 0.002 3.182 2 0.204 

 



 

 

 

Fig. 8. Example of virus images, specifically SARS-CoV-2. Image "a" is 

the whole cell, image "b" is the capsid, and image "c" is the envelope. 

Credit: NIAID Integrated Research Facility (IRF) in Fort Detrick, 

Maryland. 

 

To do this, TEM images were collected from the National Institute for 

Allergies and Infectious Diseases’ (NIAID) Flickr account, the National 

Institutes of Health (NIH) archives, and from the Centers for Disease Control 

and Prevention (CDC) archives. These im- ages were categorized across 

virus and family, leading to the collection of twelve viruses equally 

distributed across four families, with a single TEM image per virus. Then, the 

images were manually segmented into three separate images: whole cell, 

capsid, and envelope. While TEM images are intensity based and therefore 

not true color digital images, their main benefit is that they show a cross 

sectional view of a complex structure and serve as an ideal subject for a 

fractal dimension study. Finally, the background of the images was made 

transparent to take advantage of the experimental method’s ability to 

exclude non-structure pixels from the estimation. The capsid is visually 

defined as the central, inner, color distribution of the cell, up to a distinct wall 

where the color dark- ens. The inverse of the capsid is being defined as the 

envelope, including the glycoproteins. This result is shown in Fig. 8. 

 

4.5. Virus results and statistical models 

The above procedure was followed for all twelve collected viruses. 



 

 

Note that there are three grayscale images in this dataset: H7N9, MeV, and 

SARS-CoV. This is due to the lack of availability of colored TEM images for 

these viruses. In general, there appears to be a greater degree of 

variability in measures resulting from the proposed method than with the 

Minkowski-Bouligand method. Based on the greater degree of accuracy 

observed with the proposed method in Section 4.1, this would indicate that it 

more closely estimates the true fractal dimension of the virus structures. To 

closely analyze these results, Kruskal-Wallis H tests were per- formed 

across the virus families, structures, and viruses to com- pare the mean 

differences between their FDs. For all statistical measures, a p-value of 0.05 

was considered statistically significant. There are six statistical tests 

performed on this data: comparisons across virus family only, comparisons 

across viruses only, comparisons across structures only, comparisons of 

viruses against structure, comparisons of virus family against each structure, 

and com- parisons of a virus against the other viruses in the same family. 

 

4.6. Color virus images statistical results 

Kruskal-Wallis H tests for group mean differences between viral 

families, viral strains and viral structures were performed to assess the 

differences present (if any) in FD that may indicate characteristic features of 

the viruses. The test statistic, degrees of freedom, and significance are 

tabulated in Table 7 for the first three single variable measures. 

These results demonstrate that, when accounting for family as a 

statistical measure, there are significant mean differences between groups 

for all three methods used. This implies that the FD of the virus can 

distinguish between families of viruses. Additionally, each individual virus is 

distinct in its fractal dimension estimation, with all measures showing 

significance in their mean FDs. This is con- founded by the Virus by Structure 

statistic, which shows p = 0.443 across the board for all measures, implying 

that using an individual structure, such as whole cell, is not sufficient to 

distinguish be- tween viruses. Finally, there were no significant differences in 



 

 

FD for viral sub-structure, indicating that segmenting each structure is 

necessary to isolate features in the virus. The box counting and Ivanovici 

fractal dimension differs from the proposed method in that it shows a higher 

(albeit more variable) sensitivity to the seg- mentation. 

When accounting for structure and family as statistical measures 

(Table 8), the differences in mean FD are not statistically significant, 

yielding no distinct differences, affirming the Virus by Structure statistic. This is 

not the case for the method proposed by Ivanovici for the whole cell and capsid. 

In addition to affirming the lack of group mean differences between families 

and structures, it also indicates that the method of segmentation is not 

necessary to yield a similar FD, and that when using family as the measure, the 

mean FD for each family is statistically identical. 

Table 8 
Tabulated results for the family by structure statistic. 

 Whole cell                         Capsid                        Envelope 
 X2 dF P  X2 dF p  X2 dF p  

Red 3.718 3 0.294  5 3 0.172  4.128 3 0.248  

Green 1.462 3 0.691  1.718 3 0.633  2.077 3 0.557  

Blue 1.051 3 0.789  2.077 3 0.557  3.000 3 0.392  

Composite 0.744 3 0.863  1.256 3 0.740  1.667 3 0.644  

Box Counting 2.897 3 0.408  3.821 3 0.282  5.615 3 0.132  

Ivanovici 8.333 3 0.040  8.744 3 0.033  7.205 3 0.066  

 
Table 9 
Tabulated results for the virus by family statistic. 

 Orthomyxoviridae Filoviridae Paramyxoviridae Coronaviridae 

 X2 dF p X2 dF p X2 dF p X2 dF p 

Red 2.400 2 0.301 6.489 2 0.039 5.600 2 0.061 1.156 2 0.561 

Green 5.956 2 0.051 7.200 2 0.027 2.756 2 0.252 3.200 2 0.202 

Blue 7.200 2 0.027 5.956 2 0.051 7.200 2 0.027 7.200 2 0.027 

Composite 6.489 2 0.039 6.489 2 0.039 5.689 2 0.058 5.400 2 0.066 

Box Counting 1.422 2 0.491 6.489 2 0.039 5.600 2 0.061 5.067 2 0.079 

Ivanovici 5.422 2 0.066 5.600 2 0.061 6.489 2 0.039 1.422 2 0.491 



 

 

When considering virus and family as statistical measures, all virus 

families showed significance for some measure of the pro- posed method; 

this demonstrates that the distribution of the mean FD was not the same 

across categories of virus. Only Filoviridae was significantly different (p = 

0.039) for the box counting fractal dimension measure and only 

Paramyxoviridae was significantly different (p = 0.039) for the method in [19]. 

This lends additional weight to the Across Virus statistic, which showed that 

each virus had a significantly different mean FD. That should, and in one case 

for box counting and [19] does, hold true when the sample size is collapsed 

to a single family using only three viruses, (Table 9). 

 

5. Discussion 
When compared to other methods, such as box-counting, the 

proposed fractal feature shows greater accuracy for known fractals. Using 

the proposed method on the Sierpinski Carpet yielded an identical 

calculation as the theoretical value of the fractal, which the box counting 

dimension did not. Non-square fractals add in unnecessary pixels to the 

image that skew the result either up or down, depending on the color and 

number of pixels. This skew can be significant as well, as shown in the 

Sierpinski Triangle fractal, but the proposed method still provided a closer 

approximation of the fractal dimension than the box-counting estimation, 

regardless of this approximation. 

The derived fractal feature not only retains the color space present in 

digital images but accomplishes this without the use of an iterative 

process or linear estimators. The accuracy of this feature was shown by 

using known fractal structures and comparing it against the most common 

box-counting dimension, which the feature was based from. Additionally, 

color fractals created by Ivanovici in [18] were evaluated and the feature was 

shown to exhibit a similar fractal dimension shift as the theoretical 

dimensions for the fractals. The main issue when showing the use of the 

proposed estimation method against color images is that there are no known 



 

 

fractal dimensions for color images other than the work done by Ivanovici 

in [18] and [19]. Regardless, the analysis of the sub-structures of viruses 

yielded promising results which showed statistical phenomena when 

comparing the virus’ fractal features against the other virus’ mean fractal 

features in the dataset. Even with a relatively small number of data points 

available, which is restricted by limited availability of virus TEM images, 

there was consistent significance in the comparison of mean fractal features 

across all studied viruses, suggesting a possible correlation be- tween a 

virus’ fractal features and its identification, indicating that viruses, such as 

2009 H1N1, can be identified by its fractal features when segmented. By 

pursuing a broader study with greater sample size and control over TEM 

image consistency these correlations can be explored with a broader 

collection of viruses. 

Through this study, a new, generalized method for the calculation of 

fractal features for images of arbitrary size was proposed and was validated 

using well-known fractals. The application of this fractal feature was 

explored using various color benchmarks, a color fractal dataset, and a virus 

case study that showed both that the proposed method more closely 

estimates the true structure of the processed images but also that viruses 

can be identified using the fractal features of their sub-structures alone, all 

while maintaining a low computational overhead. 
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