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Abstract

The security of software is becoming increasingly important. Open source software forms much of

our digital infrastructure. It, however, contains vulnerabilities which have been exploited, attracted

public attention, and caused large financial damages. This article proposes a solution to shortcom-

ings in the current economic situation of open source software development. The main idea is to

introduce price signals into the peer production of software. This is achieved through a trading mar-

ket for futures contracts on the status of software issues. Users, who value secure software, gain the

possibility to predict outcomes and incentivize work, strengthening collaboration and information

sharing in open source software development. The design of such a trading market is discussed

and a prototype introduced. The feasibility of the trading market design is corroborated in a proof-

of-concept implementation and simulation. Preliminary results show that the implementation works

and can be used for future experiments. Several directions for future research result from this art-

icle, which contributes to peer production, software development practices, and incentives design.

Key words incentives; market design; peer production; software market

Introduction

In today’s world, software is ubiquitous and will become even more

so with the advent of the Internet of things. The importance of soft-

ware security cannot be overstated.

Software systems have evolved to be large, decentralized, dynam-

ic systems where the model of computation is one of continuous

interaction with other large systems and with the world. This rapid

increase in software size and complexity has given rise to massive

inefficiencies and errors. A 2002 study estimated the annual cost to

the US economy of software errors alone at approximately $59.5

billion [1]. More recent figures on cyber risk paint a graver picture.

Global costs of cybercrime have been estimated to lie between $799

billion and $22.5 trillion (1.1–32.4% of global GDP) [2]. Insecure

software can be traced back to the incentives firms face to release

software early and achieve network effects. After all, firms can re-

lease security updates later. It has also been shown that software

producers tend to release security updates later than is socially

optimal [3]. Information insecurity is partly due to a failure in the

design of incentives [4].

Open source software forms much of our digital infrastructure

and has enabled the boom in start-ups [5]. Peer production, the

mechanism behind the development of open source software is an

organizational innovation where individuals, in a diverse and dis-

tributed community, self-match to the tasks best suited for them [6].

Peer production has successfully tackled complex, uncertain proj-

ects, underlying billions of dollars in open source software produc-

tion [7]. A recent study, however, points out that this digital

infrastructure is increasingly under strain [5]. Escalating demand

and a lack of adequate resources has resulted in security breaches

and service errors [5]. Earlier economics research foresaw these

types of real-world problems. The absence of price signals in open

source development means that users’ valuations remain unknown

[8]. Therefore the supply of and demand for open source software

goods do not fully align.
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In fact, software quality today seems to be below the level pre-

ferred by users and developers alike. That is, users are willing to pay

to avoid the risks of using software that is broken or missing func-

tionality, and developers are willing to fix and upgrade software if

compensated. Thus, there appears to be a failure of market design,

and an opportunity to design better market mechanisms to incentiv-

ize a higher quality equilibrium in software production. This leads

to the research question that motivates our work:

How can a market design incorporate price signals into peer pro-

duction, facilitate information sharing, and promote quality?

In this article, we make progress toward addressing this question.

We present our vision and preliminary work on a “futures trading

market” for finding and fixing software issues. Participants in our

market can create futures contracts to predict whether these issues

will be addressed, hedge the risks to which they are exposed by using

defective software, and incentivize work. Users, developers, testers,

project maintainers, investors, and others in the software ecosystem

can trade on questions such as: will a bug be fixed? or will a vulner-

ability be found? Our design incentivizes the discovery and reso-

lution of software vulnerabilities and bugs, but is not restricted to

these. Rather, our platform is broad in scope and can be used for

various events and tasks in the software ecosystem, including design,

documentation, code reviews, and testing.

Issues of software quality (proper design and execution) and se-

curity (preventing unauthorized access to data and systems) are both

classified as software defects. With increasing use of open source com-

ponents in software,1 a quality issue “upstream” in the software de-

velopment process can imply a security issue “downstream.” For

example, flaws in the ImageMagick image processing software that

are a usability inconvenience on desktop, become security risks when

ImageMagick is integrated into a web application where unauthor-

ized users can exploit the flaw to execute remote code [10]. In the ab-

sence of any signals, the maintainers of the upstream project may not

know that the integration of their components (including any bugs

residing therein) may put the downstream project’s users at risk.

Bug bounty programs have existed since 1995 and are the state

of the art for reporting vulnerabilities (e.g. the Mozilla security bug

bounty, and the “Hack the Pentagon” bug bounty program [11]).

Open source bounty systems offer rewards for reporting and fixing

known bugs. Marketplaces for software tasks include crowdsourc-

ing platforms for open source bounties (e.g. Bountysource [12]),

crowdsourcing contests (e.g. Topcoder [13]), and crowdfunding

sites (e.g. Kickstarter [14]). However, these market mechanisms

have limitations that we address with a novel market design based

on trading futures contracts, inspired by instruments used in finan-

cial markets.

Related work

Research on software economies has advocated a market-based ap-

proach where the supply and demand determine the allocation of

work and influence the evolution of a system [15, 16]. An equilib-

rium in the software economy is one where all issues for which there

is enough value have been addressed. Rao et al. [17] consider the

problem of how to incentivize deep fixes in a public software econ-

omy. They design market mechanisms that use externally observable

information only in determining outcomes and payments. A mean

field equilibrium methodology is used to evaluate the performance

of the mechanisms in simulation. A theoretical analysis of the model

establishes the existence of an equilibrium [18]. The present article

extends this line of research but has a different focus. Here, the ob-

jective is to introduce price signals in a peer production market

while facilitating information sharing and collaboration.

Market-based approaches to incentivizing vulnerability report-

ing have been considered. Closely related to our work are “exploit

derivatives,” proposed by Bohme [19, 20]. Where we apply the prin-

ciples of futures contracts to the design of a market for software

tasks, exploit derivatives apply the concepts of binary options, also

taken from the theory of financial markets, to address security. A

market failure happens because vendors supply lower levels of secur-

ity than appropriate and users demand less security than what

would be in their best interests. Exploit derivative contracts pay out

a certain amount if a security event takes place by a given date, and

are issued as a bundle with the inverse contract (that pays out if the

event does not take place). In this respect, the binary option property

corresponds to the “positions” that a trader can hold, in our con-

tract structure, that also function in pairs (see Example 3.1).

However our contract design incorporates many additional elements

as described in the next section.

Like exploit derivatives, our market mechanism meets criteria

desirable in a vulnerability market: prices provide signaling informa-

tion on the quality or security of a product, financial incentives mo-

tivate addressing software flaws, users can trade to hedge against

exposure to software risk, and the market promotes efficiency (e.g.

low transaction costs to engage in the market, transparency of

trades, and accountability of traders) [19, 20]. That said, our market

is further structured to facilitate collaboration and information shar-

ing in peer production settings. By focusing on the contract design as

a whole, which includes holding positions, we are able to incentivize

various forms of work, such as partial work.

Other vulnerability markets include that proposed by Schechter

[21], where the first person to disclose a security flaw is offered a re-

ward. The reward increases in value until claimed, and the product

can be considered secure enough to protect information worth the

combined value of all rewards. Ozment [22] maps this type of vul-

nerability market to an open first-price ascending auction. Although

this type of vulnerability market provides incentives to report flaws,

the price is set by the software producer, users’ valuations for fixes

are not captured, and there is no mechanism to hedge against risk.

The role of incentives with respect to different aspects of infor-

mation security and privacy has been studied, and various policies

have been proposed for the improvement of these aspects [23–28].

However, these works do not consider the design of a futures trad-

ing market. Hosseini et al. [29] consider the problem of efficient bug

assignment. In their model, the bug triager is an auctioneer and pro-

grammers are bidding agents in a first-price sealed-bid auction. Bug

triaging is but one of several software tasks that a futures trading

market can address.

The characteristics of various contest architectures have been

examined [30–35]. Contest architectures have been used in the de-

sign of software marketplaces such as Topcoder, but function unlike

futures markets. There is a large body of work on prediction mar-

kets [36–40]. However, our futures market differs from prediction

markets in several ways as we explain in Section 3. Other papers

have considered software from the perspective of technological

innovation [41, 42], and the design and modularity of software

[43, 44].

1 A recent audit, released in 2018, found open source components in 96%

of applications scanned [9].
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Much software development is organized in peer production

communities which have their own economic rules. Benkler [6]

describes the emergence of what he refers to as commons-based peer

production. He explains that in a networked world, information

may be produced and exchanged cheaply and efficiently. Unlike in

firms, where the human talent that can be harnessed is mainly lim-

ited to its employees, peer production is able to take advantage of a

diverse and distributed community, with a variety of skills.

Individuals, with private information regarding their skills, match

themselves to the tasks best suited for them. Benkler argues that as

projects become increasingly more complex and uncertain, it

becomes more important to harness diverse motivations because a

clear measure of effort can no longer be determined.

The present article belongs to a line of work that considers the

economics of open source software, an example of peer production.

Lerner and Tirole [45] study four cases of peer production and pro-

pose economic models to explain the motivations of open source

contributors. Johnson [46] describes a model of open source soft-

ware as a public good, where developers incur a private cost to con-

tribute and obtain a private valuation whenever any improvement is

made. He establishes technical conditions that characterize when a

developer will choose to contribute. Athey and Ellison [47] present a

model to capture the dynamics of open source contribution. They

assume that programmers are motivated by both their own need to

use the software as well as altruistic feelings involving the benefits to

the community. At any point in time, the open source software

meets some subset of the total set of needs, and the measure of this

subset is termed the “quality” of the software. The authors show

that the dynamic system can reach one of two steady-states: a zero

quality and zero altruism state, and a state where the zero as well as

positive quality and altruism states can exist.

There is a rich literature on market design for settings as diverse

as the labor market for physicians [48], electricity markets [49], the

incentive auctions for wireless spectrum [50], high-frequency trading

[51], and an electronic marketplace for agricultural goods [52].

Designing a marketplace involves formulating the rules that specify

what types of market activities are possible and creating the infra-

structure to support these activities [53]. Market design must take

into consideration the context for which the market is needed. Thus

different situations may necessitate vastly different solutions. Our

work addresses market design for software tasks in the context of

peer production, and has a practical focus. Accordingly, we devise

market rules and infrastructure, presented in section “Our

approach.”

This manuscript is an extended version of a paper presented at

the 17th Annual Workshop on the Economics of Information

Security (WEIS) 2018 [54].

Current market-based platforms
There is a variety of market-based platform models, implemented

with their own unique flavors. We present here a few samples that

focus on software development. Examples include Bountysource,

which is a funding platform for open source software [12]. Here,

users post bounties or rewards on issues they want to be addressed

while developers create solutions and claim rewards. Once a reward

is made available, a developer picks the issue he wants to tackle and

begins work. The developer submits a claim once the work is done.

There is a 2-week verification period during which backers vote to

accept or reject the claim. If the claim is accepted the developer

receives the reward. Otherwise the bounty is refunded.

Bountysource also organizes fundraisers for costly new features

requiring a significant investment of time and effort. Kickstarter is a

global crowdfunding platform that collects money from the public

to fund various projects, including software projects [14].

Topcoder is based on crowdsourcing contests and has over a mil-

lion active members [13]. Companies with software needs are

matched to a global community of programmers who compete in a

contest with cash awards to provide the best solution that can ad-

dress a client request. The Topcoder community works on a variety

of tasks from bug fixes and features to design and analytics.

Bountify [55] is another platform based on crowdsourcing con-

tests. It focuses on coding tasks. A client posts the task and the asso-

ciated reward. Programmers must submit solutions before the

reward expires. The client decides which is the best solution and

awards the reward to the winner. Interestingly, the client is not

refunded if none of the submitted solutions is acceptable. Instead,

the reward is donated to charity.

Rather than supplying coding solutions, Bugcrowd [56] is a bug

bounty platform for security vulnerabilities that has a crowd of

workers at its disposal. The crowd tries to uncover vulnerabilities in

a client’s software. The client only rewards workers whose vulner-

abilities are judged to be valid, regardless of the effort expended. A

similar platform is of Hackerone [57]. In addition to supplying a

crowd of hackers to uncover vulnerabilities, Hackerone assists

organizations to deploy and manage bug bounty programs.

For a survey of crowdsourcing for software development and the

related literature, see Mao [58]. Our approach addresses similar

issues in a new way as we show in the next section.

Our approach

We propose a futures trading market for eliciting information and

incentivizing tasks. Example 3.1 (Fig. 1) illustrates a simple case of

how such a market might work.

Example 3.1. (Base Case: Fixing Issue): User Adam finds a software

bug. Adam has heard of a futures trading market where he can get

the bug fixed for a price. Adam documents the bug in an issue track-

er (now identified as bug #1337) and goes to the trading market.

Adam creates an offer with a maturation date in 2 weeks for a pay-

out of $200. Adam buys 200 units – $1 potential payout each – at a

unit price of $0.8, paying $160, by depositing the money into es-

crow. Developer Beth sees the offer, has time to fix bug #1337 with-

in 2 weeks, and decides to accept the offer. Beth buys the 200 units

at a unit price of $0.2, paying $40, by depositing the money into es-

crow. The contract is now formed: Adam owns the UNFIXED pos-

ition and Beth owns the FIXED position. Two weeks pass by,

during which Beth is working on the fix and Adam is waiting to re-

ceive it. On maturation there are two possible outcomes: bug #1337

has been fixed or remains unfixed. If bug #1337 is fixed then the

issue is closed: Beth earns the reward of $160 and gets her $40 de-

posit back. If bug #1337 is unfixed then the issue remains open:

Beth loses her $40 deposit while Adam receives his and Beth’s

deposits, earning $40.

In the same way that a user can offer to pay for a fix (Example

3.1), a user can offer to pay if a vulnerability is found in a specified

software project by the maturation date. That is, the user would cre-

ate a FOUND offer. The possible outcomes would be that the vul-

nerability is FOUND or UNFOUND.

The basic idea of the market is that participants can create con-

tracts to predict outcomes and incentivize work. A contract is associ-

ated with outcomes that can be verified in an issue tracker. On

Journal of Cybersecurity, 2019, Vol. 0, No. 0 3
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maturation, the contract pays out to the owner of the position corre-

sponding to the issue’s status in the issue tracker. To this end we

make a simplifying assumption in the design of the marketplace: the

contract must provide clear criteria, including verification tests that

specify what must be achieved for the issue to be resolved as fixed.

Design features
A market mechanism for trading software tasks must take into con-

sideration important design criteria. How can we design a platform

that balances the incentives of markets with the dynamics of peer

production? In this section we describe some key features of our

market design.

Partial work

Many problems can only be solved by drawing on different areas of

expertise. For example, a bug may require both database and crypt-

ography knowledge, which a single developer may not have. In this

instance, the bug would be solved most efficiently if individuals with

the needed types of expertise were to collaborate and share informa-

tion. Furthermore, it has been shown that collaborative work in

open source development is often done through a process of

“superpositioning,” where new layers of work build on existing

layers [59]. The design of our trading platform captures these types

of dynamics by allowing developers to earn credit for partial work.

Thus, trading behavior fosters information sharing and collabora-

tive work, as the next example shows.

Example 3.2. (Partial Work): As before (Example 3.1), Adam ($160

for the UNFIXED position) and Beth ($40 for FIXED position)

enter into a futures contract worth a payout of $200 in two weeks

depending on the status of bug #1337. One week later, Beth realizes

that she does not have the expertise to fully fix bug #1337. Beth

decides to submit a partial fix and sell her FIXED position. Charles

buys the 200 units of the FIXED position from Beth at a unit price

of $0.4, paying $80 to Beth. Beth had paid $40 and receives $80,

earning $40 for her partial work. Another week passes, during

which Charles is working on the fix. On maturation there are two

possible outcomes: Bug #1337 has been fixed or remains unfixed. If

bug #1337 is fixed then the issue is closed: Charles earns the reward

of $200 for a net gain of $120. If bug #1337 is unfixed then the issue

remains open: Charles receives nothing but loses the $80 paid to

Beth, while Adam receives his and Beth’s deposits from escrow,

earning $40. In both cases, Beth earned $40 for her partial work.

Another instance of collaborative work supported by the market

is when a task consists of several subtasks that can be completed in

parallel. Suppose instead that in Example 3.1, Beth buys 100 units

and Charles buys the remaining 100 units at the same price. Then

each worker would work on a specified fraction comprising the total

work required by the contract. On maturation, if the issue is

resolved as FIXED then both workers are paid. If not, neither work-

er receives any payment and the funder collects the indemnity.

Dependencies

The completion of task A may depend on task B being completed

first. A developer who has bought the FIXED position of a contract

on task A (with the intention to do the work herself) might then cre-

ate a new offer to pay for the completion of task B. Because she

might not finish task A otherwise and lose her deposit, the new con-

tract would have a maturation date no later than the date for task A.

Flexibility

Example 3.2 demonstrates that developer Beth has flexibility in the

market by reselling her side of a contract, after partial work, with-

out affecting funder Adam. Beth might also choose to resell her side

of the contract if, after completing the work in its entirety, she

needed the funds earlier than the maturation date. Thus, Charles

would pay Beth for her work and then be reimbursed on contract

maturation. A fair market place should allow both sides of a con-

tract to sell their position and be relieved of their obligations. A

funder, like Adam, may decide that the feature is not wanted any-

more or that he wants to pay a different developer to complete the

work. Flexibility is a core dynamic in open source projects where co-

ordination is based on self-selection and voluntary task execution

[6]. The following Example 3.3 demonstrates how the market can

Figure 1. Graphical display of a futures contract, demonstrating how the elements of the contract fit together and evolve over time. A contract with its statement,

maturation, and unit value make up the root. Underneath it, many escrows and positions can be created. Money is paid into escrow when fixed and unfixed buy

offers match. Positions record ownership and can be resold independent of the original contract partner. Examples 3.1, 3.2, and 3.3 provide the rational for how

the contract evolves. Table 1 defines the contract elements in detail.
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provide flexibility in a case where selling happens for other reasons,

such as if a user no longer wished to invest in the contract.

Example 3.3. (Selling Position): As before (Example 3.1), Adam

($160 for the UNFIXED position) and Beth ($40 for FIXED pos-

ition) enter into a futures contract worth a payout of $200 in 2

weeks depending on the status of bug #1337. After 2 days Adam

decides he wants his money back. He sells his UNFIXED position

of the contract to Bob. Bob buys the 200 units of the UNFIXED

position at a unit price of $0.7, paying $140 to Adam. Adam has

paid $20 for 2 days of development. Bob pays $140 for the remain-

ing days until maturation. Beth is unaffected and continues

developing.

Multiple contracts

A project maintainer might need different features for a single pro-

ject. He may create separate issues and contracts for each feature,

such that all contracts have the same maturation date. It is also pos-

sible to create multiple contracts for the same issue (e.g. multiple

contracts that all offer to pay for a fix for bug #1337), where the

maturation dates and payment amounts may be different. The

FIXED positions on these contracts may be owned by the same de-

veloper in order to accumulate rewards for doing the work.

Alternately, they may be owned by different people. Because payout

at maturation depends solely on the status of the issue in an issue

tracker (e.g. has bug #1337 been marked fixed?), this scenario might

give rise to free-riding. Consider the contract with the earliest mat-

uration date and suppose Beth owns the FIXED position. Clearly,

Beth is incentivized to fix the issue or else she will forfeit her deposit.

However, those owning FIXED positions on the contracts with later

maturation dates may get paid on maturation without having to do

any work because of Beth’s work, which ensures that the issue is al-

ready marked as fixed in the issue tracker. On the other hand, they

may help Beth to successfully complete her task because their own

payout depends on the issue being fixed. To what extent free-riding

may occur is influenced by many factors including the beliefs held

by participants in the market regarding the ability and willingness of

others to perform tasks. Whether free-riding is a serious problem

will have to be tested in future research studies.

Collaborative funding

Our marketplace allows collaboration on the UNFIXED side.

When multiple funders fund the same contract, this gives rise to an

instance of “collaborative funding.” This does not require the fun-

ders to know each other because they can independently post their

buy UNFIXED offers on the marketplace and still collaborate. The

marketplace pools individually created offers on the same issue to

create larger pools of funding for developers.

Collaborative funding can take on different flavors. Consider

Example 3.1. Suppose instead that Adam buys 100 out of the 200

total units at a unit price of $0.8, paying $80. The remaining 100

units are purchased by Bob at the same price. Beth’s situation is un-

changed and the contract proceeds as before. Since both Adam and

Bob hold UNFIXED positions, the indemnity would be proportion-

ally2 split between them if the outcome on maturation is

UNFIXED. This is an example of a single offer with multiple fun-

ders who may or may not know each other. Alternately, multiple

people can pool their funds to create a single offer via a single

funding entity (e.g. Bob gives $80 to Adam who creates the offer as

described in Example 3.1).

Multiple offers by different people for the same issue and matur-

ation date provide a larger pool for developers to tap into. If more

users feel that a fix for an issue is important they can post additional

offers, leading to an increasing aggregate price signal for that issue.

Furthermore, this option allows multiple developers to take up

offers on the same contract if a single developer chooses not to ac-

cept all the offers. This may result in several fixes for the same issue

and the project maintainer might decide which fix to retain.

Regardless, all developers who accepted offers will be paid if the

issue is marked FIXED by the contract maturation date.

Multiple offers for the same issue can have different maturation

dates and different prices. Thus funders can incentivize work by

increasing the price on a new offer for the issue, or by allocating

more time for the work to be completed. From the developer’s per-

spective, the faster the developer works, the more offers he can cash

in on and the slower he works the fewer offers he can benefit from.

Funders can also collaborate by funding different issues that be-

long to the same project. This results in a shared responsibility by

the various stakeholders of a project.

Indemnity

Our design allows for the possibility of an indemnity being paid if

an issue is not fixed. This is inspired by dominant assurance con-

tracts where a project owner pays agents, who accept to contribute

to the production of a public good, some amount if the project fails

to secure a minimum number of contributing agents [60].

Consider Example 3.1. Because Adam contributes $160, Beth

must contribute $40 in order to form the contract which has a total

payout of $200. If the outcome is that bug #1337 is unfixed then

Beth forfeits her $40 to Adam. In this instance the amount that Beth

must pay indicates her confidence in being able to fulfill the

contract.

Now suppose Adam believes that bug #1337 cannot be fixed

and would like to profit from this knowledge. Because Adam is con-

fident that he will recover his payment at maturation, he is willing

to contribute a larger fraction of the total contract payout thereby

making it easier for a developer to accept his FIXED offer. Thus

Adam contributes $195 and Beth accepts his offer contributing just

$5. At maturation Adam may be proven right or he may be the

means of funding a rare solution to a hard problem. With this mar-

ket design, a belief that something cannot happen is handled the

same way as an incentive to make it happen. The attention from

speculators, who may buy contracts without having to participate in

software development, and the additional money in the market is an

advantage. Speculators who speculate that an issue cannot be fixed

create an incentive for developers to produce a fix. Aggregating all

such contracts, the market potentially creates a pool of wealth that

can be captured by innovators.

Decoupling funding from work

The payout from a futures contract is solely dependent on the status

of the issue in the issue tracker. At maturation the owner of the pos-

ition corresponding to the issue’s status (e.g. fixed or unfixed) is

paid, regardless of who may have done the work to resolve the issue.

This decoupling can give rise to interesting scenarios. For instance,

an investor in a software project may put up the capital to buy a

FIXED position and hire a team of talented developers to

2 Each funder would receive an indemnity of ð100
200 � 40Þ which is $20.
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collaborate and do the work. This also enables someone who does

bug triaging to buy FIXED positions and find developers who can

close the issues and sell them the positions at a profit. Thus, work

on open source that fuels community processes can be rewarded.

Moreover, the decoupling can lead to new workplaces. An entre-

preneur can trade on the futures market, follow price signals, and as-

sign developers to complete the work. The developers are employed

and have the benefits of an income; the entrepreneur organizes

resources to the issues that are valued the most on the marketplace

to maximize profit. The open source project continues to be coordi-

nated by maintainers who accept solutions to issues based on their

quality.

The decoupling may also result in cases where the worker is not

rewarded. Suppose users offer to pay for a fix to a particular bug,

and a trader realizes that a fix is already underway. The trader

quickly buys the FIXED position and the market gets information

on the likelihood of the bug being fixed, but the worker responsible

for the fix does not profit from it. If this happens repeatedly and a

developer becomes aware of it, he may post an offer on the market

place and only submit his solution if he gets paid. The speculator

may be out of his money if the developer decides to withhold solu-

tions until the undesired trading behavior stops.

Anonymity

Anonymity is a desirable property of transactions in many settings.

For example, in auctions, it is important that winner determination

and payment decisions are made taking into account bidders’ bids

and not their identities [61]. Anonymity can deter marketplace col-

lusion and manipulation, and provide privacy. However, it is not

without drawbacks. For instance, it can be challenging to build trust

amongst anonymous parties to a transaction. Online platforms have

addressed this problem by allowing buyers and sellers to be select-

ively anonymous (i.e. to certain parties only) or to have pseudonym-

ous identities, and by instating reputation systems.

Participants in our trading market need to estimate how long it

may take a worker to complete a task, how much indemnity is ap-

propriate given workers’ skill levels, whether a task is doable at all,

and more. These assessments require knowledge of the software as

well as the people in the ecosystem. Our market also links to issue

trackers, where identities may not be anonymous. Moreover, open

source project members typically have working relationships and

reputations, which determine the roles they can play. Established

and respected members are more likely to become maintainers who

decide which software features are accepted and which issues are

closed [62].

Participants in our market have the option to select usernames

that may be pseudonymous or reflect their true identities. The mar-

ket must be able to transfer payments between escrow and partici-

pants’ accounts. No other personal information is revealed to other

market participants.

Comparison with existing markets
The set of features presented above work together to create a system

that aligns incentives with the natural dynamics of peer production.

Continuing, we compare our market mechanism to other mecha-

nisms and argue that our design is suitable to the context.

Although inspired by existing market mechanisms, our design

departs from these in several ways. Bug bounty programs, open

source bounty systems, and other crowdsourcing approaches to soft-

ware work typically reward the reporter of a vulnerability or the

submitter of a fix. However, software development is often done in

a collaborative fashion, where a final solution builds upon the input

of others [59]. Furthermore, a task may require different areas of ex-

pertise and necessitate the input of different individuals. In these

approaches there does not seem to be a way to assign credit to all

contributors of a final submitted report or solution. As a result, con-

tributors may be less motivated to collaborate and share informa-

tion. This limitation is addressed by a futures market because a

participant may do partial work on a contract and resell his position

(see Example 3.2).

Open source bounty systems have transaction costs for claiming

bounties. Bounties must be resolved independently of the fixed or

unfixed status of the underlying bug in order to determine whether

the work done by the bounty claimer is relevant. In contrast, partici-

pants in our futures trading market invest in outcomes which are

determined by the status of issues in an issue tracker. Participants

may create more expressive contracts (e.g. entailing dependencies)

to satisfy their requirements. Moreover, open source bounty systems

fail to incentivize meta-work as rewards must be explicitly divided

among multiple testers, bug triagers, and developers instead of let-

ting the system handle it. Bug bounty programs that reward the dis-

covery and disclosure of vulnerabilities do not capture the

valuations of users for fixes.

Our market resembles a prediction market in regards to the con-

tract structure, but differs in other aspects of the design. Prediction

markets tend to have a small number of questions but a large num-

ber of participants (“wisdom of the crowd”). Here we have a large

number of futures contracts but a small number of participants per

future contract (“wisdom of individuals” revealed to crowds of soft-

ware users). Participants in a prediction market typically cannot in-

fluence the outcome whereas bug futures draw participants who

have information about that bug and thus may affect the outcome.

Prediction markets aggregate information whereas bug futures add-

itionally incentivize tasks.

Auctions have been used for resource allocation in a range of set-

tings and come in a variety of forms. Objects sold at auctions typic-

ally require the discovery of the appropriate prices. Bids from

participants are compared and a winning bid is selected according to

the rules of the auction [63]. In procurement auctions, bidders com-

pete for the right to sell certain goods to a buyer or work on specific

contracts, and the buyer’s objective is to minimize costs given the

requirements. The auction can be combinatorial, that is, bidders can

bid on bundles of items, and winner determination might include

more than one bidder to satisfy all requirements. This splits a large

deliverable into smaller ones, thereby diversifying the competition

[64]. Multi-attribute bids, where a bid can include price as well as

other parameters such as delivery times, payment conditions, and

product quality, are also used [65]. Furthermore, the auction can be

run in iterations, providing information feedback to the bidders and

permitting them to revise bids accordingly [65].

Our market design retains some of the above properties but is

motivated by different conditions. The goal is to introduce prices

into the process of peer production in such a way as to leverage and

strengthen its successful qualities. Our contract language includes

multiple attributes (statement, payout, maturation date) and can be

made more expressive if needed. Our market permits multiple con-

tracts on the same issue as well as counteroffers from workers who

may submit requests to work on different combinations of work

items. Hence funders and workers can compare the set of offers in

the market and choose which offers to take up. Once a contract is

formed in our market, however, the terms of the contract cannot be

revised.
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When a contract is formed in our market, the owner of the

FIXED position need not be the entity who will work to fulfill the

contract terms. Decoupling funding from work in our market design

means that the funders of a contract bet on outcomes as determined

by the status of the work in an issue tracker. Thus, the actual work

itself can be carried out by any individual or group of individuals

who self-match to the task, as would be the case in a peer produc-

tion setting. In contrast, a procurement auction typically awards the

contract to the winner and all others are excluded from working on

the contract.

Group work on a contract can be explicitly undertaken in a few

different ways in our trading market. For instance, the owner of the

FIXED position can hire a group of workers with a set of requisite

skills. Alternately, a funder can fund multiple contracts (buy

UNFIXED positions), each addressing a subtask of the overall task.

Group work may also be done by subcontracting dependencies, or

by completing partial work on a contract and then reselling the

FIXED side of the contract to the next worker. In addition, the par-

tial work feature allows market participants to collaborate when an

uncertainty in completion of the task appears after a contract is

formed. Such situations are typically not addressed by auctions.

Turning to financial markets, there exists a variety of instru-

ments with different characteristics. However, not all of these are

applicable for what we want to accomplish with our marketplace.

Broadly, tradable financial assets include stocks, bonds, and deriva-

tives. Stocks permit a way to divide and share ownership of an entity

and stock owners are entitled to a fraction of the earnings of the en-

tity. Open source projects are not incorporated entities and no one

owns open source code. Therefore this type of instrument is not rele-

vant to our situation. A bond is a debt security. A bond issuer issues

bonds to borrow funds from the bond holder, with regular interest

payments and a promise to repay the principal at the bond’s matur-

ation. A bond market does not solve the financing issue in open

source because if a worker issues a bond to get money, they would

have to pay it back and find other ways to earn money.

A derivative’s value stems from the value or performance of an

underlying asset. There are several different types of derivatives,

including options, swaps, forwards, and futures [66]. In general, the

holder of an option has the right, but not the obligation, to trade an

underlying asset at a predetermined price and future date (i.e. exer-

cise the option). The dynamics with options do not provide guaran-

tees to market participants that issues will get funded and that work

will be completed by a given date. Binary options form the basis for

exploit derivatives [19, 20]. As explained in section “Related work,”

binary options alone are insufficient for our purposes. A swap is a

derivative by which two parties exchange the cash flows or liabilities

of two different financial products. Swaps are not suitable because

we do not have financial products with cash flows to exchange.

Forwards are not traded on markets but futures, their standardized

version, are, which is discussed in next section.

Futures market

Futures are standardized forward contracts to buy or sell an asset at

a specified future time, and at a price determined in the present.

They are commonly used in commodity markets (e.g. tulip, rice, cot-

ton, corn, onions, gold, and oil futures) to hedge against price fluctu-

ations and other uncertainties [67]. We apply principles from the

design of futures markets to the design of a market for software

tasks.

First, there is a quoted price on the market place for the expect-

ation that an issue will (not) be closed at a specified future date.

Second, the price of entering a contract is equal to zero but a deposit

into escrow is required for the maximum possible loss from the

futures contract. Third, at any time before the specified future date,

the owner of a contract can leave the contract and receives the dif-

ference in price since he entered the contract and the deposit back.

Fourth, at the specified future date, the owner of a contract pays

with his deposit for the expected outcome (e.g. issue fixed or vulner-

ability found) or receives his deposit and that of the counterparty.

Futures markets typically reduce transaction costs associated

with uncertainty about contract partners by introducing a clearing

organization. The trusted clearing organization is buyer and seller to

all other market participants. In our market design, we collect the

total potential loss up-front and deposit it in an escrow account. By

doing this, we establish a direct connection between market partici-

pants, but eliminate the risk that one side will not honor the con-

tract, since the market platform controls the money for all contract

payouts. We therefore do not need a clearing organization but build

this function into the market place. A clearing organization also

masks market participants from other market participants, ensuring

anonymity, which we emulate through the design of our market

platform.

Commodities have characteristics that make them suited for

trading on a futures market [67]. Our futures trading market trades

contracts on issues, which deviate from these characteristics. We

consider five characteristics in turn and reflect on the challenges in

applying futures market principles to open source issues:

1. Commodities are traded on futures markets to reduce uncer-

tainty about future prices and availability. An open source issue

has uncertainty, including how much users are willing to pay for

its fixing, how many users are affected, how much effort is

required for fixing an issue, how much a developer would have

to be paid for fixing it, how much damage not fixing an issue

will cause, and when developers will fix an issue.

2. Futures contracts standardize commodity grade and location,

which is important for physical commodities where differences

in quality and location (due to transportation costs, tariffs, and

taxes) result in varying prices. By standardizing commodities in

different futures markets (e.g. corn traded in Chicago and Paris),

price differentials emerge that are beneficial for traders, but pri-

ces ultimately correlate across futures markets for the same com-

modity. Open source issues vary in nature, difficulty, and skills

required to fix them, which eludes standardization. However,

contracts traded on the same issue will be comparable. Because

open source projects only have one location (i.e. Internet), price

differentials will result only from using different market places,

not inherent differences of the issue that is traded. Due to net-

work effects, a tendency is expected for all traders of open

source issues on one project to converge on a single market

place.

3. A large number of interested participants are required to estab-

lish an attractive futures market. A sparsely traded market

encounters difficulties in finding counterparties for trading.

Open source issues have a potentially large number of users who

might be willing to fund it, but typically only a few developers

engage in fixing an issue. In such a market, users compete across

issues for the time and attention of developers and are expected

to have to pay a premium, which is exactly what is desired to

fund an open source development work.

4. A greater value of total trades means that risk reduction in the

future market has more value. Larger trading volumes incentiv-

ize risk-averse people to hedge more on futures markets.
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Speculators are attracted by large trading volumes where incen-

tives exist to profitably trade if they believe they have superior

information than other market participants. Open source issues

might not attract as much trading volume where issues are high-

ly specialized. On the other hand, some issues, similar to those

that have received large bug bounty payouts or those that have

resulted in billions of dollars in damage (e.g. Heartbleed), might

attract large trading volumes.

5. Another criterion for futures markets to develop for a commod-

ity is the free development of prices and absence of regulation.

When prices are influenced by government regulation or con-

trolled by a single firm, a futures market is unlikely to exist. This

is the case in open source where many successful and valuable

projects have a broad diversity of organizations, and wages for

developers are not regulated by governments.

Because open source issues are not traded like commodities, a

futures market cannot “predict” future prices or hedge against price

volatilities. We are inspired by prediction markets, where the payout

is determined by an event and the price to enter a prediction repre-

sents the beliefs of the market participants about which outcome is

most likely. We adopt this premise and standardize contract payouts

to $1. The market thus has two prices, one for the fixed side and

one for the unfixed side, which together have to sum to $1. In

Example 3.1, Adam pays 80% and Beth pays 20% of the contract

payout.

Achieving large trading volumes in our market is likely to be a

challenge. Strategies to ensure liquidity have to increase the possibil-

ity that offers match and result in trades. One option is to define a

limited set of maturation dates (i.e. many commodity futures have

one date per month, such that soy beans are traded once in August,

September, October,. . .). It is a well-observed phenomenon that

futures markets have more trades on short-term contracts than long-

term contracts. By avoiding offers that are spread out in time, chan-

ces are higher that offers match and result in trades. Another strat-

egy is to allow offers with “variable parameters,” such as price

limits and maturation date ranges. By introducing variability in

offers, they exist in a larger space for potential other offers to match.

Futures markets often enlist a “market maker” who buys and sells

at all times, thereby ensuring that there is always a trading partner.

This approach would have to be adapted to suit the needs of our

market.

Proof-of-concept implementation of the futures trading

platform
We substantiate our design of a futures trading platform through a

proof-of-concept implementation [68], which we call Bugmark. The

event-driven architecture is inspired by blockchain technology,

which can power a decentralized market place. By storing events on

a blockchain, such as Ethereum, transactions are stored in an im-

mutable and distributed way, which allows the detection of manipu-

lations of platform operators. The user interface is written in

HTML, CSS, and JavaScript (see Fig. 2). The backend is written in

Ruby and uses a PostgreSQL database for a local copy of events. We

use an event stream architecture that allows updating the blockchain

and local database – key elements to a decentralized market design.

The implementation confirms that our innovation works.

Futures contract design

An important aspect of the implementation is in regards to the

futures contract design. We describe the elements of a Bugmark

futures contract (see Fig. 1 and Table 1) by walking through the life

of such a contract from creation to maturation (i.e. payout). This de-

scription reflects the process in Example 3.1 to introduce the con-

tract elements and more complex use cases are possible.

A new contract gets formed when two buy offers match. In

matching offers for creating contracts, a bin-packing algorithm is

used to generate the largest possible trading volume. The two buy

offers for opposite sides – one for a FIXED position, the other for

an UNFIXED position – have to match in price, volume, statement,

and maturation date. Unit prices of the buy offers must together

equal to $1 per unit. For example, respective unit prices of $0.20 for

a FIXED position and $0.80 for an UNFIXED position. This is im-

portant because we standardize the contract payout to $1 per unit

and the two buy offers together have to pay that amount of money

into escrow. The unit price determines which share of the $1 payout

each buy offer pays into escrow at the time of forming the contract.

Volume is how many units of this contract the users want to buy

and is ultimately recorded in positions. In other words, the volume

is equal to the amount of money both buy offers together must pay

into escrow, which is then available for payout upon maturation.

The unit price multiplied by the volume determines the amount each

user has to pay into escrow, i.e. the total price.

A contract is primarily defined by the statement and maturation

date. For each contract, any number of escrows, positions, and

offers can exist. This design allows users to trade any number of

units (full or partial positions) as long as they belong to the same

contract. This design enables several funders to pay for the fix or

discovery of a bug and thus pool resources necessary to incentivize

difficult tasks.

The FIXED and UNFIXED buy offers result in positions of the

same side: a user posting a FIXED buy offer will receive a FIXED

position; a user posting an UNFIXED buy offer will receive an

UNFIXED position. A position embodies the right to a payout when

the statement is evaluated. The statement, e.g. ’bug #1337 is fixed’, is

the core of a Bugmark futures contract and will be evaluated on the

maturation date. The owner of the FIXED position gets the payout

when the statement evaluates to true; UNFIXED positions get paid

when the statement is false. At this time, the user that holds the win-

ning position receives the payout from the escrow account.

Multiple buy offers on both FIXED and UNFIXED side can exist

for a single contract. In our design, these offers will result in multiple

escrows and positions on the same contract. We acknowledge, that

this may appear as an instance of multiple contracts because several

developers and funders can have matching offers to create new

escrows and positions without affecting already existing escrows and

positions. What appears to users as multiple contracts is implemented

as a single contract in our design with several positions.

Evaluating the proof-of-concept

Large multi-user systems, such as Bugmark, are challenging to de-

sign. The system is non-deterministic and evolutionary because the

user experience depends on the decisions of other users. Agent-based

modeling is a method to evaluate design decisions in such a system

through computer simulation [69]. The major benefit of simulation

is that system-level behavior can be observed without a need to re-

cruit a large number of human users, especially for testing small

changes to the design. In designing agents, we make assumptions

about how they make decisions. Our simulation results show that

the proof-of-concept implementation works as expected and the

market place provides the desired features. Details are in the Online

Appendix.
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The proposed market design has the potential to change the dy-

namics of open source software production. Before this impact can

be realized, more research is needed to better understand the incen-

tives created by the market place, the way users would interact with

it, and how adjusting features can impact market behavior. To this

end, we ran a live usability study to understand how users might

perceive the platform and how trading develops. We designed an ex-

periment that leads participants through a three-part process that

increases in complexity of trading behavior. We found no significant

barriers to adoption provided the trading rules are carefully

Figure 2. Screenshot of the Bugmark user interface.

Table 1. Elements of a Bugmark futures contract

Element Description

Statement A truth statement about whether work will be done. For example: “Bug #1337 is fixed” or “A high security vulnerability

was found.”

Maturation Date on which the oracle evaluates the Statement and determines contract payout.

Escrow Account with deposited money collected at the time of contract formation.

Unit value Standardized size of a contract: $1.

Unit price Price for a unit ranges from $0.00 to $1.00.

Position Record of contract ownership with the right to the payout amount from escrow when the statement gets evaluated.

The volume of a position is the number of units the owner bought.

Buy offer A user indicating willingness to form a new position or take over an existing position for a specified upper price limit and with a

specified volume.

Sell offer A user indicating willingness to sell a specified number of existing positions for a specified lower price limit.

Side FIXED (FOUND) and UNFIXED (UNFOUND): Offers have to specify which side they are for. On Maturation, owner of the

FIXED position gets payout on a true statement and owner of UNFIXED on false.
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explained. A full description of the usability study is outside the

scope of this article.

Building on this pilot study, we are currently working on a con-

trolled lab experiment to evaluate how participants in the market

place use price signals in their decision-making process. Participants

will be provided with different signals, including aggregate market in-

formation and open source project health metrics. We would like to

know how signals from the market place compare to competing sig-

nals in guiding decisions regarding what projects and issues to address.

Discussion

Peer production is one of three ways of organizing human economic

activity alongside markets and firms [6]. The trading market intro-

duced in this article sits in the space between peer production and

markets. Our work has several implications for market design, soft-

ware security, and the dynamics of peer production. Ultimately, a

real-world deployment would provide the data and feedback to

evolve the design and functionality of our platform. In what follows,

we discuss these implications, highlight the challenges ahead in

applying this work to a more practical context, and describe direc-

tions for future research.

Design considerations
We assume that workers, taking the FIXED side of a contract, can es-

timate their time and cost for completing a task. However, estimating

the effort required to complete a task is a nontrivial problem. Various

factors can cause prior estimates to be false and require an update as

new information about the task comes to light. An example is when

the code base of a software changes from the time a worker accepts a

FIXED offer to the time the worker proposes a solution. This may re-

sult in unintended consequences such as merge conflicts that are hard

to resolve, the proposed fix no longer satisfying all test cases, or the

fix breaking down altogether. What recourse does the market permit

in these cases? One option is to decide that the additional cost is too

high and forego the indemnity. A second option is to renegotiate the

price by posting a new offer to do work for a higher price. A third op-

tion is to resell the FIXED position on the contract to someone else

who might be able to fix it in time.

A related question is what steps can the funder of a contract take

if he realizes that the worker will not be able to complete the task by

the contract maturation date. If so, the funder will receive the in-

demnity at maturation as compensation for not receiving a fix.

Nonetheless, delivery of work on time is important in many settings.

For instance, the fix might be for a time-critical vulnerability or the

funder might need this fix for another investment. The funder might

try to attract other talent to complete the work by creating a new

contract (offer to buy UNFIXED), possibly with a higher payout.

The funder always has the option of bypassing the marketplace and

simply investing his own time or directing an employee to assist in

timely completion.

The design of the trading market relies on checking the status of

issues in an issue tracker on the contract maturation date. In current

practice, an issue’s status is determined (e.g., fixed or unfixed) once

reviewers have approved the fix and the maintainers of the open

source repository merge this new code into the main code base.

How do we then incentivize and compensate reviewers and main-

tainers? How do we handle collusion? This is work in progress and

we are considering a few different solutions, such as paying a per-

centage of each contract to reviewers and maintainers, or to make

review and maintenance a task for which contracts can be opened.

A further issue is the quality of the review and maintenance work.

All open source project pipelines must contend with reviewers and

maintainers and, therefore, are necessarily affected by the skill and

speed with which they complete tasks. Our market design does not

change the open source process – rather, it proposes a new mechanism

that works within the same parameters. If reviewers and maintainers

consistently fail to review issues within an expected time window, this

might affect the price for issues on this project. A norm may emerge

that developers allow for enough time for reviews. Creating the right

incentive and reputation mechanisms for reviewers and maintainers

and allowing them to partake of market forces seem to be important

considerations for the smooth running of the platform.

An interesting question is how to verify partial work when one

party wants to resell their position to another? At present we have

no verification mechanisms built in for partial work. In Example

3.2, ascertaining the value of partial work is a transaction cost for

Charles when he takes over from Beth. Charles must evaluate what

he is buying and how much to pay for it.

In designing this market, we must consider whether it introduces

adverse incentives. What types of market manipulations might arise,

for example, might a developer introduce a bug with the intention

to make money from fixing it? Although this scenario seems plaus-

ible, only a real-world deployment can ascertain whether such be-

havior might become widespread. On the other hand, repeated

manipulations by the same developer would likely be noticed by the

peer production community. Developers’ reputations are important

signals and can influence trading terms. Adding a reputation system

seems like a natural next step worth exploring.

The nature of software is that it is in constant evolution as new

technologies emerge, licenses expire, use cases change, which all re-

quire ongoing maintenance. That said, it is indeed the case that fix-

ing bugs can introduce new bugs. Our market design is flexible and

can be coupled with other mechanisms that address incentivization

problems in software economies [17]. A reputation system can also

alleviate this issue. If a developer is known to repeatedly introduce

regressions, they could lose their standing within the project com-

munity and thus may not have their work accepted in the future.

Open source has developed several methods for addressing regres-

sions, including automated unit testing and continuous integration.

Price signals, project metrics, and other data, that are a by-product

of market activity, can reflect the quality of work on the platform

thereby guiding users, investors, and other market participants to re-

spond accordingly. Designing incentives to prevent the introduction

of new bugs within our platform involves understanding how pro-

ject processes interact with market processes. This remains an inter-

esting open problem.

Note that the marketplace permits certain types of speculative

activity and treats this as a feature. As mentioned in section

“Indemnity,” a prediction that something cannot happen is handled

the same way as an incentive to make it happen. Speculators who

want to profit from “inside” knowledge of the software ecosystem

without contributing to development inject additional funds into the

market, creating a pool of wealth that may enable a breakthrough.

A challenge of the contract design is its versatile application. The

marketplace relies on the status of issues in an issue tracker to deter-

mine payout. We make a simplifying assumption – that the contract

specifies well-defined criteria that must be met for the issue to be

considered fixed. In practice, however, different applications carry

different levels of uncertainty and well-defined tests may not exist

for certain types of tasks. For example, fixing an identified bug is a

well-defined task. Bug descriptions include the steps to reproduce

the bug and can also include failing tests that any fix must pass. A
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fix might introduce other bugs or affect other components. While

there may be variance in the quality of a potential fix, the basic crite-

ria for a fix to be considered correct are clear. The development of

new features carries greater uncertainty. Verification of the correct-

ness of a feature will have more dimensions to satisfy. Not all new

features may be tradable because they may not be sufficiently well-

defined for traders to understand how the corresponding issues will

be resolved. The volume of trading on a feature could be an interest-

ing measure of how well understood the feature is.

Of still greater uncertainty is the discovery of vulnerabilities or

bugs. An offer that rewards the discovery of a vulnerability in a soft-

ware component will need to determine price as well as criteria for

payout. This may not be possible because, until the vulnerability is

disclosed (or exploited), it is hard to know what impact it may have.

There are a few ways this situation could be handled on our plat-

form. With a more expressive bidding language, a funder might

make a tiered offer that pays out different amounts based on differ-

ent standards being met. These standards might classify externally

observable outcomes in terms of levels of importance (e.g. a defect

that spontaneously deletes all data is relatively more serious than a

defect that disrupts workflow).

Alternately, an anonymous hacker could take the FOUND pos-

ition and place an offer on the marketplace, seeking a funder to take

the UNFOUND position. The contract would specify some guaran-

tees of the vulnerability’s impact, with payment being conditional

on these criteria being met once the vulnerability is disclosed.

Further, by having a large indemnity the hacker signals that they are

certain to find such a vulnerability by the maturation date. In add-

ition, the futures market, in the case of an undiscovered vulnerability

or bug, could function more like a prediction market on whether a

particular bug bounty program will pay out within a certain date

range. The bounty program might take the FOUND position to

hedge and be able to pay out more to the bug finder(s), effectively

subsidizing the program with money from the funders holding the

UNFOUND position.

In building the user interface for a pilot study, we realized that a

universal user interface would only be useful to experts and confuse

other user groups. For user groups who have only one reason for

trading on the market, we concluded that specialized user interfaces

are needed. For example, a developer who wants to find an issue

that would pay well, would only use a subset of all features and fur-

ther would benefit from a design that supports the search for valu-

able issues while hiding excess features. Similarly, a project manager

who wants to incentivize developers to work on specific issues uses

a different subset of the contact design features and uses a different

workflow, which would best be supported by a specialized user

interface.

Security considerations
Agile development and continuous integration processes have found

widespread adoption. The open source development model is in line

with the agile approach, which has several security considerations.

The incremental and iterative nature of the agile approach makes

incorporating secure software engineering practices into the continu-

ous development cycle challenging [70, 71]. Techniques to integrate

security into agile practices include implementing user stories,

which may involve changes to existing components and their secur-

ity assurances, and modeling threats based on developers’

perception of the likelihood of a threat and customers’ perception of

its impact [70]. Results of a study of security practices in public

organizations suggest that risk perception and analysis must be

improved and stakeholders in a project must exercise greater co-

operation [71]. A concern regarding the continuous development

paradigm is focusing attention on features that are used the most,

which requires “feature analytics” to provide information for deci-

sion makers [72]. Fitzgerald and Stol [72] describe a quote from a

manager of a software product who stated that “he knew that half

of the features being offered were not used by any customers, but

the trouble was that he did not know which half” [72, p. 185, em-

phasis in original].

We argue that a trading market for software tasks can comple-

ment software security practices in several key ways (see Fig. 3). The

market mechanism allows us to elicit and aggregate continuous and

real-time information on signaling, event likelihood, and usage. Prices

reveal user valuations and help to focus attention on issues that are

most important to users, thereby enabling more efficient allocation of

development resources. Our platform is designed for collaboration on

both sides, allowing for collaborative funding as well as collaborative

work. Contracts opened and closed on the market reveal the most

compelling user stories. This facilitates cooperation and shared invest-

ment among the various stakeholders. Trading behavior on the mar-

ket can reveal users’ perception of potential risks and can provide a

means to address or otherwise hedge against these risks.

The marketplace distributes wealth among all participants in the

software ecosystem. It can be used to incentivize different types of

software tasks, including tasks that typically get less attention, such

as testing, triage, and documentation. As a result the overall quality

of software development is improved. Quality issues, if left untend-

ed, can “become” security issues further in the pipeline (see

“Introduction” section). Current costs of cybersecurity run into the

billions of US dollars. It would seem that bug bounty and other pro-

grams that operate downstream in the software development process

(typically once the software is deployed to users) would incur higher

cost than a platform upstream that can catch issues early while the

software is still being built. Furthermore, by capturing a portion of

the spending on cybersecurity, it may be possible to fund open

source development that is currently not funded.

The marketplace can also highlight those software projects that

adhere to existing best practices. For instance, projects that follow

secure software development practices (e.g. earned a CII Best

Practices Badge3) may have a different price equilibrium from non-

secure software projects. Market participants may be willing to pay

more for open source projects that are known to follow these best

practices and are thus more likely to be secure.

Figure 3. Security of Open Source Software can be implemented in all layers.

At the lowest layer are the tools of generic peer production, e.g. with

GitHub’s warning for outdated dependencies. At the next layer are govern-

ance decisions where secure engineering practices are enforced, e.g. through

the CII Best Practices Badge. Our market place sits on top of that and provides

additional incentives to guide attention of developers and users.

3 The CII Best Practices badge provides a checklist with secure practices.

Open source projects earn a badge by verifying that they are following

these best practices. The badge serves as a stamp of approval of com-

pleted audit. https://bestpractices.coreinfrastructure.org/en.
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Open source considerations
Our goal is to incentivize behavior without changing the develop-

ment workflow or forcing open source projects to adopt a different

system for doing work. We integrate our marketplace with existing

issue trackers. Our market is designed to support collaboration.

This has several implications.

Our market design maintains the autonomy of open source pro-

ject members, who can ignore the market place or respond to it at

their own choice. Open source project maintainers make decisions

on whether to close an issue or not. The reputation and reliability of

a maintainer may be a factor for trading decisions on the market-

place. Traders, in reducing their risk, may avoid projects with main-

tainers who might have garnered a low reputation.

Reopening issues is a natural process in open source develop-

ment. The status of the issue for payout on the futures market only

matters at the time of contract maturation. If an issue is closed but

reopened after contract maturation, the worker who already

received the payout will keep it. If the issue is reopened before the

contract matures and not closed again in time, then the funder

receives the payout.

Disputes amongst market participants (if they reveal their identi-

ties) can flow over into open source projects. Similarly, disputes in

open source projects will have an influence on trading behavior in

the marketplace. We take a hands-off approach to disputes.

Maintainers and developers have to figure out the technical details

and solve any issues, not unlike the current practice in open source

development and regardless of the marketplace. However, the

futures market can increase incentives for collaborating and resolv-

ing disputes before contracts mature.

Workers who feel they might not be able to complete the work be-

fore the contract maturation date can sell their side of the contract,

get compensated for partial work done, and exit the contract in a

transparent way. Alternately, if an issue is not fixed satisfactorily, it

will not be closed and the funder gets the contract payout at matur-

ation. The funder then has the option to create a new offer and pro-

vide potentially different and more favorable terms, such as greater

time to complete the task or a higher reward. The simplifying assump-

tion in section “Our approach,” requiring contracts to specify clear

verification tests, preempts disputes where the correctness or quality

of work comes into doubt after the worker has been paid.

In general, a maintainer who operates fairly, in keeping with in-

dustry norms, cultivates a good reputation and environment that

attracts and retains contributors. This results in greater adoption

and growth of the project. Poorly managed, contentious projects re-

flect on the reputation of the maintainer and drive away the contri-

bution and resources needed for a project to thrive. Developers have

the recourse of forking their own copy of the open source code and

evolving that copy, if disputes become excessive. However, frag-

menting projects is not a desirable outcome because it can create

competing forks with divided resources [73]. In practice, the market-

place will need to contend with various types of disputes. Future

work might study dispute resolution mechanisms such as incentiviz-

ing testing and incorporating arbitrators.

A market place that can connect users who are willing to pay dir-

ectly to developers who are willing to work has the potential to

allow users greater influence over software development. Further, it

can enable more demographics to participate in open source.

Participants can earn an income for working in open source without

having to be employed by a company. This could improve the diver-

sity within open source projects. The market place has the potential

to distribute the wealth created in open source projects differently.

The introduction of external rewards into open source is opposed

by some [74]. The fear is that the community spirit will be lost when

intrinsic motivation is replaced by paid work. Price signals could lead

contributors to compare the market value of different projects and

leave projects that are perceived to be worth less to join higher valued

projects. However, a similar trend of developers moving to more

popular projects already exists [75]. Many open source projects are

not actively under development because developers have lost interest.

Our market place could reinvigorate these projects that would other-

wise have little or no attention from developers or organizations.

Financial and nonfinancial incentives currently co-exist in open

source software production. Major open source projects benefit

from corporate sponsorship. Many open source developers are paid

employees of companies that use open source in their software and

encourage their employees to contribute to open source develop-

ment. Moreover, open source bounty platforms have existed for

some time. Nonetheless, how intrinsic motivation is affected by the

introduction of external rewards would be useful to understand.

Another interesting question is how communities might react when

they perceive that someone else is earning money from their work,

when this is more directly exposed in a market.

Future work
The research initiated in this article raises several interesting ques-

tions that we plan to investigate going forward. A practical question

is how to ensure market liquidity and avoid a thinly traded market.

A usability question is how to make the market design intuitive for

open source developers who have no background in futures markets,

which is important for widespread adoption. A social question is

how to ensure that everyone gets fairly compensated, including

reviewers of code, who do not have the information advantage that

developers have because the review comes late in the development

life-cycle. Other promising lines of research that stem from this

work are as follows:

Characteristics of the model: An insightful direction for future work

is to characterize the futures trading model presented in this article.

How does our model compare to other market models? Does a trading

market enable new types of tasks that were otherwise not addressed by

existing platforms? Alternately, does it allow us to perform old tasks in

new ways? What is a measure of “task complexity” and how does it

help to characterize different models of accomplishing work?

Consequences of the model: Our platform introduces price sig-

nals into the peer production of software. It would be interesting to

study the consequences of introducing price signals in peer produc-

tion and explore the connection between markets and peer produc-

tion. How does this market design impact information sharing and

collaboration? Does this lead to more efficient resource allocation,

better quality output, and result in higher utility for all participants?

How are equilibria in this market characterized? What opportunities

for manipulation exist and how can they be addressed?

Extensions of the model: In future work, we plan to explore the

futures market features and mechanisms in more detail. We would

also like to consider extensions to the contract design presented in

this article. For instance, how can the expressive power of the con-

tract language be improved? What kind of information might be

inferred from the dynamics of contract creation and resolution?

How might techniques from machine learning and financial theory

be used to improve the performance of the market mechanism?

Security impact of the model: We hope to further investigate the

interaction of our market mechanism with software security practi-

ces. What problems in software security might this market address?
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Consequently, what types of security issues might require a different

mechanism?

Conclusion

The main contribution of this article is a novel market design to in-

centivize secure software development in peer production commun-

ities, inspired by futures trading markets. The market connects users

who are willing to pay directly to workers and willing to work

through price signals. The core of our innovation lies in introducing

price signals in such a way as to leverage and strengthen the success-

ful qualities of peer production. Our design facilitates collaboration

on both sides of the platform – thus multiple stakeholders can pool

resources and share investment in collaborative funding, and mul-

tiple workers can draw on a diverse set of skills in collaborative

work. By enabling developers to earn credit for partial work, our

market incentivizes information sharing. The market treats a predic-

tion that something cannot happen in the same way as an incentive

to make it happen. Thus, in aggregate, the market creates a pool of

wealth that can be captured by innovators.

We further contribute a proof-of-concept implementation of our

innovation, which confirms the practicality of the trading market.

The source code is publicly available under an open source license.4

Preliminary simulation results demonstrate that the implementation

works as expected and can be used for future experiments. The pre-

sent article lays a foundation upon which future research may build.

In ongoing work, we are designing experiments to work with real

software project groups. Our goal is to run a series of experiments,

simulated and real-world, to test various hypotheses about the char-

acteristics of the system and to arrive at a deeper understanding of

the impact of the incentives design.

Acknowledgements

We thank Daniel Arce, Rainer Bohme, Zvi Boshernitzan, Matt Germonprez,

Margo Seltzer, the participants of the 17th Annual Workshop on the

Economics of Information Security (WEIS) 2018, and the anonymous

reviewers for valuable feedback.

Supplementary Data

Supplementary data is available at Journal of Cybersecurity online.

Conflict of interest statement. None declared.

Funding

This work was supported by Mozilla through the open source experiments

program. The project was also supported by the Alfred P. Sloan Foundation

Digital Technology grant on Open Source Health and Sustainability (https://

sloan.org/grant-detail/8434). Funding for open access publishing was pro-

vided by the University of Nebraska at Omaha Libraries’ Open Access Fund.

References

[1]. NIST. The economic impacts of inadequate infrastructure for software

testing. Planning report 02-3, 2002. http://www.nist.gov/director/plan

ning/upload/report02-3.pdf (13 September 2019, date last accessed).

[2]. Dreyer P, Jones T, Klima K, et al. Estimating the Global Cost of Cyber

Risk: Methodology and Examples. Santa Monica, CA: RAND

Corporation, 2018.

[3]. Nizovtsev D, Thursby M. Economic analysis of incentives to disclose

software vulnerabilities. In: Fourth Workshop on the Economics of

Information Security. Cambridge, MA, USA, 2005.

[4]. Anderson R. Why information security is hard – an economic perspec-

tive. In Proceedings of the 17th Annual Computer Security Applications

Conference (ACSAC), New Orleans, LA, 2001. Washington, DC: IEEE

Computer Society, 2001.

[5]. Eghbal N. Roads and Bridges: The Unseen Labor Behind Our Digital

Infrastructure. Ford Foundation, 2016.

[6]. Benkler Y. Coase’s penguin, or, “linux and the nature of the firm”. Yale

LJ 2002;112:369–446.

[7]. Open Source Press Release. The linux foundation releases first-ever value

of collaborative development report, 2015. https://www.linuxfounda

tion.org/press-release/the-linux-foundation-releases-first-ever-value-of-

collaborative-development-report/.

[8]. Kooths S, Langenfurth M, Kalwey N. Open-source software - an eco-

nomic assessment. MICE Econ Res Stud 2003;4:1–95.

[9]. Black Duck. Open source security and risk analysis, 2018 https://www.

synopsys.com/content/dam/synopsys/sig-assets/reports/2018-ossra.pdf

(13 September 2019, date last accessed).

[10]. ImageTragick. Imagemagick vulnerability, 2016. https://imagetragick.

com/.

[11]. U.S. DoD News Release. Statement by pentagon press secretary peter

cook on dod’s partnership with hackerone on the hack the pentagon se-

curity initiative, 2016 http://www.defense.gov/News/News-Releases/

News-Release-View/Article/709818/statement-by-pentagon-press-secre

tary-peter-cook-on-dods-partnership-with-hacke.

[12]. Bountysource Inc. Bountysource inc. website, 2013. https://www.bounty

source.com.

[13]. TopCoder Inc. Topcoder inc. website, 2001. https://www.topcoder.

com.

[14]. Kickstarter. Kickstarter website, 2009. https://www.kickstarter.com.

[15]. Bacon DF, Chen Y, Parkes DC et al. A market-based approach to soft-

ware evolution. In Proc. 24th ACM SIGPLAN Conference Companion

on Object Oriented Programming Systems Languages and Applications,

Orlando, Florida, USA. OOPSLA ’09, New York: ACM Press, 2009,

973–80.

[16]. Bacon DF, Bokelberg E, Chen Y, et al. Software economies. In: Proc.

FSE/SDP Workshop on Future of Software Engineering Research, Santa

Fe, New Mexico, USA. New York, NY: ACM, 2010.

[17]. Rao M, Bacon David F, Parkes David C, Seltzer M, Incentivizing deep

fixes in software economies. IEEE Transactions on Software

Engineering, 2018a. DOI: 10.1109/TSE.2018.2842188.

[18]. Malvika R. Incentives design in the presence of externalities. Ph.D.

Dissertation, Harvard University, 2015.

[19]. Rainer B. Vulnerability markets - what is the economic value of a zero-

day exploit? In: Proc. of 22C3: Private Investigations, Berlin, Germany,

2005.

[20]. Bohme R. A comparison of market approaches to software vulnerability

disclosure. In: Muller G (ed.), Emerging Trends in Information and

Communication Security, LNCS 3995, Berlin Heidelberg: Springer-

Verlag, 2006, 298–311.

[21]. Stuart ES. How to buy better testing: using competition to get the most

security and robustness for your dollar. In Davida G, Frankel Y, Rees O

(eds), Infrastructure Security. InfraSec 2002, Bristol, UK. Lecture Notes

in Computer Science, vol 2437. Berlin, Heidelberg: Springer, 2002.

[22]. Ozment A. Bug auctions: vulnerability markets reconsidered. In: Third

Workshop on the Economics of Information Security. Minneapolis,

MN, USA, 2004.

[23]. Anderson R, Moore T. The economics of information security. Science

2006;314:610–13.

[24]. Cofone I. The value of privacy: keeping the money where the mouth is.

In: 14th Annual Workshop on the Economics of Information Security

(WEIS). The Netherlands: Delft University of Technology, 2015.

[25]. Kannan K, Telang R. Market for software vulnerabilities? Think again.

Manag Sci 2005;51:726–40.

4 See https://github.com/bugmark/exchange.

Journal of Cybersecurity, 2019, Vol. 0, No. 0 13

D
ow

nloaded from
 https://academ

ic.oup.com
/cybersecurity/article-abstract/5/1/tyz011/5580665 by U

niversity of N
ebraska-O

m
aha user on 12 N

ovem
ber 2019

https://academic.oup.com/cybersecurity/article-lookup/doi/10.1093/cybsec/tyz011#supplementary-data
https://sloan.org/grant-detail/8434
https://sloan.org/grant-detail/8434
http://www.nist.gov/director/planning/upload/report02-3.pdf
http://www.nist.gov/director/planning/upload/report02-3.pdf
https://www.linuxfoundation.org/press-release/the-linux-foundation-releases-first-ever-value-of-collaborative-development-report/
https://www.linuxfoundation.org/press-release/the-linux-foundation-releases-first-ever-value-of-collaborative-development-report/
https://www.linuxfoundation.org/press-release/the-linux-foundation-releases-first-ever-value-of-collaborative-development-report/
https://www.synopsys.com/content/dam/synopsys/sig-assets/reports/2018-ossra.pdf
https://www.synopsys.com/content/dam/synopsys/sig-assets/reports/2018-ossra.pdf
https://imagetragick.com/
https://imagetragick.com/
http://www.defense.gov/News/News-Releases/News-Release-View/Article/709818/statement-by-pentagon-press-secretary-peter-cook-on-dods-partnership-with-hacke
http://www.defense.gov/News/News-Releases/News-Release-View/Article/709818/statement-by-pentagon-press-secretary-peter-cook-on-dods-partnership-with-hacke
http://www.defense.gov/News/News-Releases/News-Release-View/Article/709818/statement-by-pentagon-press-secretary-peter-cook-on-dods-partnership-with-hacke
https://www.bountysource.com
https://www.bountysource.com
https://www.topcoder.com
https://www.topcoder.com
https://www.kickstarter.com
https://github.com/bugmark/exchange


[26]. Laube S, Bohme R. The economics of mandatory security breach report-

ing to authorities. In: 14th Annual Workshop on the Economics of

Information Security (WEIS). The Netherlands: Delft University of

Technology, 2015.

[27]. Maillart T, Zhao M, Grossklags J. et al. Given enough eyeballs, all bugs

are shallow? Revisiting Eric Raymond with bug bounty programs.

J Cybersecur 2017;3:81–90.

[28]. Schechter SE. Toward econometric models of the security risk from re-

mote attack. IEEE Security Privacy 2005;1:40–44.

[29]. Hosseini H, Nguyen R, Godfrey MW, A market-based bug allocation

mechanism using predictive bug lifetime. In Proc. 16th European

Conference on Software Maintenance and Re-engineering (CSMR),

Szeged, Hungary, 2012. Washington, DC: IEEE Computer Society, 2012.

[30]. Moldovanu B, Sela A. The optimal allocation of prizes in contests. Am

Econ Rev 2001;91:542–58.

[31]. Moldovanu B, Sela A. Contest architecture. J Econ Theory 2006;126:

70–97.

[32]. Tullock G. Efficient rent seeking. In: Buchanan JM, Tollison RD,

Tullock G (eds), Towards a Theory of the Rent Seeking Society. Texas:

A&M University Press, 2001, 97–112.

[33]. Archak N, Sundararajan A. Optimal design of crowdsourcing contests.

In: Proceedings of the 30th International Conference on Information

Systems (ICIS). Phoenix, Arizona, USA, 2009.

[34]. Chawla S, Hartline JD, Sivan B. Optimal crowdsourcing contests. In:

Proceedings of the Twenty-third Annual ACM-SIAM Symposium on

Discrete Algorithms, Kyoto, Japan, 2012. SODA ’12, Philadelphia, PA:

Society for Industrial and Applied Mathematics, 2012.

[35]. DiPalantino D, Vojnovic M. Crowdsourcing and all-pay auctions. In:

Proceedings of the 10th ACM Conference on Electronic Commerce,

Stanford, CA, USA, 2009. EC ’09, New York, NY: ACM, 2009,

119–28.

[36]. Gneiting T, Raftery AE. Strictly proper scoring rules, prediction, and es-

timation. J Am Stat Assoc 2007;102:359–78.

[37]. Hanson RD. Logarithmic market scoring rules for modular combinator-

ial information aggregation. J Predict Markets 2007;1:1–15.

[38]. Lambert N, Pennock DM, Shoham Y. Eliciting properties of probability

distributions. In: Proceedings of the ACM Conference on Electronic

Commerce, Chicago, IL, USA, 2008. EC’08, New York, NY: ACM,

2008, 129–38.

[39]. Murphy AH., Winkler RL. Probability forecasting in meteorology. J Am

Stat Assoc 1984;79:489–500.

[40]. Savage LJ. Elicitation of personal probabilities and expectations. J Am

Stat Assoc 1971;66:783–801.

[41]. Boudreau KJ, Lacetera N, Lakhani KR.. Parallel search, incentives and

problem type: revisiting the competition and innovation link. Working

paper, no. 09-041. Technical report. Harvard Business School,

September 2008.

[42]. Lakhani KR, Panetta JA. The principles of distributed innovation. Innov

Technol Gov Glob 2007;2:97–112.

[43]. Baldwin CY, Clark KB. The Power of Modularity. Vol. 1, Design Rules.

Cambridge, MA: MIT Press, 2000.

[44]. MacCormack A, Rusnak J, Baldwin CY. Exploring the structure of com-

plex software designs: an empirical study of open source and proprietary

code. Manag Sci 2006;52:1015.

[45]. Lerner J, Tirole J. Some simple economics of open source. J Ind Econ

2003;50:197–234.

[46]. Johnson J. Open source software: private provision of a public good.

J Econ Manag Strategy 2002;11:637–62.

[47]. Athey S, Ellison G. Dynamics of open source movements. J Econ Manag

Strategy 2014;23:294–316.

[48]. Roth AE, Peranson E. The redesign of the matching market for

American physicians: some engineering aspects of economic design. Am

Econ Rev 1999;89:748–80.

[49]. Wilson R. Architecture of power markets. Econometrica 2002;70:

1299–340.

[50]. Leyton-Brown K, Milgrom P, Segal I. Economics and computer science

of a radio spectrum reallocation. Proc Natl Acad Sci 2017;114:7202–09.

[51]. Budish E, Cramton P, Shim J. The high-frequency trading arms race: fre-

quent batch auctions as a market design response. Q J Econ 2015;130:

1547–621.

[52]. Immorlica N, Bergquist L, Lucier B, Quinn J, McIntosh C, Newman N,

Leyton-Brown K, Ssekibuule R. Designing and evolving an electronic

agricultural marketplace in Uganda. In: Proceedings of the ACM

SIGCAS Conference on Computing and Sustainable Societies

(COMPASS), Menlo Park and San Jose, CA, 2018. New York, NY:

ACM, 2018.

[53]. Kominers SD, Teytelboym A, Crawford VP. An invitation to market de-

sign. Oxf Rev Econ Policy 2017;33:541–71.

[54]. Rao Georg M, Link JP, Marti D, Leak A, et al. A trading market to in-

centivize secure software. In: 17th Annual Workshop on the Economics

of Information Security (WEIS) Proceedings, Innsbruck, Austria, 2018b.

https://weis2018.econinfosec.org/wp-content/uploads/sites/5/2016/09/

WEIS_2018_paper_27.pdf.

[55]. Bountify Inc. Bountify inc. website, 2012. https://bountify.co.

[56]. BugCrowd Inc. Bugcrowd inc. website, 2012. https://bugcrowd.com.

[57]. Hackerone. Hackerone website, 2012. https://www.hackerone.com.

[58]. Mao K, Capra L, Harman M, et al. A survey of the use of crowdsourcing

in software engineering. J Syst Software 2017;126:57–84.

[59]. Howison J, Crowston K. Collaboration through open superposition: a

theory of the open source way. MIS Q 2014;38:29–50.

[60]. Tabarrok A. The private provision of public goods via dominant assur-

ance contracts. Public Choice 1998;96:345–62.

[61]. Krishna V. Auction Theory, 2nd edn. Academic Press, 2010.

[62]. Faraj S., Kudaravalli S., Wasko M. Leading collaboration in online com-

munities. MIS Q 2015;39:393–412.

[63]. Milgrom PR. Auction theory. In: Bewley T. (ed.), Advances in Economic

Theory: Fifth World Congress. London: Cambridge University Press,

1987, 1–32.

[64]. Kalagnanam J, Parkes DC. Auctions, bidding and exchange design. In:

Simchi-Levi D, Wu SD, Shen Z. (eds), Handbook of Quantitative Supply

Chain Analysis: Modeling in the E-Business Era. Boston: Kluwer, 2004,

143–212.

[65]. Bichler M, Davenport A, Hohner G. et al. Industrial procurement auc-

tions. In: Cramton P., Shoham Y., Steinberg R. (eds), Combinatorial

Auctions. Cambridge, MA: The MIT Press, 2005, 593–612.

[66]. Allen JL. Derivatives clearinghouses and systemic risk: a bankruptcy and

Dodd-Frank analysis. Stanford L Rev 2012;64:1079–108.

[67]. Carlton DW. Futures markets: their purpose, their history, their growth,

their successes and failures. J Futures Markets (Pre-1986); New York

1984;4:237.

[68]. Hudson SE, Mankoff J. Concepts, values, and methods for technical

human computer interaction research. In: Olson JS, Kellogg WA (eds),

Ways of Knowing in HCI. New York, NY: Springer, 2014, 69–93.

[69]. Ren Y, Kraut RE. Agent based modeling to inform the design of multi-

user systems. In: Olson JS, Kellogg WA. (eds), Ways of Knowing in HCI.

New York, NY: Springer, 2014, 395–419.

[70]. Othmane LB, Angin P, Weffers H. et al. Extending the agile development

process to develop acceptably secure software. IEEE Trans Depend

Secure Comput 2014;11:497–509.

[71]. Tondel IA, Jaatun MG, Soares Cruzes D. et al. Risk centric activities in

secure software development in public organisations. Int J Secure Softw

Eng 2017;8:1–30.

[72]. Fitzgerald B, Stol K-J. Continuous software engineering: a roadmap and

agenda. J Syst Softw 2017;123:176–89.

[73]. Karl, F. Producing Open Source Software: How to Run a Successful Free

Software Project, 2015. https://producingoss.com/ (13 September 2019,

date last accessed).

[74]. Hansson DH, The perils of mixing open source and money (DHH),

2013. http://david.heinemeierhansson.com/2013/the-perils-of-mixing-

open-source-and-money.html.

[75]. Beecher K, Capiluppi A, Boldyreff C. Identifying exogenous drivers and

evolutionary stages in FLOSS projects. J Syst Softw 2009;82:739–50.

14 Journal of Cybersecurity, 2019, Vol. 0, No. 0

D
ow

nloaded from
 https://academ

ic.oup.com
/cybersecurity/article-abstract/5/1/tyz011/5580665 by U

niversity of N
ebraska-O

m
aha user on 12 N

ovem
ber 2019

https://weis2018.econinfosec.org/wp-content/uploads/sites/5/2016/09/WEIS_2018_paper_27.pdf
https://weis2018.econinfosec.org/wp-content/uploads/sites/5/2016/09/WEIS_2018_paper_27.pdf
https://bountify.co
https://bugcrowd.com
https://www.hackerone.com
https://producingoss.com/
http://david.heinemeierhansson.com/2013/the-perils-of-mixing-open-source-and-money.html
http://david.heinemeierhansson.com/2013/the-perils-of-mixing-open-source-and-money.html

	A market for trading software issues
	Recommended Citation

	OP-CYBE190015 1..14

