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Abstract: Given the availability of cameras in mobile phones, drones and Internet-connected devices,
facial privacy has become an area of major interest in the last few years, especially when photos are
captured and can be used to identify bystanders’ faces who may have not given consent for these
photos to be taken and be identified. Some solutions to protect facial privacy in photos currently
exist. However, many of these solutions do not give a choice to bystanders because they rely on
algorithms that de-identify photos or protocols to deactivate devices and systems not controlled by
bystanders, thereby being dependent on the bystanders’ trust in these systems to protect his/her facial
privacy. To address these limitations, we propose FacePET (Facial Privacy Enhancing Technology),
a wearable system worn by bystanders and designed to enhance facial privacy. We present the design,
implementation, and evaluation of the FacePET and discuss some open research issues.

Keywords: face detection; face recognition; internet of things; bystanders’ privacy; privacy enhancing
technology; smart glasses; wearables

1. Introduction

According to Ericcson’s Mobility Report [1], there are more than four billion smartphones
subscriptions in the world. The availability of these devices with high-resolution cameras, mobile
Internet connectivity, and the development of artificial intelligence techniques such as deep learning
can expose individuals to privacy issues. Among these issues is bystanders’ privacy [2,3] which is the
issue that arises when a device collects sensor data (such as photos, sound or video) that can be used
to identify bystanders who may have not given consent for them to be identified.

The origins of the problem of bystanders’ privacy can be traced back to the development of
cameras that took photos in the late 19th century. However, in recent years, taking photographs in
public that may include bystanders has once again been receiving attention, especially when it comes
to privacy concerns of the bystanders. This problem has become important because of the ubiquity
of camera-enabled mobile and wearable devices, and the proliferation of social networks that allow
photos to be instantly shared with the world instead of being kept private in a physical album (as was
the case only a few decades ago) [2]. An example where bystanders were identified by using photos
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of their faces without consent was the incident that occurred in 2016 when a Russian photographer
took photos of bystanders at a subway station and was able to identify them using free software
available on the Internet [4]. The bystanders later knew about their identification through news reports.
This example underscores the risks that people are exposed to with respect to their facial privacy as
mobile devices become even more affordable, powerful, and ubiquitous. It is worth noting that this
issue arises with any camera-enabled Internet of Things (IoT) device such as web/security cameras
and drones.

Privacy in mobile, wearable and IoT devices usually focus on attacks and solutions to protect a
user’s private space from unauthorized parties’ access, and the protection of private data in social
networking sites and other Internet services. For the facial privacy of bystanders, however, there is
a social aspect that extends the user’s private space: when photos, videos, and sound are collected
in shared spaces (especially in public spaces such as parks or restaurants), a conflict of ownership of
spaces arises between the user and the bystanders. Using devices that can collect identifiable data
creates the perception of ownership of the space surrounding the device (by the user of the device),
which can include the space surrounding bystanders [5–8].

In the early 2000s, research on human-computer interaction found that the use of cellphones in
public spaces was offensive to some people [9], because these devices presented a conflict of social
spaces where a user is simultaneously in the physical space that he or she occupies, and the virtual
space of the conversation over the cellphone. Today, many wearable devices such as smart glasses
also include cameras and microphones that create strong privacy concerns [10] when collecting and
sharing data over the Internet without permission, thereby directly threatening bystanders’ space and
autonomy. Table 1 outlines and explains bystanders’ fears and concerns in greater detail.

Table 1. Bystanders’ privacy concerns adapted from Motti et al. [10].

Privacy Concern Description

Facial recognition
Association and recognition of a bystander to a place or a
situation where the bystander would not wish to be
recognized by others

Social implications Unawareness by a network of friends regarding data
being collected about them

Social media sync Immediate publishing or sharing without the
bystander’s knowledge

User’s fears: surveillance and Sousveillance
Continuous tracking of activities that might make a
user/bystander feel that no matter what he or she does,
everything is recorded

Speech disclosure Capturing speech that a user or bystanders would not
want to record or share

Surreptitious A/V recording Recording audio or video without permission that might
affect bystanders

Location disclosure Fear of inadvertently sharing a location to third parties
that should not have access to the location information

Given the importance of bystanders’ facial privacy nowadays, this work describes the Facial
Privacy Enhancing Technology (FacePET) system, a wearable system worn by bystanders and designed
to enhance facial privacy. The main research domain of this work is privacy, with reference disciplines
being computer networks and communications (Internet of things and wearables), computer vision
(methods to thwart face detection, adversarial machine learning), security (privacy and access control),
and human-computer interaction (Internet-connected cameras and wearables in shared spaces).
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Our Research Contributions

We summarize the main contributions of this paper as follows:

• We present a taxonomy of recently proposed techniques aimed at enhancing the facial privacy
of bystanders.

• We describe and evaluate the design of a wearable device called Facial Privacy Enhancing
Technology (FacePET) that enhances the facial privacy of its wearer. To the best of our knowledge,
this is the first work that describes an IoT device to enhance the privacy of its wearer.

• We describe a protocol over Bluetooth that provides FacePET’s users a way to provide consent to
third parties who may want to take photos of them.

The rest of the paper is organized as follows. Section 2 presents a taxonomy of methods that have
been proposed to protect the facial privacy of bystanders. In Section 3 we describe FacePET. Section 4
presents an evaluation FacePET. In Section 5 we describe some of the limitations of FacePET and future
work. Finally, in Section 6 we present some concluding remarks.

2. Related Work

Methods currently available to handle bystanders’ facial privacy can be classified into two broad
categories: location-dependent methods, which deny third party devices the opportunity to collect
data and obfuscation-dependent methods, which prevent bystanders’ facial detection and identification.
Figure 1 shows the taxonomy we used in this paper to classify the methods to protect bystanders’ facial
privacy. At the end of this section we evaluate the methods for each major category of the taxonomy.
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Figure 1. Taxonomy of methods for bystanders’ privacy protection [2].

2.1. Location Dependent Methods

Location-dependent methods deny the collection of data at particular shared spaces (such as
restaurants, casinos, or cafes). Implementation of this method entails restricting and banning devices’
use through warning signs, confiscating devices before entering a shared space, or temporarily
disabling user devices in a shared space. According to the taxonomy presented in Figure 1, these
methods can be further classified into two categories, namely, (1) banning/confiscating devices and (2)
disabling devices.

In the banning/confiscating devices category, third-party devices are confiscated or banned for
usage at a shared space. This method has been in use since the end of the 19th century when the use of
cameras was forbidden at private beaches and, for some time, at public spaces in the U.S. [11]. When
devices cannot be used at the shared space, the bystanders’ facial privacy is protected.

In the disabling devices category, bystanders’ facial privacy is protected because third-party
devices cannot collect data about the bystanders. Devices can be disabled in shared spaces by using
three approaches: sensor saturation, broadcasting commands, and context-based approaches. In the
first approach (sensor saturation), the goal is to make the sensors of a third-party devices detect an
input signal that is greater than the maximum possible measurable input supported by third-party
devices’ sensors (thereby making the sensors unusable by saturation). An example in this category is
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the use of near-infrared pulsating lights from fixed devices at shared spaces directed at the device’s
camera lens [12] in order to saturate the Charge-Coupled Device (CCD) sensor. Facial privacy is
preserved because data cannot be collected when the device’s sensor saturates. In the second approach
(broadcasting commands) in the disabling devices category, the third-party devices receive some type
of command broadcast by a fixed device in the shared space to temporarily disable the capture of facial
data. An example in this category is the use of Bluetooth and infrared protocols to send disabling
commands [13,14]. In the last category (context-based approaches) of location-dependent methods,
third-party devices perform some type of context recognition to trigger software actions that deny
the explicit collection of data by disabling user devices’ sensors at shared spaces. An example in this
category includes the virtual walls approach [15] wherein the device uses contextual information (such
as Global Positioning System (GPS) location data) to trigger software actions that can temporarily
disable its sensors based on pre-programmed contextual rules. A second example in this group is
the system developed by Blank et al. [16] in which camera-enabled drones are restricted from flying
over certain areas through rules established in a website and broadcast to the drones. In this case,
bystanders’ facial privacy is preserved because data cannot be collected by third-party devices when
the contexts are recognized and the device’s sensors are disabled.

2.2. Obfuscation Dependent Methods

Obfuscation methods attempt to hide the identity of bystanders to avoid their identification.
These methods can be classified into two groups: (1) bystander-based obfuscation; and (2)
device-based obfuscation.

In bystander-based obfuscation, the bystanders take actions to avoid their facial identification.
This might be accomplished by wearing some type of hardware (or clothing) that hides or perturbs the
bystanders’ identifiable features needed to perform identification, or by having bystanders perform
some type of physical action (for example, leaving the shared space, or asking a user to stop using a
device) to protect their privacy when bystanders become aware of a device’s use in their surroundings
that might infringe upon their privacy [17]. Examples in this category include the PrivacyVisor
glasses [18,19] that hide facial features using near-infrared light or reflective materials, and the
utilization of wearables to impersonate or to hide facial features to deceive facial detection and
recognition algorithms [20]. Notification methods that alert bystanders to protect their privacy include
the use of Light Emitting Diodes (LEDs) on wearables (such as Snap spectacles) to notify bystanders of
video or audio being recorded in their surroundings, and the use of short-range radio broadcasts and
WiFi-based communication protocols to notify bystanders about sensing activity being performed in
their proximity (e.g., NotiSense [17]).

In the last group (device-based obfuscation), the software at third-party devices adds noise (such as
blurring) on collected data to hide bystanders’ facial identifiable features. The software at users’ devices
might perform obfuscation by default (for example, performing blurring all faces detected in a photo
or a video), it might let users add noise to obfuscate bystanders selectively (selective obfuscation) [21],
or the software on the users and bystanders’ devices might access protocols over wireless networks
to communicate privacy settings such that the software on the user device could automatically hide
bystanders’ identifiable features based on these privacy settings (collaborative obfuscation) [22].
The drawback of device-based obfuscation is that bystanders might have no control over the protection
of their privacy because device-based obfuscation methods rely on third-party devices.

2.3. Evaluation of Methods for Facial Privacy Protection

Although several solutions to address the issue of bystanders’ facial privacy have been proposed
in the past (as described in the previous sections), these solutions vary in their efficacy because of the
following factors:
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• Usability: In human-computer interaction, usability is described as how easily a system can be
used by a typical consumer/user to fulfill its objectives [23]. In systems that enhance bystanders’
facial privacy, minimal user intervention should be required by the bystander.

• Power consumption: In any type of battery-powered system, power consumption plays a
substantial role because devices that deplete their battery in a fast manner need to be recharged
often. Since many solutions for bystanders’ facial privacy protection involve the utilization of
algorithms in mobile devices, power consumption is a design issue for such systems [24].

• Effectiveness: Solutions to protect bystanders’ facial privacy involve components and algorithms
to identify contexts/faces (to blur or obfuscate them), while others involve extra devices or
mechanisms combined with intelligent algorithms. Since these systems make use of artificial
intelligence algorithms (i.e., classification algorithms) to detect these contexts and/or faces, the
solutions may include false detections or misclassifications which affect the effectiveness and
accuracy of the system.

Based on these issues, we evaluate below recent systems and techniques that have been proposed
for protecting bystanders’ facial privacy by using the ratings shown in Table 2. Table 3 summarizes the
evaluated methods/systems along with their corresponding ratings.

Table 2. Design issues for bystanders’ facial privacy solutions.

Design Issue Description Rating

Usability Is the method easy to use? Low, Medium, High

Power consumption Does the method require high
power consumption? Low, Medium, High

Effectiveness Is the method effective to protect bystanders? Low, Medium, High

3. FacePET: Enhancing Facial Privacy with Smart Wearables

3.1. Face Detection and Recognition

Face detection and recognition dates back from the 1970’s [25,26], but the advent of imaging sensors
embedded in smartphones and digital cameras in conjunction with social networks have paved the way
for more research on these algorithms the last decade. Private companies (e.g., Facebook [27]) in addition
to law enforcement agencies [28,29] are using algorithms to detect faces for business and law enforcement
purposes. In computer vision and image processing, face detection involves detecting if a face is present in
a photo/video, whereas face recognition associates a face in a photo/video with an identity.

Figure 2 illustrates the basic steps involved in the detection and recognition of faces in photos
and/or video recordings. Initially a photo or video is captured using some type of digital camera
embedded in an Internet of Things (IoT) device such as a mobile phone, a drone, or Internet-connected
camera (image capture phase). Then, this digital photo/video is passed through some software that
checks if there is a face present in the photo/video (face detection phase). Finally, if the face is detected,
then the face recognition phase is performed whose output yields the identity of the detected face.
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Table 3. Methods for bystanders’ facial privacy protection.

Method Category Usability Power Effectiveness Limitations

BlindSpotCapture-resistant
environment [12]

Location
(disabling, sensor

saturation)
High Low Low Utilization of InfraRed (IR) light to disable CCD sensors may not

be useful with IR filters on modern cameras.

Disabling devices via
infrared [13]

Location
(disabling, broadcasting

of commands)
High Low Medium

Method requires third-party devices to receive IR commands and
software to disable sensors which not all third-party devices may
the capability.

Disabling devices via
Bluetooth [14]

Location
(disabling, broadcasting

of commands)
High Medium Medium

Method requires third-party devices to receive Bluetooth
commands and software to disable sensors which not all
third-party devices may have the capability.

Virtual Walls [15] Location
(disabling, context-based) Medium High Medium

Method requires bystanders to set up privacy rules that are
accessed in third-party devices. Use of sensors in the mobile device
to determine contexts may consume large amounts of power.

Privacy-restricted areas [16] Location
(disabling, context-based) Medium Medium Medium

Method requires bystanders to set up privacy rules that are
accessed in third-party devices. Proposed for unmanned
aerial vehicles.

World-driven access control
[30]

Location
(disabling, context-based) High High Medium Method does not require bystanders’ intervention but device may

not detect contexts correctly.

Sensor Tricorder [31] Location
(disabling, context-based) High High Medium

Does not require bystanders’ intervention but device may not
detect contexts correctly. Makes use of Quick Response (QR) codes
to encode location privacy rules.

PlaceAvoider [32] Location
(disabling, context-based) Medium High Medium

Requires machine learning algorithms to detect sensitive contexts.
May not detect contexts correctly. Devices must have software to
detect contexts. Requires third-party user intervention to check if
areas are indeed sensitive.

NotiSense [17] Obfuscation-based
(bystander-based) Medium Low Medium

Requires third-party devices to notify bystanders about possible
privacy violations and have the bystander to take action to protect
his/her facial privacy.

PrivacyVisor [18] Obfuscation
(bystander-based) High High Low Uses IR in wearables worn by bystanders to obfuscate facial

features. IR can be blocked using filters.

PrivacyVisor III [19] Obfuscation
(bystander-based) High Low High Uses reflective materials in wearables used by bystanders to

corrupt photos taken about them.
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Table 3. Cont.

Method Category Usability Power Effectiveness Limitations

Perturbed eyeglass
frames [20]

Obfuscation
(bystander-based) High High Medium Uses patterns in glasses’ frames to confuse facial recognition

algorithms. May be prone to re-identification.

Invisibility Glasses [33] Obfuscation
(bystander-based) High High Low

Uses IR in wearables worn by bystanders to obfuscate facial
features. Needs high power and IR can be blocked using IR filters
which are available for mobile phones.

Privacy Protection in
Google StreetView [34]

Obfuscation
(device-based, default) High Low High

This technology does not depend on the bystander but on the
company collecting photos. Company performs obfuscation in the
cloud after the photos have been forwarded from the device that
captured them.

ObscuraCam [21] Obfuscation
(device-based, selective) High High Medium

This technology blurs faces in photos through a mobile application.
Face blurring occurs at the mobile phone and depending of the
blurring technique bystanders could be re-identified.

I-pic [22]
Obfuscation

(device-based,
collaborative)

Medium High Medium

Uses protocols between bystander and third-party devices to
allow/deny blurring based on privacy rules. Face blurring occurs
at the mobile phone and depending on the blurring technique,
bystanders could be re-identified.

PrivacyCamera [35]
Obfuscation

(device-based,
collaborative)

Medium High Medium

Uses protocols between the bystander and third-party device to
allow/deny blurring based on privacy rules. Face blurring occurs
at the mobile phone and depending on the blurring technique
bystanders could be re-identified.

Respectful Cameras [36] Obfuscation
(device-based, selective) High Low High Bystanders use visual colored cues to inform capturing device of

privacy rules. Developed for fixed cameras. Face is fully hidden.

Do Not Capture [37]
Obfuscation

(device-based,
collaborative)

Medium High Medium

Uses protocols between the bystander and third-party device to
allow/deny blurring based on privacy rules. Face blurring occurs
at the mobile phone and depending of the blurring technique the
bystanders could be re-identified.

Invisible Light Beacons [38] Obfuscation
(device-based, selective) High High Low

Bystanders use wearable IR beacons to inform capturing devices of
privacy rules. Mobile devices with IR filters will ignore the signal
sent by the beacons.

Negative face blurring [39] Obfuscation
(device-based selective) Medium Low Medium

Once captured and stored, blurring of bystanders’ faces occur
when photos are presented through social networks using stored
privacy rules.
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The development of fast and practical implementations of face detection algorithms in portable
devices has been possible through the work of Viola–Jones who developed a face detector that became
a standard technique for this task [40]. Viola–Jones’ work is based on three main ideas [41]: (1) the
utilization of an image representation (a data structure called “integral image”) that facilitates the
extraction of simple features (called “Haar-like features”); (2) the utilization of a simple and efficient
classifier based on the AdaBoost machine learning algorithm to select the most promising features
to detect faces; and (3) the utilization of a combination of classifiers organized in sequence (called
“cascade classifiers”) which allows to quickly discard regions of the image while concentrating on the
most promising regions where faces may lie [41]. In the algorithm, a Haar-like feature is calculated as
follows [19]:

h(r1, r2) = s(r1) − s(r2) (1)

where s(r1) is the average of the intensities of the pixels in the “white” regions, and s(r2) is the average
of the pixel intensities in the “black” regions as specified by patterns defined by a Haar-like feature.
In their paper, Viola–Jones use the basic Haar-like features shown in Figure 3.
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The goal in using these features is to guide the face detection algorithm to find better regions of
interest in which a face may possibly lie. Before this algorithm was developed, other algorithms already
did face detection, but they relied on techniques using pixel positions and relationships between pixels
in an image. Such techniques incur a higher computational cost than the Viola–Jones’ approach [40].

The Viola–Jones algorithm calculates the values of these Haar-like features by making use of
windows (sub-regions) with different sizes from the original image. Once the features are calculated
for all windows, the windows are passed through a classifier that outputs “true” for those windows
that may contain a face or “no” otherwise. The goal is to discard windows that may not contain
faces. The classifier is built as a sequence (cascade) of (weak) classifiers (Figure 4) in which each
consecutive classifier is stronger than the previous one. These weak classifiers have been previously
trained before the face detection phase is executed by using the AdaBoost algorithm [41]. Once the
windows classified with “yes” have been labeled by the cascade classifier, they may be passed to more
complex algorithms.
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3.2. Proposed FacePET System

In this section we describe the proposed Facial Privacy Enhancing Technology (FacePET) system.
The FacePET system is based on the idea that bystanders’ facial privacy should be handled by the
bystander instead of relying on third-party devices to control bystanders’ facial privacy. To this end,
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we have developed a prototype of a smart wearable device that uses visible light to create noise to
distort the Haart-like features used by face detection algorithms. Therefore, our wearable device allows
bystanders to protect their privacy.

We have incorporated a Bluetooth Low Energy (BLE) microcontroller that controls when the lights
are enabled/disabled based on privacy rules established by the bystander. The goal regarding the
utilization of the BLE microcontroller is for the bystander to provide consent to third-party devices
who may want to take photos of the bystander. Our work is similar to the work of Yamada et al. [18]
but with the following differences:

• In Yamada’s work [18] the authors proposed the use of near-infrared light to saturate the
Charged-Coupled Device (CCD) sensor of digital cameras to distort the Haar-like features.
In contrast, our work uses visible light. The reason for using visible light is that newer cameras in
smart phones (e.g., Apple’s iPhone 4 and newer devices) and other devices may include an IR
filter that blocks the intended noise if IR light is used. This makes their device unsuccessful in
protecting bystanders’ facial privacy.

• Our system includes a BLE microcontroller for the bystander to control an Access Control List
(ACL) in which the bystander can set up permissions for third-party devices to take photos without
the noise (temporarily disabling the FacePET wearable), hence creating a “smart” wearable.

• We developed a bystander consent protocol over Bluetooth that enables communication between
the bystander and third-party devices to provide and exchange privacy consents.

3.2.1. FacePET System’s Hardware Architecture

The hardware architecture of the FacePET system (shown in Figure 5) includes the following
components:

• Goggle with LEDs: The goggles are equipped with LEDs that are turn on/off by the microcontroller.
To avoid physical discomfort to the bystander when using the goggles and the LEDs are turned
on, the goggles’ lenses should have a filter tuned to the wavelength of the LEDs on the googles.
The LEDs on the goggles are connected to the BLE-enabled microcontroller through wires which
also provide power to them.

• BLE-enabled microcontroller: This component controls the LEDs on the goggle and connects to
the bystander’s mobile phone via Bluetooth Low Energy (BLE). The microcontroller has its own
power supply independent of the one in the bystanders’ mobile phone that also provides power
to the LEDs. Depending on the privacy protocols implemented, the microcontroller may have
the software that implements the Access Control List (ACL) to disable the LEDs, or the ACL
may be implemented at the bystanders’ mobile phone software. The FacePET wearable device is
composed of the BLE microcontroller and the googles (as shown in Figure 5).

• Bystanders’ mobile phone: The bystanders’ mobile phone executes software that configures the
wearable’s microcontroller. In addition to configuring the wearable, the bystanders’ mobile phone
executes software that provides consent to third-parties to turn off the LEDs when an authorized
third party wishes to take a photo with the bystander in it. Depending on the privacy protocols
implemented, when an authorized third-party wishes to take a photo with the bystander, the ACL
may be implemented in the bystander’s mobile phone or the third-party may communicate
directly with the wearable. The bystanders’ mobile phone communicates via BLE with the
microcontroller and it communicates with third-party mobile phones via Bluetooth. In future
implementations this communication between smartphones may also be Wi-Fi or IP-based.

• Third-party (stranger) mobile phone: The third-party (stranger) mobile phone is used by a third-party
to request consent for photos to be taken about the bystander. In our current implementation these
consents are requested via Bluetooth to the bystanders’ mobile phone prior to the third-party can
take a photo of the bystander. If consent is given by the bystander, when the third-party mobile



Electronics 2018, 7, 379 10 of 19

phone is about to take a photo of the bystander, it communicates with the bystander device again
to request the LEDs of the goggle to be turned off (if consent has been previously given).
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In our current prototype (shown in Figure 6) we used safety goggle bought at a local hardware
store. We placed six LEDs on the goggle as shown in Figure 6c. Initially we tried IR LEDs, but they
were discarded when we found that the Apple iPhone 4 and newer versions of the iPhone include
an IR filter for their rear-facing camera (possibly IR filters will become a standard feature in future
mobile phones). Consequently, we tested red, green and blue LEDs for our prototype. Figure 6a shows
the wiring sketch diagram for the Arduino board and the LEDs. For the BLE-enabled microcontroller
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in the prototype, we used an Arduino Uno [42] with the Seedstudio Bluetooth 4.0 Low Energy-BLE
Shield v2.1 [43] (Figure 6b). The Arduino’s power supply used was a battery pack connected to the
Arduino’s USB B port. We used smartphones with the support of BLE running Android 6 (or better).
Figure 6c shows a bystander using the FacePET wearable device.

3.2.2. Proposed FacePET System’s Software Components

To control the FacePET wearable device and implement the bystanders’ consent protocol we
developed the following software:

• FacePET microcontroller’s software: In the current implementation of the FacePET wearable device,
this component allows to turn on/off and change the intensity of the goggle’s LEDs (in groups of
two LEDs independently), and provides a mechanism to control these LEDs from the bystanders’
mobile phone via Bluetooth Low Energy (BLE). Since we built the wearable device with the
Arduino Uno and the Seedstudio BLE Shield, the RBL_nf8001 and BLE-SDK Arduino libraries
were used to create a Generic Attributes (GATT) BLE server that is used to receive commands
from the bystander’s mobile phone.

• FacePET bystander’s mobile application: This application provides the bystander a controller for
the FacePET wearable device via BLE to turn on/off and change the intensity of the LEDs,
it implements the ACL for the FacePET wearable, and it also implements a Bluetooth protocol
that provides the bystander wearing the FacePET wearable device a mechanism to give consent
to third-parties who wish to take photos. Initially, the FacePET bystanders’ application scans for a
FacePET wearable device in the area and once connected to it, it enables the LEDs in the wearable.
The LEDs stay powered on until the bystander turn them off, or a third-party FacePET (stranger)
mobile application with consent requests a photo to be taken. The protocol to provide consent is
described in Section 3.2.3. Figure 7a shows a few screenshots of this mobile application.

• FacePET third-party (stranger) mobile application: This application provides a third-party (stranger)
a mechanism to ask for consent to take photos from the bystander via Bluetooth. Once consent
is given, the application sends a command to the FacePET bystander’s mobile application to
temporarily disable the FacePET wearable device (as described in Section 3.2.3). Figure 7b shows
a few screenshots of this mobile application.
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3.2.3. FacePET System’s Consent Protocol

As a bystander’s surroundings and context may change over time, he/she may not notice when
somebody may take photos of him/her without consent. One of the features and contributions of the
FacePET system is the communication protocol that provides a bystander wearing the FacePET device
a way to give consent thereby protecting the bystander’s facial privacy and enabling a mechanism to
create a list of “trusted cameras” for the bystander.

The protocol (implemented over Bluetooth in our prototype and shown in Figure 8) enables
the bystander to control an ACL in the FacePET bystander’s mobile application to enable/disable
the FacePET wearable’s LEDs when a trusted third-party mobile phone wants to take photos. Next,
we describe a scenario in which three personas, namely Betsy (a bystander using the FacePET system),
Trisha (a third-party using the FacePET third-party application) and Steve (a third-party, stranger with
a camera) interact at a party.
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Initially, Betsy is wearing the FacePET system with the LEDs on. Trisha and Besty are friends, and
trust each other. Trisha asks Betsy if she can take pictures of her during the party, either by talking to
her or through an Internet messaging application (e.g., WhatsApp). If Betsy does not want Trisha to
take photos, she simply ignores the message.

However, if Betsy gives consent to Trisha to take photos of her, Betsy replies to Trisha by asking
her to open the FacePET third-party (stranger) application and enable the third-party’s (stranger)
device to be available to be discovered via Bluetooth by the bystander. Then the following steps take
place over Bluetooth:

1. Betsy opens the FacePET bystander’s mobile application and scans for Bluetooth devices to get
Trisha’s Bluetooth MAC address and device name.

2. Once Trisha’s device is discovered via Bluetooth, Betsy authorizes Trisha’s device and the
bystander’s application saves Trisha’s Bluetooth MAC address and device name in a file (Betsy’s
application adds Trisha’s device to the ACL).

3. Betsy’s FacePET bystanders’ application sends a message via Bluetooth to Trisha’s FacePET
application notifying that her device is cleared to take photos of Betsy. At this point Betsy’s
FacePET’s application creates a Bluetooth server socket to wait for photo requests from Trisha’s
FacePET application.

4. Trisha’s application saves Betsy’s Bluetooth address so that it can be used later to request Betsy’s
FacePET wearable’s LEDs to be turned off (as long both mobile phone devices are in range and
Betsy’s FacePET mobile application still has Trisha’s phone authorized in the ACL).

Later in the party, when Trisha wants to take a photo of Betsy the following steps are followed:

1. Trisha opens her FacePET mobile application. She presses the “Take Photo button” and selects
Betsy’s device from the list. Trisha’s device sends then an authentication message to Betsy’s
device via Bluetooth.

2. Betsy’s FacePET mobile application receives the authentication message. The mobile application
then checks if the Trisha’s device is authorized in the ACL. If it is, then it notifies Trisha’s
application that her device can take the photo, and it sends a message via BLE to Besty’s FacePET
wearable device to turn off the device. Otherwise, Betsy’s application ignores the message and
the LEDs stay on.

3. Trisha takes the photo and then it sends a message back to Betsy’s FacePET’s mobile application
to turn on the LEDs again.

During the party, Steve (a stranger with camera) has tried to take photos from Betsy’s face. Since
he does not have permission from Betsy, all the photos he takes from her will look similar to Figure 6c
thus protecting Betsy’s facial privacy.

With the sensors in the bystander’s mobile phone, more complex privacy rules could be created
to provide consent. For example, we tested a simple modification wherein a trusted camera can only
take a certain number of photos and after the maximum number of authorized photos has been taken
by that camera, the FacePET wearable’s LEDs will remain powered on. Other contexts may include
location, activity or time by modifying FacePET bystander’s application to manage the ACL using
context-based privacy rules.

4. Evaluation of the FacePET System

We evaluated the effectiveness of the FacePET wearable prototype in protecting facial features by
taking photos using digital cameras using different devices (mobile phones and a laptop). These photos
were taken using common lighting conditions found in a classroom. We submitted an Institutional
Review Board (IRB) application to comply with ethics in research and were approved to perform
the experiments. We implemented a Python script that makes use of the OpenCV face detection
Application Programming Interface (API) [44]. This script takes as an input a photo file and places a
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rectangular square in the photo if it detects a face (as shown in Figure 9a). The OpenCV face detection
API provides an open source implementation of the Viola–Jones face detection algorithm trained using
5000 facial and 3000 non-facial images [45].

Electronics 2018, 7, x FOR PEER REVIEW  14 of 19 

 

detection API provides an open source implementation of the Viola–Jones face detection algorithm 
trained using 5000 facial and 3000 non-facial images [45]. 

  
(a) (b) 

Figure 9. FacePET wearable experiment with IR LEDs. (a) With goggles off; (b) With goggles on. Note 
that the squares in the left figure and the IR LEDs on the right figure are turned on (LEDS seen as 
bright white lights between the eyes and around the nasal bone). In the left figure the green and blue 
squares indicate that a face was detected. In the right figure, the absence of squares indicates that no 
face was detected. 

We initially tested the googles with IR LEDs by taking a photo with a laptop’s camera and we 
obtained similar results to those reported by Yamada et al. [18] (Figure 9). Since the laptop’s camera 
does not have an IR filter, FacePET blocked the Haar-like features. However, when we tested the 
goggles with IR LEDs using an Apple iPhone 6 (which has an IR filter in the rear-facing camera), the 
iPhone 6 fully blocked the IR light and allowed the Python script to detect the face. In addition, using 
IR LEDs to block facial features requires more power when compared to visible light LEDs because 
most of the energy released from the IR LEDs is perceived as heat. At this point we decided to use 
visible light and then we tested the googles using red, green and blue LEDs as shown in Figure 10. 

Even though all three type of LEDs block the Haar-like features, we selected the green LEDs as 
the LED color for the FacePET wearable device because of the widespread use of the Bayer filter [46] 
in digital cameras which makes these cameras more sensitive to green light wavelengths (to emulate 
the sensitiveness of the human eye and take photos that are more appealing to humans). 

   
(a) (b) (c) 

Figure 10. FacePET wearable powered on with different colored LEDs. (a) Red; (b) Green; (c) Blue. 

In the next experiment, a user wore the FacePET wearable device in front of different mobile 
phone’s rear-facing cameras to take photos and later use the OpenCV face detection script that we 
developed. The goal here was to investigate if the wearable device was effective in protecting a 
bystander’s facial privacy using the FacePET wearable independently of the camera used. In this 
experiment green LEDs were used for FacePET. We took photos with 16 different mobile phones as 
shown in Table 4. OpenCV was able to detect the face only in photos taken with the Samsung Galaxy 
7 and the OnePlus 6 mobile phones (2 out of 16 devices tested, 87.5% of success in blocking OpenCV’s 

Figure 9. FacePET wearable experiment with IR LEDs. (a) With goggles off; (b) With goggles on. Note
that the squares in the left figure and the IR LEDs on the right figure are turned on (LEDS seen as
bright white lights between the eyes and around the nasal bone). In the left figure the green and blue
squares indicate that a face was detected. In the right figure, the absence of squares indicates that no
face was detected.

We initially tested the googles with IR LEDs by taking a photo with a laptop’s camera and we
obtained similar results to those reported by Yamada et al. [18] (Figure 9). Since the laptop’s camera
does not have an IR filter, FacePET blocked the Haar-like features. However, when we tested the
goggles with IR LEDs using an Apple iPhone 6 (which has an IR filter in the rear-facing camera),
the iPhone 6 fully blocked the IR light and allowed the Python script to detect the face. In addition,
using IR LEDs to block facial features requires more power when compared to visible light LEDs
because most of the energy released from the IR LEDs is perceived as heat. At this point we decided to
use visible light and then we tested the googles using red, green and blue LEDs as shown in Figure 10.

Even though all three type of LEDs block the Haar-like features, we selected the green LEDs as
the LED color for the FacePET wearable device because of the widespread use of the Bayer filter [46]
in digital cameras which makes these cameras more sensitive to green light wavelengths (to emulate
the sensitiveness of the human eye and take photos that are more appealing to humans).
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In the next experiment, a user wore the FacePET wearable device in front of different mobile
phone’s rear-facing cameras to take photos and later use the OpenCV face detection script that we
developed. The goal here was to investigate if the wearable device was effective in protecting a
bystander’s facial privacy using the FacePET wearable independently of the camera used. In this
experiment green LEDs were used for FacePET. We took photos with 16 different mobile phones
as shown in Table 4. OpenCV was able to detect the face only in photos taken with the Samsung
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Galaxy 7 and the OnePlus 6 mobile phones (2 out of 16 devices tested, 87.5% of success in blocking
OpenCV’s Viola–Jones face detection implementation). This shows that using green LEDs for FacePET
is effective in protecting a bystander’s facial privacy. Finally, we also tested the FacePET’s Bluetooth
authentication protocol and found that it takes less than 1 s for the third-party app to connect and be
authorized by the bystander’s application once the third-party device was previously authorized.

Table 4. Results from FacePET facial privacy protection with different rear-facing cameras and OpenCV
face detection library. FacePET wearable with green LEDs.

Mobile Phone Basic Camera Features
(Rear Camera; Front Camera; IR Filter) Face Detected?

Apple iPhone 6 Plus R: 8 MP; F: 1.2 MP; IR: Yes No
Apple iPhone 7 Plus R: 12 MP; F: 7 MP; IR: Yes No

Apple iPhone 8 R: 12 MP; F: 7 MP; IR: Yes No
Apple iPhone 8 Plus R: 12 MP + 12MP (dual cameras); F: 7 MP; IR: Yes No

Apple iPhone X R: 12 MP; F: 7 MP; IR: Yes No
Samsung Galaxy S7 R: 12 MP; F: 5 MP; IR: No Yes

Samsung Galaxy S7 Edge R: 12 MP; F: 5 MP; IR: No No
Samsung Galaxy S8 R: 12 MP; F: 8 MP; IR: No No
Samsung Galaxy S9 R: 12 MP; F: 8 MP; IR: No No

Samsung Galaxy S9 Plus R: 12 MP + 12MP (dual cameras); F: 8 MP; IR: No No
Samsung Note 7 R: 12 MP; F: 5 MP; IR: No No
Samsung Note 8 R: 12 MP + 12MP (dual cameras); F: 8 MP; IR: No No

Asus ZenFone 3 Max R: 16 MP; F: 8 MP; IR: No No
Asus ZenFone 4 R: 12 MP + 8MP (dual cameras); F: 8 MP; IR: No No

OnePlus 6 R: 16 MP + 8MP (dual cameras); F: 16 MP; IR: No Yes
Motorola Moto G (2nd Gen) R: 8 MP; F: 2 MP; IR: No No

Based on the taxonomy presented in Figure 1, the FacePET system belongs to the bystander-based
obfuscation category in which the bystanders take actions to avoid their facial identification. In Table 5
we summarize some of the salient differences between our approach and similar ones that have been
previously proposed under that category.

Table 5. Salient differences between FacePET and similar methods under the bystander-based
obfuscation category. The third column (percentage of successfully blocked/de-identified faces)
corresponds to the percentage of blocked/de-identified faces in experiments for each method.

Method Differences Percentage of Successfully
Blocked/De-Identified Faces

PrivacyVisor [18]

Method uses IR light in goggles and does not work if IR
filters used. The method does not allow a bystander to
give consent automatically to third parties to take photos
to identify the bystander.

100%
(assuming a camera

without IR filter)

PrivacyVisor III [19]

Method uses visible light through reflective/absorbing
material in goggles to block facial features. It does not
need power. The method does not allow a bystander to
give consent automatically to third parties to take photos
to identify the bystander.

Between 90% and 100%

Perturbed eyeglass
frames [20]

Method uses patterns in glasses’ frames. The prototype
was tested as patterns in goggles overlaid over photos.
No physical device was developed. This approach is
tailored towards face recognition instead of face
detection. The method does not allow a bystander to
give consent automatically to third parties to take photos
to identify the bystander.

80%
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Table 5. Cont.

Method Differences Percentage of Successfully
Blocked/De-Identified Faces

Invisibility Glasses [33]

Method uses IR light in goggles and does not work if IR
filters used. This method does not allow a bystander to
automatically and selectively allow who can take photos
of him or her.

No accuracy reported

FacePET (this work)

Method uses visible light in goggles to block facial
features and it also provides the bystander wearing the
FacePET a way to give consent automatically to third
parties to take photos and identify the bystander.

87.5%

5. Limitations and Future Research

The FacePET device prototype uses visible light to protect and enhance a bystander’s facial
privacy when the bystander wears the device. This design may be problematic for the wearer and the
people surrounding the wearer if a filter is not used to block the light emitted by the FacePET wearable.
In our design, we stated that the goggles used in the FacePET wearable should have a filter to block
the visible light emitted by the device which is sufficient to avoid eyesight discomfort by a FacePET
user. Other people surrounding the device may use a similar approach to avoid discomfort.

To explore the human-computer interaction aspects of the FacePET system, we are conducting a
usability study in which we are asking subjects to wear the prototype device and answer questions
about its interaction and usability. Even though the complete results of the usability study are beyond
the scope of this paper, some of the comments that we have received about the current design are
as follows:

• People would ask why the user was wearing such a device.
• The current model is too big and draws attention.
• The model is not stylish.

The feedback gathered through the usability study will open up opportunities to improve the
prototype and develop a commercially viable solution to better address the bystanders’ facial privacy
problem in the future. For example, one improvement to investigate in future FacePET prototypes
may include the utilization of smart reflective materials such as the KentOptronics’ e-TransFlector™
material [47] that can be directly incorporated on the surface of the goggles and will avoid the
utilization of LEDs while at the same time providing a way for the bystander to give consent through
the FacePET consent protocol.

In recent years, advances in face detection and recognition techniques and technologies using
deep learning methods such as Convolutional Neural Networks (CNN) and Region-based CNNs
(RCNNs) [48,49] are outperforming more traditional computer vision methods such as the Viola–Jones
approach in accuracy and speed. With these new deep learning approaches our FacePET prototype
may not be useful in protecting bystanders’ facial privacy. Future work will focus on the development
of bystander-based obfuscation/adversarial methods to overcome these new technological advances.

6. Conclusions

We have described the design and implementation of the FacePET system, a wearable/IoT system
to enhance bystanders’ facial privacy by providing a method for bystanders to protect and provide
consent. FacePET enables the bystander to thwart the Viola–Jones face detection algorithm used in
computer vision by hiding the Haar-like features required by this algorithm with visible light (green
LEDs in our wearable prototype). To the best of our knowledge, this is the first work that investigates
and describes an IoT device to enhance the privacy of its wearer, therefore opening up new applications
for wearables/IoT devices in the realm of privacy.
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In the future, we will investigate various aspects related to the usability of the FacePET system,
the utilization of alternative methods that do not require LEDs, the optimization of FacePET’s power
consumption, and the development of adversarial methods to thwart newer facial detection and
recognition algorithms based on deep learning methods.
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