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The Location-Aware Information Systems Client (LAISYC) supports intelligent, real-
time, mobile applications for GPS-enabled mobile phones by dynamically adjusting 
platform parameters for application performance while conserving device resources 
such as battery life. 
 
 

One of the most valuable pieces of contextual information for an intelligent mobile 

application is the user’s location. Because of the complexity of realizing location-aware 

capabilities for cellular devices, location-based intelligence is only now emerging in 

commercial mobile phone applications. Several factors are contributing to the 

renaissance of location-based services (LBS): 

• Positioning technologies (such as high-sensitivity GPS) have improved accuracy 

and time-to-first-fix even in obstructed indoor environments. 

• Mass production of GPS hardware in mobile phone chipsets has reduced the 

cost of embedded GPS hardware. 

• The emergence of cross-platform application environments for mobile phones, 

such as Java Micro Edition (Java ME). 

Java ME provides standardized programmatic access to location data through the 

JSR179 Location API and allows applications to run in the background (through a 

multitasking virtual machine), both key requirements for widely deployable location-aware 

applications. Because a device-based location API is critical for supporting real-time 

location-aware mobile applications, third-party application developers must assume 

responsibility for efficiently managing location data in a location-aware system. Unlike 

other types of mobile applications, location-aware software often runs in the background 



 

for extended periods of time to monitor the device’s real-time position. Because each 

position calculation using embedded GPS hardware expends battery energy, as does 

reporting this position to a server, battery life is a critical concern in mobile application 

design for LBS. As a result, location-aware applications require intelligent client software 

that conserves device battery energy while meeting application functionality 

requirements that can vary dynamically during execution. 

The Location-Aware Information Systems Client (LAISYC) is a comprehensive, 

location- aware framework that supports intelligent and energy-efficient real-time 

distributed applications for Java ME. Any third-party software developer can implement 

LAISYC using standard IP-based networking protocols. The framework supports various 

types of location- aware applications—from real-time tracking to more delay-tolerant 

applications focused on recording accurate travel paths, or even hybrid applications with 

real-time and delay-tolerant features—by dynamically manipulating parameters according 

to real-time application needs. Because LAISYC’s design is modular, we can integrate 

other work in client-side location intelligence. (See the “Related Work in Location-Based 

Services” sidebar for how LAISYC differs from existing research in LBS.) We have 

evaluated LAISYC by implementing it in several intelligent real-time mobile 

applications, which are dis- cussed in the “Evaluation” section.LAISYC 
communications Framework and components  

LAISYC’s two-tiered communication protocol uses HTTP (or HTTPS, for 

secure transfer) to transport all nonlocation information required for application execution 

(application data), and UDP to transport location data. 

HTTP supports application data transferred between the device and server 

through a device-initiated request-response model similar to RPC. Integrated 

development environments (such as Netbeans) provide tools that enable rapid 

implementation of distributed functions using the HTTP POST method (that is, REST-ful 

Web ser- vices), which would be time-consuming to manually implement using TCP. The 

Java API for XML-based RPC (JAX- RPC), defined in the JSR172 Web Ser- vices API, 

is avoided due to overhead in SOAP, an XML-based messaging protocol, and the 

limited availability of JSR172 on commercially available mobile phones. The transfer of 

un- necessary XML data reduces mobile device battery life, as we demonstrate later. 



  

Related Work in Location-Based services 
Although many location-based services (LBS) architectures are documented in literature, none includes a 

comprehensive location-aware framework for intelligent, real-time applications for GPS-enabled mobile phones. 

Following the E911 man- date, some publications targeted the implementation of core positioning technologies by 

cellular carriers.1 The focus of academic works then turned to general LBS including emergency2 and commercial 

services either tightly coupled to the cellular infrastructure or maintained by a centralized entity.3–5 These 

architectures are of limited use to third-party mobile software developers because LBS functionality is tightly controlled 

by the centralized entity, and the scope of location data use and system settings are limited. Other location-aware 

architectures have focused on the Session Initiation Protocol (SIP), an application- layer protocol often used for 

Voice over IP,6 but SIP is currently not widely supported in Java Micro Edition. 

Our research focuses on an architecture that can be implemented in its entirety by third-party application 

developers on most Java ME devices. The implementation of this architecture uses publicly available, standardized 

APIs and doesn’t require programmatic interaction with a centralized system that controls all LBS for a cellular 

network. 

In previous work, we presented a general architecture in support of interactive, multimedia, location-based 

mobile ap- plications.7 Our primary focus was the integration of location data into multimedia messaging service 

(MMS) messages sent through a cellular carrier’s publicly accessible gateway. The Location-Aware Information 

Systems Client (LAISYC) adds support for real-time, intelligent IP-based location-aware clients to this architecture. Our 

work differs from the Mobile Millennium project by Nokia and the University of California, Berkeley,8 in that LAISYC 

focuses on delivering personalized, real-time services to users based on their real-time locations and travel history. The 

Mobile Millennium project focuses on collecting anonymous, aggregated GPS probe data from mobile phones as 

they cross virtual trip lines on highways to estimate travel times and disseminate this information to the general 

public. 
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Figure 1. The Location-Aware Information Systems Client (LAISYC) framework mobile phone-based modules conserve 
device resources such as battery energy while meeting application functionality requirements that can vary dynamically 
during execution. Location data is intelligently processed on the device before being sent to a server. 
 

LAISYC uses UDP, which is commonly used for services where timeliness is 

favored over reliability, to transport continuous location data updates from the mobile 

phone to a server. Location updates can occur as frequently as once per second for 

time- sensitive LBS, so a lightweight proto- col is required for system efficiency and 

scalability, as well as to reduce the communication load on the mobile device’s limited 

resources. Occasional messages from the server to the phone both confirm an open 

connection and pass specific-location dataflow-control com- mands to the phone. 

The various framework components reside either in the device or on the server to 

support a complete distributed application. 
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Device-Side C omponents 
LAISYC device-based components (Figure 1) are divided into two categories: 

positioning systems management and communications management. The application 

executes various types of controls, including activation and deactivation for all device-

side modules, based on its real-time needs. 

Location data flow from the positioning system (such as GPS) on the mobile 

device through the Location API (JSR179 or JSR293 in Java ME) 

and then into the bottom layer of positioning systems management (that is, the position 

recalculation management module). The location data are then propagated upward 

through each module of positioning systems management until they reach the 

application. If the application deactivates certain modules, the location data pass 

through that module without the module modifying or acting on the data. 

After location data are propagated through positioning systems management, the 

application passes location data that are candidates for wireless transmission to the 

critical point algorithm in communications management. The data then propagate until 

they reach the session management module, which activates the location data’s 

wireless transmission over UDP. The application also directly passes application data to 

the session management module, which activates the transmission of this information 

over HTTP. 

All modules are translucent to the location-aware application, meaning that the 

application can still directly access the underlying APIs if necessary, to access 

functionality not controlled directly by the framework, but LAISYC is designed to help 

alleviate the application from this responsibility for most major functionality. 

 

Position recalculation management.  
This module intelligently adjusts the frequency of position recalculations to save 

battery energy when continuous device position calculations aren’t required.1 It realizes 

significant energy savings by increasing the time interval between GPS fix attempts. For 

example, if a mobile device is stationary for a long time, the interval between position 

recalculations can gradually be in- creased to enter a sleep mode and pre- vent repeated 

calculations of the same position information. The application can emerge from sleep 



 

mode and snap back to rapid position recalculation when it determines that the device is 

moving. This wake-up trigger can be based on the device’s speed exceeding a certain 

threshold, or a certain distance between the most recent GPS fixes (that is, the distance 

the user walked since the previous GPS fix). We use a state machine to gradually 

progress from fully awake to fully asleep when LAI- SYC is unsure whether observed 

motion is true movement or a result of GPS drift, thereby preventing LAISYC from 

making large adjustments based on noisy outlier data. Embedded accelerometers, if 

available, can also wake up this module. 

The position recalculation management module has a secondary navigation 

mode based on the distance to a goal (for example, the next turn for real-time driving 

directions or a remote device’s location for real-time friend finders), which increases the 

frequency of position calculations as the mobile device nears the goal. 

Other intelligence to dynamically manage the selection between multiple 

positioning technologies (for example, if no GPS signal exists) can also be 

integrated here. For example, the PoSIM middleware can facilitate dynamic location-

technology switching at runtime based on rules created by the user at compile time.2 

 

Position estimation.  
Device-side soft- ware can fuse data from multiple technologies (Wi-Fi, cellular 

signals, and so on) to estimate the device’s current position when location data from 

primary positioning systems are unavailable. Although traditional dead reckoning relies 

on accelerometers to estimate the device’s movement, the position estimation module 

uses real-time and historical data to produce an intelligent estimate of the user’s real-

time position. For example, a computation- ally inexpensive probabilistic algorithm might 

provide an intelligent guess at the phone’s current position based on past travel behavior 

(such as time of day or travel patterns). This module is a candidate for different types of 

research into intelligent, on-board, position estimation. 

For example, Skyhook’s XPS hybrid positioning technology,3 used by 

Apple’s iPhone, can be integrated into LAISYC’s modular design. Skyhook’s XPS 

system synthesizes location data from GPS, Wi-Fi, and cellular radio broadcasts that 

are sensed on the de- vice and then cross-referenced with a database of cell tower 



and Wi-Fi locations. 

 

Privacy filter.  
The Java ME security model for the location API has only blanket options for 

user approvals: allow this time, always allow, allow until exit, or never allow. Therefore, 

users must permit all location requests by the application or they’re prompted each time 

the location-aware application accesses device location. Instead of these extremes, it’s 

desirable to let the user define conditional approvals based on preferences and device 

location. 

The privacy filter lets the application define conditional permissions for location 

requests, such as time limitations (for example, requests permitted only during business 

hours for business employees) or sensitive location restrictions (for example, no requests 

allowed near privacy zones such as the user’s home). For extremely privacy-sensitive 

applications, the filter is inverted to deny all location requests except those falling within 

defined public areas (such as major interstates). Virtual trip lines, which trigger updates to 

the server only at certain highway locations in the Mobile Millennium project, are one 

example of this type of privacy filter.4 

 

Location data signing.  
Businesses and government agencies increasingly use GPS data to support key 

operations (for example, mileage and time verification for workers, or confirmation of 

duration and location of car use for pay-as-you-drive insurance and taxes). However, 

these uses of GPS data have a key weakness: GPS data are falsifiable through 

tampering and can’t be independently verified. 

Location data signing uses asymmetric cryptography to digitally sign data related 

to a GPS fix. These data can include the latitude, longitude, altitude, speed, GPS time 

stamp, system time stamp, device phone number, and identifying information for the 

phone and user to prove that a particular GPS fix occurred on a particular phone with a 

specific user logged into the application, at a specific time. Be- cause this information is 

hashed and signed by the application using a private key, the data’s integrity can be 

verified using the public key and a hash of the message. Therefore, it can easily be 



 

shown that a GPS fix is unaltered from the data originally calculated by a specific GPS-

enabled mobile phone application. 

Although there will likely be some impact on device battery life, light- weight 

cryptographic methods such as the elliptic-curve digital signature algorithm use small 

key lengths, which translate to better performance. Additional experimentation is 

necessary to quantify the impact of frequent location data signing on a mobile device. 

 

Critical point algorithm.  
Because GPS generates a large amount of location data, this data must be 

carefully man- aged to avoid wasting resources (such as battery energy) by transferring 

fixes to a server that might not contain useful information (for example, repeated GPS 

fixes when the user is standing still or fixes lying on the same vector when the user is 

traveling in a straight line). The user’s path can be accurately represented using only 

small portions of GPS data generated by mobile phones. 

The critical point algorithm (CPA) uses the change in direction between 

sequential points as well as the user’s speed to filter noncritical points from a set of 

GPS data, so only critical points representing the user’s path remain.1 LAISYC then 

transfers these critical points to a server for storage and analysis. By prefiltering GPS 

data before it leaves the device, CPA saves battery energy, reduces data transfer costs, 

and saves network bandwidth. It also reduces the load on the server be- cause it 

processes a fraction of the total GPS data generated by mobile devices. CPA also 

contains several conditional evaluations that simulate other position update methods 

including polling, periodic updates, and distance-based updates. 

CPA is a variation of the perpendicular distance routine algorithm, which is an 

accurate approximation of more complex line-simplification algorithms (for example, 

Douglas-Peucker). CPA has O(n) complexity (where n is the number of GPS fixes) and 

approximates the user’s travel path in real time as GPS data is generated, as opposed 

to Douglas-Peucker’s O(n2) running time, which requires the entire point dataset before 

beginning line simplification.5 

CPA is also replicated on the server to filter data that hasn’t been prefiltered 

onboard the device if real-time remote tracking is critical to the application.  



Adaptive location data buffering.  
Because UDP is used for efficient location data transport, no end-to-end 

reliability (such as TCP) exists. In real- time tracking, the loss of occasional location 

fixes is acceptable because another location update will soon follow. However, because 

location data is often referenced after the fact to pro- vide metrics (such as distance 

traveled) and reconstruct users’ paths, the loss of many contiguous fixes introduces 

significant problems. Extended gaps can result from lack of support for simultaneous 

voice and data services or no cellular signal. 

Adaptive location data buffering increases the probability that most location data 

points will arrive at the server. Before each location data UDP transmission, device-side 

APIs are checked to assess the current level of cellular signal and determine if a 

successful UDP transmission is probable. If not, the location data is buffered to either 

main memory or persistent storage (for example, MIDP RecordStore). Once it’s detected 

that UDP transmissions will likely succeed, the buffered data is sent via UDP and 

deleted from the device. 

Although this method increases the probability that the device will successfully 

issue a UDP transmission, it doesn’t necessarily improve the chances that a UDP packet 

that leaves the phone will be received by the server. Adaptive location data buffering 

provides two methods to occasionally confirm an open end-to-end connection with the 

server. If the device’s IP address is publicly addressable, the server can occasionally 

send alive messages via single UDP packets to the phone. If, for security or capacity 

reasons, the cellular provider doesn’t allow publicly addressable IPs, the adaptive lo- 

cation data buffering module occasionally opens a TCP connection from the phone to 

the server to determine if there is a successful alive response from the server. Using 

either method, the phone will continue to transmit UDP data to the server as long as it 

continues to receive alive messages from the server. If it doesn’t receive an alive 

message (for example, if the phone is off network, the user is on a voice call, or the 

server is down), the phone begins buffering location data until it receives the next alive 

message. 

Adaptive location data buffering is only intended to increase the probability that 

most location data will arrive successfully at the server; it doesn’t guarantee location 



 

data reliability. Therefore, the ratio between the number of location data transmissions 

from the phone to the server via UDP and the number of alive messages received by the 

phone from the server should be carefully balanced based on the application’s reliability 

requirements. 

Through our experiments, we’ve found that UDP is the preferred primary 

transport protocol for location data, with adaptive location data buffering primarily 

preventing large losses of contiguous location data due to atypical phone or network 

conditions. 

 

Location data encryption.  
The interception of location data during transfer over the Internet is a significant 

security threat to LBS. Although secure TCP connections are implemented within Java 

ME through the Secure Sockets Layer (SSL), application developers must implement 

secure UDP. 

Location data encryption handles the encryption of location data in the UDP 

datagram’s payload to enable end-to- end security between the mobile device and a 

server. Symmetric encryption, which uses a shared key between two parties, is 

generally more efficient than asymmetric encryption. Therefore, asymmetric encryption 

using public and private keys can protect the initial shared key exchange using SSL and 

HTTPS. Symmetric encryption can then be used to encrypt the subsequent location data 

passed over UDP during the session. 

The Advanced Encryption Standard (AES) appears preferable to RC4 as an 

energy-efficient encryption algorithm for small data packets from laptop-based 

experiments.6 However, future experimentation will determine whether these results are 

transferrable to GPS-enabled mobile phones. 

 
Session management— client-side application support.  

This module is a client-side counterpart to the server-side session management 

module, which maintains information (including cur- rent IP address) for each connected 

device. Together, the client and server- side session management modules help the 

mobile and server-side applications function together as one distributed application. The 
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client module initiates a session for a device by calling a createSession() Web method and 

passing various authorizing information (such as username, password, and phone 

number). The server responds with a unique session identifier that will let it match 

future location data received over UDP and application-specific data received over 

HTTP with a single session. To signal to the server that a session is finished, the module 

initiates a destroySession() Web method. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

 

 
 

 
Figure 2. The LAISYC framework server-based modules support the server-side portion of the distributed application to 
maintain individual device sessions, access persistent relational and spatial database storage, predict the user’s real-time 
path, and control location data flow between device and server. 
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The client session management module implicitly controls the creation and 

destruction of sessions surrounding the transfer of application and location data to the 

server and relieves the application from direct session management. For example, an 

application using LAI- SYC can simply instruct the framework to send a GPS fix to the 

server. This client-side module will then perform appropriate checks to ensure that a 

session already exists, and if not, it will automatically initiate a session with the server via 

HTTP and then send the data via UDP. 

 

Server-Side Components 
LAISYC’s server-side components (Figure 2) are divided into two categories: 

communication management and location data analysis. 

As with the device-side application, the server-side application asserts various control 

signals to each component to activate or deactivate modules. The client device initiates 

all application data communication to the server using the HTTP request-response 

model. Information flow (that is, session requests, application-specific Web services, 

and location data) coming into the server-side communication management enters 

through the session management module and propagates directly up to the application. 

The application can then initiate location data analysis by passing the location data into 

the critical point algorithm, which propagates to the path prediction module. For 

subscription services, the mobile device proxy controller module sends location data to 

the device via UDP. The server-side application also interfaces with both traditional SQL 

relational and spatial databases. 

 

Session management—server-side application support.  
A session identifier, passed to the device in response to a session creation request, links 

multiple Web service calls over HTTP with location data sent via UDP and is included in 

all subsequent device-initiated communication. LAISYC uses HTTPS to encrypt Web 

service calls from the phone for secure services. 
 

A limited amount of information for each session is kept in main memory inside the 



application server to enable rapid response to the device based on incoming data. Although 

extremely time-sensitive tasks (such as real-time navigation) must still be handled by 

software on the mobile device, near-real-time modules that access large databases can be 

realized on the server side. The disk-based database contains a record of all the users, 

sessions, and location information, and serves as a back-up of information contained in the 

application server memory. This module also automatically manages session expirations 

to ensure efficient memory usage. For example, if no data has arrived from a particular 

device after a certain amount of time, information for that session will be removed from 

memory and marked as “expired” in the database. If a UDP packet arrives with a session 

ID that doesn’t exist in memory, this module checks the database to see if an expired 

session with that ID exists, and re- activates that session my moving it back into server 

memory. Removing unused sessions from memory is an important performance feature 

to avoid accumulating orphaned sessions as a result of device malfunction, including 

power- off due to low battery levels during application execution. 
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Figure 3. Comparison of Java API for XML- based Remote Procedure Calls (JAX-RPC) and HTTP POST operations on battery life. 
SOAP, an XML-based messaging protocol used in JAX-RPC, adds a significant amount of unnecessary XML overhead to 
communications, which has a significant negative impact on battery life, as well as other device resources. 
 

 

 
 

Mobile device proxy controller.  
To sup- port mobile device subscriptions to the real-time location of other moving 

entities (such as buses) during real-time cross-referencing LBS, the mobile device 

proxy controller proactively forwards each location update for a moving entity directly to 

the mobile device via UDP. This methodology avoids the latency and overhead of 

repeated device-initiated HTTP re- quests to obtain the newest location information 

from a server database. The mobile application subscribes and unsubscribes via HTTP 

Web methods. 

 

Path prediction.  
Intelligent location- based services should be highly relevant and precisely 

targeted to each user based on the user’s real-time position and predicted path. To let 

users plan accordingly, location-based alerts (traffic accident notifications, advertising, 

and so on) should be distributed to travelers before they reach the alert area. 

Because human travel behavior is highly repetitive in both space and time, path 

prediction uses spatial representations of a user’s historical trips along with their current 

position to predict the paths they might take in the immediate future.7 

This module uses a spatial database to perform a series of intersection queries 

between the user’s real-time location/ path and the buffers surrounding the user’s 

previously recorded paths. Each detected buffer represents a predicted path that the 

user might follow. Additional spatial queries are then executed to discover alerts relevant 
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to the user’s predicted path and personal preferences. 

 

Evaluation 
Our research team has used LAISYC in several mobile applications, including 

• Trac-It, a personal travel coach that both helps users reduce their “travel 

footprint” by showing their travel history and providing travel suggestions as well 

as real-time traffic alerts through personalized path prediction;8 

• Travel Assistance Device (TAD), a real-time transit navigation application that 

prompts transit riders to exit the bus at the proper stop and de- livers real-time, 

estimated bus arrival times;9 and 

• Tactical Local Area Network(TACLAN) Real-Time Location and Multimedia 

Messaging System, a tactical LBS system for real-time battlefield tracking and 

messaging between mobile devices and a centralized dispatch station. 

These and other applications based on the LAISYC framework used Glassfish as the 

Java application server, while Microsoft SQL Server and PostGIS served as the primary 

relational and spatial databases, respectively. We used Netbeans to define Web services 

using the Java API for Web Services (JAX- WS) 2.0. We also used Netbeans to 

autogenerate the code stubs for the phone and server that implement HTTP POST 

methods that mirror input and output of the JAX-WS. We implemented adaptive location 

buffering using device- initiated TCP connections, because not all Sprint-Nextel phones 

have public IP addresses. 

To evaluate framework modules for energy efficiency, we created a battery life 

benchmarking application that measures how long the phone battery lasts while 

operations are repeated at fixed intervals (for example, GPS fixes and wireless 

transmissions). By com- paring the resulting battery life from each execution, we can 

determine each operation’s energy cost at different frequencies. 

We demonstrated the efficiency of the HTTP POST implementation of Web services 

on a Motorola i580 on Sprint- Nextel’s iDEN network (see Figure 3). At 60-second 

transmission intervals, battery life when using HTTP POST is more than 24 hours and 

only 19.3 hours using JAX-RPC. We found similar results at lower intervals, thus 

justifying the choice of HTTP POST over JAX- RPC as the application-layer protocol in 



 

LAISYC. 

Position recalculation management provides significant energy benefits by 

dynamically adjusting the JSR179 LocationListener position recalculation interval based 

on whether the user is moving or stationary (see Figure 4). Testing with a Sanyo Pro200 

on Sprint- Nextel’s code division multiple access (CDMA) EV-DO Rev. A network 

shows that this module can extend battery life from 8 hours (4-second intervals) to more 

than 14 hours at 30-second intervals, and upward of 41 hours at 300-second (5-minute) 

intervals. The large jump in battery life between the 150-second and 300-second 

measurements indicates that a hardware component in the phone (such as CPU or GPS) 

can reach a low-power state when there are at least 300 seconds be- tween GPS fix 

attempts. Because the hardware can spend more time in a low-power state 

between GPS fix attempts, the battery life is ex- tended significantly at 300-second 

intervals. Therefore, position recalculation management can save the most energy by 

properly identifying when a user has stopped moving and quickly transition into large 

intervals between GPS fix attempts. 

Figure 5 demonstrates the energy benefits of the CPA. Increasing the interval 

between UDP transmissions from 15 to 30 seconds extends battery life from 

approximately 9 hours to more than 17 hours. Increasing the interval to 60 seconds 

extends battery life to approximately 30 hours. Battery life is therefore directly 

proportional to the length of transmission interval, meaning that less frequent wireless 

transmissions significantly increase battery life. Energy levels shown on the y-axis of 

Figure 5 refer to battery- level values recorded from the Sprint Extensions API by the 

application during the experiment (where 4 indicates a full battery and 0 indicates no 

power). 

Because the benefits of using UDP (such as when timeliness and scalability are 

critical) are well understood, we focus on evaluating the energy foot- prints of UDP and 

TCP when transferring location data from the phone to better understand adaptive 

location data buffering and the potential trade- offs between reliability and power 

consumption. 

To evaluate power consumption differences, we used an Agilent E3631A power 

supply to measure the cur- rent drawn by a Sanyo 7050 phone while running our test 



applications. Figure 6a shows the power consumption when the application is 

transmitting location data at 4-second intervals during separate TCP and UDP tests. 

The hardware is constantly active during both protocols, so there is a negligible energy 

difference in using UDP versus TCP at 4-second transmission intervals. However, as 

Figure 6b shows, with transmission intervals as low as 10 seconds, a clear energy 

benefit becomes evident, as the red TCP graph shows current flow when UDP 

(transparent blue graph) isn’t consuming any energy. The approximate energy used 

during transmissions is 110 joules for UDP and 152 joules for TCP, yielding an average 

energy use of ap- proximately 3.68 joules per transmission for UDP and 5.08 joules per 

trans- mission for TCP. Applications can now determine if occasionally querying the 

server to verify an end-to-end connection is worth the extra energy cost. 

Because UDP is used to transport location data in a wireless environment, we 

also evaluated the potential loss of location data between the device and server. In 

extended testing performed with several Sanyo 7050s in Tampa, Florida, the server 

received 45,525 (97.3 percent) of the phones’ 46,785 UDP transmissions. We performed 

these tests using ideal communication scenarios(that is, in suburban areas outdoors 

with adequate cellular signal coverage, with a server under a very light processing load, 

and using test phones with no incoming or outgoing phone calls). 

Adaptive location data buffering can increase the probability of success for UDP 

transmissions during real-world use on phones that can’t support simultaneous voice 

and data sessions, in rural or indoor areas with intermit- tent or sparse cellular 

coverage, and with servers under greater processing loads. 
 

 

 
 
 
 
 
 
 
 
 
 
 
Figure 4. Impact of GPS interval on battery life. By transitioning from small sampling intervals when the user is moving to 
large sampling intervals when the user stops moving, the position recalculation management module can save significant 
battery energy. 
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Figure 5. Impact of wireless transmission interval on battery life. By only sending critical location points needed to 
reconstruct a user’s path, and thus reducing the frequency of wireless transmissions, the critical point algorithm can save 
significant battery energy and data transfer costs. For the battery levels, 4 is full, 3 is half full, 
2 is low, 1 indicates a warning, and at 0, the device powers off. 
 

 

 

 
Figure 6. Comparison of power consumption when transferring location data using TCP and UdP. (a) whereas at 4-second 
transmission intervals, TCP and UdP have similar power consumption, (b) at 10-second transmission intervals, TCP 
consumes approximately 38 percent more power than UdP. 

 

 
 

We’re currently performing experiments with LAISYC framework components  

on  the Google Android platform, which has become the leading cross-platform 

application environment for smart- phones. All LAISYC design principles discussed in 

this article in the context of Java ME also apply to Android, with some changes in 

terminology for certain platform features (such as SQLite for on-device persistent 

storage, instead of the Java ME MIDP RecordStore). In fact, early experiments with 

several Android devices indicate that the energy challenges discussed in this article are 

even more significant on smartphones. For example, battery life when sampling GPS at 

4-second intervals was approximately five hours on an HTC Hero with Android 2.1 
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update1, compared to eight hours on a Sanyo Pro 200 with Java ME. As a result, the 

energy-efficient components in LAISYC become even more important on smartphones. 

Smartphones also introduce additional capabilities and challenges when 

compared with typical Java ME feature phones. Additional radios for Bluetooth, Wi-Fi, 

and 4G communication all increase connectivity and positioning system options as well 

as network speeds, but require intelligence to efficiently use each technology without 

increasing the overall power consumption of the device and applications. Internal 

accelerometers, gyroscopes, barometers, and magnetic compasses all provide 

additional data to derive a user’s position and orientation, but additional intelligence is 

required to transform the data into contextual information. Therefore, although 

smartphones provide many new and exciting technologies, these devices also open 

many new research areas for intelligent location-aware ap- plications. 
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