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Abstract. Understanding how biotic mechanisms confer stability in variable environments
is a fundamental quest in ecology, and one that is becoming increasingly urgent with global
change. Several mechanisms, notably a portfolio effect associated with species richness,
compensatory dynamics generated by negative species covariance and selection for stable
dominant species populations can increase the stability of the overall community. While the
importance of these mechanisms is debated, few studies have contrasted their importance in an
environmental context. We analyzed nine long-term data sets of grassland species composition
to investigate how two key environmental factors, precipitation amount and variability, may
directly influence community stability and how they may indirectly influence stability via
biotic mechanisms. We found that the importance of stability mechanisms varied along the
environmental gradient: strong negative species covariance occurred in sites characterized by
high precipitation variability, whereas portfolio effects increased in sites with high mean
annual precipitation. Instead of questioning whether compensatory dynamics are important in
nature, our findings suggest that debate should widen to include several stability mechanisms
and how these mechanisms vary in importance across environmental gradients.

Key words: compensatory dynamics; dominant species; LTER; mean–variance scaling; negative
covariance; portfolio effect; Taylor’s power law.

INTRODUCTION

Understanding the mechanisms that maintain com-

munity stability has been a central goal in ecology for

many decades (Macarthur 1955, May 1973, Tilman

1996, Cottingham et al. 2001). Environmental variability

can have a direct effect on the variability in community

properties such as primary productivity if community

properties track the environment over time (Knapp and

Smith 2001, La Pierre et al. 2011, Craine et al. 2012).

However, species dynamics within communities may

moderate the direct effect of environmental forcing

(Tilman and Downing 1994, Leary et al. 2012, Yang et

al. 2012). Biotic stability mechanisms are species

dynamics that result in the community being more

stable than would be predicted based on variability in

the environment (Lehman and Tilman 2000).

Biotic stability mechanisms have been the subject of

much debate (Loreau et al. 2001, Hooper et al. 2005,

Ives 2005). One of the most widely focused on, and

controversial, mechanisms is whether negative covari-

ance in species populations creates ‘‘compensatory

dynamics’’ in which trade-offs among species popula-

tions stabilize the overall community (Houlahan et al.

2007, Gonzalez and Loreau 2009). Some studies confirm
the presence of compensatory dynamics and its links to

community stability (Descamps-Julien and Gonzalez

2005, Vasseur and Gaedke 2007, Downing et al. 2008,

Leary and Petchey 2009), but recent syntheses have

questioned the widespread existence of these dynamics

in natural systems (Houlahan et al. 2007, Mutshinda et

al. 2009).

However, it has been long recognized that other biotic

stability mechanisms can exist as well. For instance,

species richness can create a ‘‘portfolio effect’’ if

increased richness causes a community property to be

distributed among more species, causing the relative

fluctuation of the community to be less than the relative

fluctuation of the constituent species (Doak et al. 1998,
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Tilman et al. 1998, Lehman and Tilman 2000). The

portfolio effect depends on the relationship between the

mean and variance of species within a community;

theoretical work has shown that community stability

should increase with diversity if the scaling function of

the Taylor’s power law (z) is greater than one (Doak et

al. 1998). While the portfolio effect should be particu-

larly important for communities where biomass is

relatively evenly distributed among many species,

population stability of dominant species may be critical

for communities with a more unbalanced distribution of

biomass. In these cases, dominance can create a

‘‘selection effect’’ in which the population stability of

the dominant species, because it contributes much of the

biomass of the overall community, strongly influences

community stability (Doak et al. 1998, Steiner et al.

2005, Hillebrand et al. 2008).

Because environmental forcing can influence popu-

lation as well as community dynamics, and the

cumulative effect can influence longer-term adaptation

and species pools, it is likely that the strengths of these

mechanisms vary along environmental gradients

(Grman et al. 2010, Thibaut and Connolly 2013).

Thus, contextualizing stability mechanisms in relation

to the environment may help to resolve debate about

the importance of species dynamics for community

stability. Here, we focus on two well-documented

drivers of spatial and temporal dynamics in ecological

communities: precipitation amount and variability

(Tilman and Downing 1994, Knapp and Smith 2001,

Huxman et al. 2004). For example, across spatial

gradients mean annual aboveground net primary

productivity (ANPP) in grasslands is strongly related

with mean annual precipitation (MAP; Sala et al.

1988). However, ANPP is typically far less sensitive to

inter-annual variation within grassland sites over time

than it is to cross-site variation in precipitation (Adler

and Levine 2007, Hsu et al. 2012, Sala et al. 2012).

Although it has not been tested, differences in how

communities respond to precipitation across spatial vs.

temporal scales may be due to differences in biotic

stability mechanisms across sites.

We hypothesized that biotic mechanisms contribute to

community stability across grassland sites, but that the

importance of different mechanisms is associated with

differences in long-term precipitation patterns. For

example, species richness commonly increases with

MAP (Adler and Levine 2007, Cleland et al. 2013),

and so the portfolio effect may be a particularly

important stability mechanism in sites with high MAP.

Negative species covariance can enhance stability if

trade-offs between species are driven by differential

responses to environmental conditions (Ives et al. 1999,

Loreau and de Mazancourt 2013) and compensatory

dynamics may therefore be an important mechanism in

sites characterized by highly variable precipitation

(Yachi and Loreau 1999, de Mazancourt et al. 2013).

The selection effect due to the buffering of variability by

dominant species would be more likely to be strong in

sites with high dominance (or a very uneven distribution

of species abundances) and perhaps operate in the

opposing direction as the portfolio effect (Polley et al.

2007).

To test our hypotheses we capitalized on a regional

gradient in precipitation and long-term plant communi-

ty data at nine grassland sites in North America

(Appendix: Table A1). We quantified species dynamics

in relation to three biotic mechanisms that could

contribute to stability of ANPP (portfolio effect,

compensatory dynamics, dominant selection effect).

We then used structural equation modeling to test

whether MAP and the CV of annual precipitation

related to community stability directly or indirectly via

these biotic mechanisms.

METHODS

Community stability

We analyzed community stability in nine grassland

sites using long-term (�9 years) data sets of plant species
composition that were either contributed by coauthors

or publicly available (Appendix: Table A1, Fig. A1). All

analyses were conducted in R version 3.0.1 (R Core

Development Team 2013). We restricted our analyses to

sites in which measurement techniques and management

regimes had remained constant over the collection

period and in which data collection methods were not

relativized. For example, sites in which species compo-

sition were measured as percent cover were included

only if estimates were not required to sum to 100. We

aggregated species abundances within replicate and year

and used these values to calculate community stability

(l/r; Tilman 1999, Lehman and Tilman 2000) for each

site. We paired the community data with long-term data

of ANPP and repeated this calculation for ANPP (data

from Hsu et al. [2012] and from Hobbs et al. [1988] for

Jasper Ridge; no biomass data were available for Vasco

Caves). Because these two measures were strongly

correlated (r ¼ 0.93, df ¼ 6, P , 0.0001) we considered

community stability (aggregated species abundance) a

proxy for productivity stability.

Direct relationships between precipitation

and community stability

We obtained long-term precipitation records for each

site from the closest available weather station to

calculate MAP and the CV of annual precipitation.

We used multiple regression to directly relate commu-

nity stability with MAP and the CV of annual

precipitation and used Pearson correlation to test the

relationship between the two precipitation metrics.

Because many composition estimates in our data set

were cover based, for these analyses we coupled our data

set with measures of stability calculated using ANPP

from 19 other sites in a productivity data set (data from

Hsu and Adler [in press]).

LAUREN M. HALLETT ET AL.1694 Ecology, Vol. 95, No. 6



Relationships between precipitation and biotic

mechanisms of community stability

We calculated metrics to characterize the three biotic

mechanisms of community stability: species richness and

the scaling power z (the portfolio effect), negative species

covariance (compensatory dynamics), and dominant

species population stability and species evenness (dom-

inant selection effect).

We calculated species richness as the mean number of

species that occurred in a 1-m2 replicate each year. Most

sites measured species composition at the 1-m2 scale, but

for those that used a different plot size we used

supplemental data from the same location that were

collected at the 1-m2 scale (data sets described in Cleland

et al. 2013; no 1-m2 scale data were available for Vasco

Caves).

Species richness should generate a ‘‘portfolio effect’’ if

the variances in species abundances increase more

steeply than their mean abundances (Doak et al. 1998,

Tilman 1999). We verified that increasing species

richness should enhance the portfolio effect at our sites

using Taylor’s power law such that r2¼ clz where c and
z are constants, r2 is the variance in species abundance,

and l is mean species abundance. A portfolio effect

occurs when z values are between one and two, whereas

additional species can be destabilizing when z , 1 (i.e.,

when stability would instead be maximized by a single,

low-variance species). Because z ranged from 1.4 to 1.8

across our sites (Appendix: Fig. A2), we retained species

richness as a measure of the portfolio effect in

subsequent analyses.

We quantified negative covariance using the variance

ratio, which compares the variance of the community

(C ) as a whole relative to the sum of the individual

population (Pi ) variances (Schluter 1984, Houlahan et

al. 2007)

VR ¼ varðCÞXn

i¼1

varðPiÞ

where

varðCÞ ¼
Xn

i¼1

varðPiÞ
" #

þ 2
Xn

i¼1

Xi�1

j¼1

covðPiPjÞ
" #

:

A variance ratio less than one would indicate

predominately negative species covariance, signifying

evidence for compensatory dynamics. To test whether

variance ratios significantly differed from one we used a

temporal modification of the torus translation (Harms et

al. 2001) in which we randomly selected different

starting years for each species’ time series. This

generated a null community matrix in which species

abundances varied independently but within-species

autocorrelation was maintained. We repeated this

randomization 10 000 times to create a null distribution

of variance ratios calculated from independently varying

populations and compared our observed variance ratio

against this null distribution.

To quantify the role of dominant species for

community stability we first identified the species in

each replicate that had the highest mean relative

abundance over time. We used the stability of this

species (l/r) as a metric of dominant species stability.

Because the relative abundance of the dominant species

varied widely across sites (from 29% to 84%), we

additionally calculated Pielou’s evenness index within

replicates and averaged across years (Pielou 1966).

Pielou’s evenness index was tightly negatively correlated

with dominant species relative abundance (r¼�0.97, df
¼ 7, P , 0.001), reflecting the fact that an increase in

evenness decreases the influence that a dominant species

has on the overall community.

To test that these mechanisms are important for

community stability we used multiple regression with

species richness, the variance ratio, dominant species

stability and Pielou’s evenness index as explanatory

variables. Prior to regression we used Pearson correla-

tion to check for collinearity among variables. Because

species richness and evenness were significantly corre-

lated (r ¼ 0.72, df ¼ 6, P ¼ 0.04), we retained species

richness as a proxy for both variables in the full model.

No other biotic metrics were significantly correlated.

To relate these biotic mechanisms with precipitation

we first regressed each term against MAP and the CV of

annual rainfall. Second, to holistically characterize the

relationships among precipitation, biotic stability mech-

anisms and community stability we employed a struc-

tural equation model in which MAP and the CV of

precipitation were linked to community stability both

directly and indirectly via species richness, the variance

ratio, and the stability of dominant species (fit with

maximum likelihood estimation using the lavaan pack-

age [Rosseel 2012]).

RESULTS

Across sites MAP and the CV of annual precipitation

were not correlated (r ¼�0.15, df ¼ 26, P ¼ 0.44); nor

were precipitation variables correlated within the focal

sites (r ¼�0.38, df ¼ 7, P ¼ 0.31). There was no direct

relationship between community stability and either

MAP (F2,25¼ 0.1.4, P¼ 0.16, R2¼ 0.03; Fig. 1a) or the

CV of annual precipitation (P ¼ 0.57; Fig. 1b) Within

the productivity data set, community stability was

positively related with mean ANPP (F1,35 ¼ 31.2, b ¼
0.007 [b is the effect size of the explanatory variable], P

, 0.001, R2¼ 0.46), indicating that in general increasing

mean biomass had a greater effect on community

stability than decreasing the standard deviation of

biomass.

Species richness and the variance ratio, but not

dominant species stability, were significant predictors

of community stability in the multiple regression model

(F3,4 ¼ 15.8, R2 ¼ 0.86; Fig. 1c–e). Community stability

June 2014 1695BIOTIC MECHANISMS OF STABILITY



increased with mean species richness (b¼ 0.17 6 0.047,

P ¼ 0.018; Fig. 1c), which ranged from 5.5 to 20.2

species/m2. Community stability decreased with the

variance ratio (i.e., increased with negative covariance,

b¼�3.55 6 0.70, P¼0.007; Fig. 1d), and five of the nine

sites had a variance ratio that was significantly less than

one. Species richness was significantly positively related

with MAP (F1,6¼ 9.9, b¼ 0.015 6 0.005, P¼ 0.02, R2¼
0.56; Fig. 2a) but unrelated with the CV of annual

precipitation (Fig. 2b). The variance ratio was not

related with MAP (Fig. 2c) but was significantly

negatively related with the CV of annual precipitation

(F1,7¼ 5.6, b¼�0.038 6 0.016, P¼ 0.05, R2¼ 0.37; Fig.

2d). Dominant stability was not directly related with

either MAP or the CV of annual rainfall (Fig. 2e, f ).

All three biotic mechanisms were significantly related

to community stability in the structural equation model,

whereas neither MAP nor the CV of annual rainfall

directly related to community stability (Fig. 3). Howev-

er, both precipitation variables related to community

stability indirectly via their relationships with biotic

stability mechanisms. Species richness showed a signif-

icant positive relationship with MAP, whereas negative

species covariance increased with the CV of annual

precipitation (Fig. 3, bivariate relationships in Fig. 1a–e,

Fig. 2a–f ).

DISCUSSION

Across spatial gradients precipitation is a primary

control on grassland composition and production, yet

we found that the stability of grassland communities was

not directly related to either MAP or precipitation

variability. This remarkable finding was due to a shift in

the biotic stability mechanisms that operated along the

FIG. 1. Community stability (l/r, where l is mean species abundance and r is the standard deviation of species abundance) in
relation to precipitation and biotic mechanisms. (a, b) Community stability in relation to (a) mean annual precipitation (MAP) and
(b) the CV of annual precipitation (Precip CV) across 28 grasslands sites. Site abbreviations for the nine sites in our study are given
in Appendix: Table A1. Focal sites with available community composition data are labeled (community stability is calculated on
aggregated species abundances). Community stability for the remaining sites is calculated on annual net primary productivity; data
from Hsu and Adler (in press). (c–e) Community in relation to three biotic stability mechanisms. Lines indicate significant
relationships in a multiple regression model relating these metrics with community stability, all biotic mechanisms were significantly
related with stability in a structural equation model: panel (c) species richness, which is positively associated with the portfolio
effect; panel (d) the variance ratio, which describes species covariance (a variance ratio less than one indicates predominantly
negative covariance, reflective of compensatory dynamics); panel (e) the stability of the most abundant (dominant) species.
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precipitation gradient: the portfolio effect (species

richness) contributed to community stability in sites

with high MAP, whereas negative species covariance

contributed to community stability in sites with highly

variable precipitation. Thus, instead of questioning

whether compensatory dynamics are important in

nature, our results suggest that the debate should shift

to how compensatory dynamics and other stability

mechanisms may vary in importance across environ-

mental gradients.

The first pathway by which precipitation affected

community stability was via species richness, where sites

with high MAP supported high numbers of species, and

high species richness was related to increased commu-

nity stability over time. We interpret this relationship as

evidence of the portfolio effect increasing in importance

in sites that receive high amounts of MAP (e.g., in the

tallgrass prairie site in Kansas; Appendix: Table A1).

While species richness does not necessarily need to lead

to a portfolio effect, all sites used in the analysis had

FIG. 2. Biotic stability mechanisms in relation to precipitation across nine grassland sites; lines indicate significant bivariate
relationships. (a, b) Species richness in relation to (a) mean annual precipitation (MAP) and (b) the CV of annual precipitation
(Precip CV). (c, d) The variance ratio in relation to (c) MAP and (d) the Precip CV. Small gray dots with error bars indicate the
mean and 95% confidence intervals of a null model (simulated variance ratios with independently varying species); (e, f ) The
stability (l/r) of the most abundant (dominant) species in relation to (e) MAP and (f ) the Precip CV.
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Taylor power law z values over one, indicating that

species diversity was stabilizing (species abundance

variance increased more than species mean abundance).

Thus, z values . 1.0 combined with the positive

influence of species richness on community stability

are consistent with expectations of the portfolio effect

(Doak et al. 1998, Tilman 1999).

While the portfolio effect was strongest at sites with

high MAP, negative species covariance was greatest in

sites characterized by high precipitation variability.

Previous synthesis studies that have calculated the

variance ratio at multiple sites for several taxa reported

more positive than negative covariance (Houlahan et al.

2007, Valone and Barber 2008). These patterns contrast

with experimental findings, which often provide evi-

dence of compensatory dynamics (Klug et al. 2000,

Hector et al. 2010). Our findings suggest that compen-

satory dynamics may occur in natural systems—over

half the sites we studied exhibited significant negative

covariance—but that the strength of compensatory

dynamics in natural systems may be context dependent.

These results indicate that in sites with strong environ-

mental fluctuations, such as the arid southwestern

United States and Mediterranean-climate California

sites, climate-driven variation in competitive hierarchies

may enforce patterns of negative species covariance

while destabilizing individual populations.

The frequency with which we observed negative

species covariance is particularly striking given that the

null hypothesis for coexisting species dependent on the

same resources is that they should positively covary in

response to resource availability (Loreau and de
Mazancourt 2008).

Experimental manipulations within sites suggest that

the observed negative covariance is largely driven by
dominant species interactions (Roscher et al. 2011),

whereas rare species often respond synchronously to
precipitation. Sasaki and Lauenroth (2011), for exam-

ple, manipulated dominance at the Short Grass Steppe

and found that the strength of negative species
covariance increased with the relative abundance of

dominant species. In contrast, sites in which dominants
were removed tended to have more positive covariance,

with rare species flickering in and out synchronously

with high precipitation years. Similarly, Hobbs et al.
(2007) observed highly asynchronous dominant species

populations at Jasper Ridge, but found that the majority
of species responded positively to increased precipita-

tion.

Dominant species stability did not exhibit a direct
relationship with community stability, but it did emerge

as a third significant stability mechanism in the

structural equation model. This result is aligned with
experimental work that has shown that dominant

species are important for maintaining stability in
primary productivity over time for some systems (Smith

and Knapp 2003, Sasaki and Lauenroth 2011). Howev-

er, the effect size of dominant species stability was less
than either the portfolio effect or negative species

covariance. This may be because the two components
of a dominant selection effect, high dominance and

population stability, did not occur in tandem along the

precipitation gradient. Although dominant species

FIG. 3. Structural equation model developed to relate precipitation, biotic stability mechanisms, and community stability
across nine grassland sites. Lines denote significant relationships and are scaled in relation to their effect size. R2 values represent
the proportion of variance explained for each dependent variable. All three biotic mechanisms directly contribute to community
stability, whereas precipitation relates to community stability indirectly via pathways between mean annual precipitation and the
portfolio effect (species richness) and between precipitation variability and compensatory dynamics.
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comprised relatively more of the total community as

total MAP decreased, the stability of the dominant

species did not significantly vary with precipitation.

The alternating strength of different stability mech-
anisms with precipitation may help explain why

productivity is strongly governed by precipitation over

space but less so over time. Our findings suggest that

across spatial gradients, different precipitation patterns
may shape different population dynamics that moder-

ate the direct effects of precipitation on primary

productivity. This understanding sheds light on the

mechanisms explaining patterns of primary productiv-
ity and will be relevant for predicting ecosystem

responses to the greater climate variability forecasted

for coming decades. For instance, our analyses suggest

that compensatory dynamics will become more impor-
tant to the stability of sites that experience increased

precipitation variability. However, we suspect that

rapid increases in precipitation variability may outpace

the colonization rates of species adapted to variable
conditions (Adler and Levine 2007). If specific trait

adaptations are required for communities to exhibit

compensatory dynamics, then patterns generated by

long-term climate, as we analyzed here, may be
disconnected from community responses to more rapid

precipitation change.
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SUPPLEMENTAL MATERIAL

Appendix

Descriptive summaries of the data sets included in our analyses, including source information and representative times series of
species abundances over time (Ecological Archives E095-147-A1).
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