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Abstract 

This note presents a historical survey of informal semantics that are associated with logic 
programming under answer set semantics. We review these in uniform terms and align them 
with two paradigms: Answer Set Programming and ASP-Prolog — two prominent Knowledge 
Representation and Reasoning Paradigms in Artificial Intelligence. 

KEYWORDS: answer set programming, logic programming, informal semantics. 

1 Introduction 

The transcript of the talk by Donald E. Knuth titled Let’s Not Dumb Down the History 
of Computer Science published by ACM (2021) includes the statement: 

. . .  it would really be desirable if there were hundreds of papers on history written 

by computer scientists about computer science. 

This quote was inspirational for this technical note devoted to a historical survey of 
informal semantics that are associated with logic programming under answer set seman-

tics (in the sequel, we mostly drop under answer set semantics when referring to logic 
programming and logic programs). 
We focus on four seminal publications and align informal semantics discussed there 

using the same style of presentation and propositional programs. We trust that within 
such settings key ideas and tangible differences between the distinct views come to the 
surface best. The earliest publication of the four dates back to 1988, and the latest 
dates back to 2014. It would seem that the subject of informal semantics is only periph-
eral scoring at such a low count of major references. Rather, the word informal makes 
this subject rare in the discussions of logic programming. Nevertheless, the 2014 refer-
ence is an introductory chapter titled Informal Semantics of the textbook on Knowledge 
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Representation, Reasoning, and Design of Intelligent Agents by Gelfond and Kahl. The 
prominent position of this chapter points at the importance of the subject, especially 
when we consider passing on the knowledge and practice of logic programming to a broad 
audience. 
As the presentation unfolds, a story of two views on logic programs will emerge. One 

view is via the prism of answer set programming (ASP) and another view is via the prism 
of ASP-Prolog. We reserve the term – ASP – to a constraint programming paradigm, 
where an ASP practitioner while coding specifications of a considered problem ensures 
that the solutions to this problem correspond to answer sets of the coded program 
(Brewka et al.,  2011). ASP is frequently associated with solving difficult combinatorial 
search problems via a programming methodology of generate-define-test and underly-
ing grounding and solving technology. The term – ASP-Prolog – is used to denote a 
knowledge representation language geared to model and capture domain knowledge with 
the underlying intelligent/rational agent in mind (Gelfond and Kahl, 2014, Section 2). 
One may utilize ASP-Prolog as a programming language, but may also simply use it 
for describing specifications without thinking about a computational task or solving this 
task. 
This presentation of the four surveyed publications almost follows their timeline start-

ing with the earliest work. In many places, we present the original quotes from the 
discussed sources to avoid misrepresentation of the originals. 

2 Formal and informal semantics of basic programs by GL’88 

We start by recalling the formal and informal semantics of basic logic programs as they 
were introduced by Gelfond and Lifschitz (1988). 
A basic rule is an expression of the form 

A←B1, . . . , Bn, not C1, . . . , not Cm, (1) 

where A, Bi, and  Cj are propositional atoms. The atom A is the head of  the rule and  
the expression B1, . . . , Bn, not C1, . . . , not Cm is its body . A  basic (logic) program is a 
finite set of such rules. In the sequel, we introduce rules of somewhat different syntactic 
structure, yet we agree to call the left-hand side of the rule operator/connective, denoted 
by ←, head and the right-hand side body . A rule  whose body is empty  (n= m= 0)  is  
called a fact ; in such rules connective ← is often dropped. 
For a rule r of the form (1) and  a set  X of atoms, the reduct rX is defined whenever 

there is no atom Cj for j ∈ {1, . . . , m} such that Cj ∈X. If the reduct rX is defined, then 
it is the rule 

A←B1, . . . , Bn. (2) 

The reduct ΠX of the program Π consists of the rules rX for all r ∈Π, for which the 
reduct is defined. A set X of atoms satisfies rule (2) if  A belongs to X or there exists 
i∈ {1, . . . , n} such that Bi ∈X. We say that a set X of atoms is a model of a program 
consisting of rules of the form (2) when  X satisfies all rules of this program. A set X is 
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Theory and Practice of Logic Programming 3 

a stable model/answer set of Π, denoted X |=st Π, if it is a subset minimal model of ΠX ; 
A subset minimal model is such that none of its strict subsets is also a model. 

Quotes by Gelfond and Lifschitz (1988) on Intuitive Meaning of Basic Programs 
(verbatim modulo names for programs and sets of atoms): 

Quote 1: The intuitive meaning of stable sets 1 can be described in the same way as 
the intuition behind “stable expansions” in autoepistemic logic: they are “possible sets 
of beliefs that a rational agent might hold” (Moore, 1985) given Π as his premises. If 
X is the set of (ground) atoms that I consider true, then any rule that has a subgoal 
not C with C ∈ X is, from my point of view, useless; furthermore, any subgoal not C 
with C ∈ X is, from my point of view, trivial. Then I can simplify the premises Π and 
replace them by ΠX . If  X happens to be precisely the set of atoms that logically follow 
from the simplified set of premises ΠX , then I am “rational”. 

Later, Gelfond and Lifschitz (1991) say about a basic program the following: 

Quote 2: A “well-behaved” program has exactly one stable model, and the answer that 
such a program is supposed to return for a ground query A is yes or no, depending on 
whether A belongs to the stable model or not. (The existence of several stable models 
indicates that the program has several possible interpretations). 

The historical roots of stable model semantics for logic programs as a formal tool for 
model-theoretic declarative semantics of Prolog (Kowalski, 1988) are apparent in these 
quotes. The expectation is to consider a well-behaved program with a single stable model. 
Yet, the authors acknowledge the possibility of programs with several stable models 
that indicates that the program has several possible interpretations or induces several 
possible sets of beliefs. In this paper, it will prove of value to distinguish between the con-
cepts possible interpretations and possible sets of beliefs . In 1988, these terms were used 
as synonyms. It is convenient to imagine that the concept of possible interpretation stands 
behind what we characterize here as ASP, whereas the concept of possible sets of beliefs 
stands behind ASP-Prolog. We now review these frameworks prior to an attempt to for-
malize the presented quotes that will result in what we denote as an original informal 
semantics of basic programs. 

2.1 ASP and ASP-Prolog 

2.1.1 Answer set programming 

Marek and Truszczynski (1999) and Niemelä (1999) open a new era for stable model 
semantics by proposing the use of logic programs under this semantics as constraint 
programming paradigm for modeling combinatorial search problems. This marks the 
birth of ASP . Here is what the abstract of the paper by Marek and Truszczynski says: 

We demonstrate that inherent features of stable model semantics naturally lead to a logic 
programming system that offers an interesting alternative to more traditional logic pro-
gramming 2 . . .  The proposed approach is based on the interpretation of program clauses as 
constraints. In this setting programs do not describe a single intended model, but a family 
of stable models. These stable models encode solutions to the constraint satisfaction prob-
lem described by the program. . . .We argue that the resulting logic programming system 

1 Gelfond and Lifschitz (1988) use terms stable set and stable model interchangeably. 
2 “More traditional logic programming” refers to Prolog (Kowalski, 1988). 
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is well-attuned to problems in the class NP, has a well-defined domain of applications, 
and an emerging methodology of programming. 

In other words, Marek and Truszczynski and Niemelä propose to see logic rules of the 
program as specifications of the constraints of a problem at hand. Logic programming 
is seen as a provider of a general-purpose modeling language that supports solutions for 
search problems. Let us make these claims precise by considering the notion of a search 
problem following the lines by Brewka et al. (2011). A search problem P consists of a set 
of instances with each instance I assigned a finite set SP (I) of solutions. In the proposal 
by Marek and Truszczynski and Niemelä, to solve a search problem P , one constructs a 
logic program ΠP that captures problem specifications so that when extended with facts 
FI representing an instance I of the problem, the answer sets of ΠP ∪ FI are in one-
to-one correspondence with members in SP (I). In other words, answer sets of ΠP ∪ FI 

describe all solutions of problem P for the instance I. Thus, solving a search problem P 
is reduced to finding a uniform logic program – that we denoted as ΠP – which encodes 
problem’s specifications/constraints. 
The logic rules of the program – the key syntactic building blocks of logic program-

ming – become the vehicles for stating constraints/specifications of a problem under 
consideration. A program is typically evaluated by means of a grounder-solver pair. A 
grounder (Syrjänen and Niemelä, 2001; Gebser et al., 2007; Calimeri et al., 2008) is  
responsible for eliminating first-order variables occurring in a logic program in favor of 
suitable object constants resulting in a propositional program – atoms of such programs 
are called ground . An answer set solver – a system in the spirit of SAT solvers (see, 
e.g. (Lierler, 2017)) – is responsible for computing answer sets (solutions) of a program. 
Let us draw a parallel with Prolog. In Prolog (Kowalski, 1988), a single intended model 
is assigned to a logic program. The SLD-resolution (Kowalski, 1974) is at the heart of 
the control mechanism behind Prolog implementations. Together with a logic program, a 
Prolog system expects a query (possibly multiple queries). This query is then evaluated 
by means of SLD-resolution and a given program against an intended model. Thus, even 
though Prolog and ASP share the basic language of logic programs, their programming 
methodologies and underlying solving/control technologies are different.3 

2.1.2 ASP programming methodology 

Eiter et al. (2000) illustrate how logic programs under answer set semantics can be used 
to encode problems in a highly declarative fashion, following a “Guess&Check” paradigm. 
We restate this paradigm verbatim utilizing the terminology of search problem and its 
instance introduced before. 

3 A term “constraint logic programming” (Jaffar and Lassez, 1987) may come to reader’s mind. This 
concept is vaguely related to the discussion here. It comes from an era predating logic programs under 
answer set semantics. Yet, it is also a form of constraint programming, in which logic programming – 
understood as Prolog – is extended to include concepts from constraint satisfaction (Dechter, 2003). For 
instance, a program may contain numeric constraints in the bodies of its rules. In some way, constraint 
logic programming is closer in spirit to what is called constraint ASP (see, e.g., (Lierler, 2014)), where a 
logic program under answer set semantics may, for instance, contain numeric constraints in the bodies 
of its rules. 
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Given a set FI of  facts that specify  an  instance  I of some problem P , a  Guess&Check 
program Π for P consists of the following two parts 

Guessing Part: The guessing part G ⊆ Π of the program defines the search 
space, in a way such that answer sets of G ∪ FI represent “solution candidates” 
for I. 

Checking Part: The checking part C ⊆ Π of the program tests whether a solution 
candidate is in fact a solution, such that the answer sets G ∪ C ∪ FI represent the solutions 
of the problem instance I. 

Eiter et al. point at a close relation of the Guess&Check approach with the generate-
and-test paradigm in the AI community (Winston, 1992). 

Lifschitz (2002) refines the Guess&Check approach and coins a term generate-define-
test for this emerging methodology in logic programming that splits program rules into 
three groups: 

• the generate group is responsible for defining a large class of “potential solutions” 
• the test group is responsible for stating conditions to weed out potential solutions 

that do not satisfy the problem’s specifications; and 
• the define group is responsible for defining concepts that are essential in stating the 

conditions of generate and test . 

In this work, “the idea of ASP is to represent a given computational problem by a program 
whose answer sets correspond to solutions, and then use an answer set solver to find a 
solution”. The paper illustrates the use of ASP to solve a sample planning problem. Yet, 
there are no references to how one would intuitively read, for example, an occurrence of 
atom A or expression not A in rules. This is also true of many other instances of papers 
describing various applications of ASP. 
To the best of our knowledge, Denecker et al. (2012) in addition to earlier reviewed 

quotes in this section are the two major accounts for reconciling the use of ASP (not 
ASP-Prolog) in practice and intuitive readings of answer sets and rules of programs. The 
previous to the last section reviews an account by Denecker et al., while the remainder 
of this section predominantly concerns making already reviewed quotes more precise. 

2.1.3 ASP-prolog 

We reviewed the concept of ASP as championed by Marek and Truszczynski (1999) and  
Niemelä (1999). In this view, a search problem at hand is a center piece. An ability to 
model a considered search problem by means of a logic program so that the answer sets 
of this program are in one-to-one correspondence to the problem’s solutions constitutes 
this paradigm. 
The textbook by Gelfond and Kahl (2014) focuses on an alternative practice of logic 

programming under answer set semantics. It champions a view on answer sets as possible 
sets of beliefs. Interpreting answer sets as such implies the presence of an intelligent 
agent behind a program. The program itself is seen to represent a knowledge base of this 
agent. This corresponds to the view of a logic program as a knowledge representation 
and reasoning formalism for the design of intelligent agents . This is largely a position 
advocated in the Gelfond and Kahl textbook. We use the term ASP-Prolog to denote 
such use of logic programs. It makes sense to reflect on the notion of an intelligent agent 
provided in Section 1.1 of the cited textbook: 
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In this book when we talk about an agent, we mean an entity that observes and acts on 
an environment and directs its activity toward achieving goals. Note that this definition 
allows us to view the simplest programs as agents. A program usually gets information 
from the outside world, performs an appointed reasoning task, and acts on the outside 
world, say by printing the output, making the next chess move, starting a car, or giving 
advice. If the reasoning tasks that an agent performs are complex and lead to nontrivial 
behavior, we call it intelligent. 

Brief discussions by Gelfond and Lifschitz (1991) and Section 2.2.1 of the mentioned 
textbook are major two accounts that speak of intuitive readings of answer sets and 
rules of programs when ASP-Prolog is used in practice. Sections 3 and 4 of this note are 
devoted to these accounts. 

2.2 “Formalizing” quotes 1 and 2 or informal semantics of basic programs 
by GL’88 

Before we attempt to make the claims of Quote 1 by Gelfond and Lifschitz (1988) precise 
it is due to discuss three interrelated and yet different concepts and how we understand 
them within this note: 

• a state of affairs, 
• a belief state, and 
• a set of beliefs/belief set. 

The following example is our key vehicle in this discussion. 

Example 1. 
Consider a toy world with four possible states of affairs that fully describe it: 

1 Mary is a student 2 Mary is a student 
John is a student John is not a student 

3 Mary is not a student 4 Mary is not a student 
John is a student John is not a student 

A belief state is associated with/represented by a conglomeration of states of affairs. 
In other words, a belief state assumes that multiple states of affairs can be deemed as 
possible by an agent. Thus, a belief state is often associated with an agent who has partial 
knowledge of the world. 
Returning to our toy world, the powerset of the listed four states of affairs forms the 

set of belief states for an agent operating in this world. For example, if an agent assumes 
a belief state consisting of states 1, 2, 3, 4 of affairs – let us denote it as bs1–, we may 
conclude that this agent deems everything possible (or knows nothing factual about the 
world). If an agent assumes a belief state consisting of states 1 and 2 of affairs – let us 
denote it as bs2–, we may conclude that this agent is aware of the fact that Mary is a 
student, whereas John may or may not be a student. In turn, if an agent assumes a belief 
state consisting of a single state 1 – let us denote it as bs3–, then we may conclude that 
this agent is aware of the two facts: Mary is a student and John is a student. 
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We now connect the concepts of a belief set (or, a set of beliefs) and a belief state. 
The former is an abstraction of the latter. In other words, we understand belief sets as 
entities that capture/encode belief states. This encoding may lose some information so 
that multiple belief states may be “consistent” with a single belief set. For instance, in 
the context of our toy world, a belief set consisting of a single proposition Mary is a 
student is consistent with any belief state that contains either state 1 of affairs or state 
2 of affairs. Note how this belief set cannot distinguish between these different belief 
states. Indeed, a belief set consisting of a single proposition Mary is a student cannot 
distinguish between belief states bs1, bs2, and  bs3. 

We are now ready to return to the claims of Quote 1 by Gelfond and Lifschitz (1988) 
and attempt to make these precise with the allowance that programs with multiple answer 
sets that correspond to possible sets of beliefs/possible interpretations are as valid pro-
grams as so-called well-behaved programs. In other words, per Quote 1 each answer set 
represents a set of beliefs of a rational agent (or I); thus this agent may have multiple 
sets of beliefs. In the sequel, we drop the reference to “or I” and use “an agent” in the 
discourse.4 In the case of basic programs, we take an understanding that 

The absence of an atom A in a stable model represents the fact that A is false. (3) 

This understanding is consistent with the view by Gelfond and Lifschitz, which is 
reiterated in Quote 4 in Section 3. 
Claim (3) on the interpretation of answer sets has profound ramifications. Namely, 

this claim makes the three concepts — a state of affairs, a belief state, and a set of 
beliefs/belief set — exemplified earlier by highlighting their differences collapse into a 
single entity. Let us use an example to illustrate this point. 

Example 2. 
Recall the toy world from Example 1. Let us take atoms student(mary) and  
student(john) to represent propositions Mary is a student and John is a student , respec-
tively. If our signature of discourse is composed only of these two atoms, we can construct 
four distinct subsets of atoms within this signature, namely, 

{student(mary), student(john)}; {student(mary)}; {student(john)}; ∅. (4) 

Each of these sets of atoms can be identified in a natural manner with one of the four 
states of affairs that capture our toy world from Example 15; below we rewrite the table 
presented in that example by substituting propositions depicting distinct states of affairs 
with the respective sets of atoms: 

4 In personal communication with Michael Gelfond on the 27th of April, 2023, he confirmed that “I” in 
Quote 1 was meant to refer to a rational agent invoked in the same quote. 

5 It is common in propositional logic to identify sets of atoms over particular signature with inter-
pretations: namely, an atom that is part of the set is considered mapped to true in the respective 
interpretation, whereas an atom not in the considered set is mapped to false. 
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{student(mary), 2 {student(mary)} 
student(john)} 

3 4 ∅ 
{student(john)} 

Alternatively, let us take sets listed in (4) to represent distinct belief states under the 
assumption that any atom not listed explicitly in a set under consideration is considered 
to be false. Thus, the belief state {student(mary), student(john)} represents a belief 
state consisting of a single state of affairs denoted by 1 and represented by the same 
set of atoms as illustrated above; belief state {student(mary)} represents a belief state 
consisting of a single state of affairs denoted by 2 and represented by the same set of 
atoms. The same observation holds for the remaining two belief states depicted by sets 
of atoms in (4). Thus, given the considered settings we may identify belief states and 
states of affairs. The same argument applies to the concept of a belief set. 

We denote the informal semantics for basic programs as GI, where  I stands for intended 
interpretations of the program’s propositional atoms. It is typical in the informal seman-

tics for classical logic expressions that each atom A has an intended interpretation, I(A), 
which is represented linguistically as a noun phrase about the application domain. The 
informal semantics GI consists of three components: 

• the interpretation of structures – here, answer sets – denoted by GIS, 
• the interpretation of syntactical expressions in a program, denoted by GL

I , and  

• the interpretation of the semantic relation – here, satisfaction – denoted by G|= 
I
. 

The first component determines a function from an answer set/a set of beliefs encoded 
by a set X of atoms to a belief state of some agent (or, a state of affairs). The second 
component determines the informal reading of syntactical expressions in a program. The 
third component determines the informal reading of the satisfaction relation. 

In the view of informal semantics GI, an answer set encodes a belief state of some 
agent (or, a state of affairs – as we have seen earlier, these concepts are indistinguishable 
under claim (3)). To reiterate, An agent in some belief state – represented by a set X of 
atoms – considers the set of all atoms in X to be the case (believes in them), whereas any 
atom that does not belong to X is believed to be false by the agent, that is is not the case. 
Thus, we may explain the meaning of a program in terms of what atoms an agent with 
its knowledge of the application domain encoded as the program believes as true and 
what atoms an agent believes as false. Generally, an agent in some belief state considers 
certain states of affairs as possible and others as impossible. For basic programs, set X of 
atoms defines a unique state of affairs that the agent regards as possible in a belief state 
that X represents. Thus, we may identify any belief state captured by X with this state 
of affairs. We denote a state of affairs captured by a set X of atoms under an intended 
interpretation I as GS

I
(X). Table 1 summarizes a role of an answer set as a state of affairs 

in the considered view. 
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Table 1. The Gelfond-Lifschitz (1988) informal semantics of 
answer sets – sets of atoms 

A set  X of atoms A state G SI (X) of affairs  

A ∈ X for atom A I(A) is true in state G SI (X) of affairs  
A ∈ X A  ∈ X for atom A I(A) is false in state G SI (X) of affairs  

Table 2. The Gelfond-Lifschitz (1988) informal semantics for basic logic programs 

Φ G LI (Φ) 

1. Propositional atom A I(A) 
2. Expression of the form not C it is not the case that I(C) 
3. Expression of the form Φ1, Φ2 G LI (Φ1) and  G LI (Φ2)

4. Rule Head  ← Body if G LI (Body) then  G LI (Head) (in the sense 
of material implication) 

5. Program P = {r1, . . . , rn} All the agent knows is: G LI (r1) and  G LI (r2) 
and . . .  and G LI (rn) 

Example 3. 
Consider a set of beliefs encoded as a set 

X = {student(mary), male(john)} (5) 

of atoms under the obvious intended interpretation I for the propositional atoms in X. 
This X represents a state of affairs in which the agent considers that both statements 
Mary is a student and John is a male are true. At the same time, the agent considers 
any other statements, including John is a student and Mary is a male, false. The G S 

I (X) 
component of informal semantics of basic programs provides us with this understanding 
of set X. 

Table 2 shows the Gelfond-Lifschitz (1988) informal semantics G L
I of syntactic elements 

of programs. The term material implication used within the table assumes the confor-
mance to the usual truth table of implication and thus a conditional statement can be 
identified with a disjunction in which the antecedent of the conditional statement is 
negated. As it is clear from this table, under G L 

I , extended logic programs have both clas- 
sical and non-classical connectives.6 On the one hand, the comma connective (appearing 
in the body of rules) is classical conjunction and the rule connective ← is the classical 
implication. Note that such reading of the comma connective and the rule connective 
allows us to identify the empty body of the rule with  – a propositional constant whose 
value is always interpreted as true – and a rule with an empty body with a simple propo-
sitional statement that contains only head of this rule. Not surprisingly such rules are 
typically denoted as facts. On the other hand, the implicit composition operator (con-
structing a program out of individual rules) is non-classical because it performs a closure 
operation (resulting in the implementation of closed world assumption – presumption 

6 We understand connectives reminiscent of the ones appearing in classical propositional logic as classical. 
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Table 3. The Gelfond-Lifschitz (1988) informal semantics for the satisfaction 
relation 

|=st G |=st
I 

X |=st Π Given G LI (Π), X could be a state of affairs inferred from this knowledge so 
that any proposition in X is the case whereas any propositionnot in X is 
not the case 

that what is not currently known to be true is false): only what is explicitly stated is 
known. To summarize, Table 2 is devoted to the interpretation of syntactical expressions 
in a program allowing us to “translate” its syntactic elements and the program itself into 
natural language expressions. For instance, take I to be an identity function and consider 
a simple program 7 

p(b) ← q(a). “If q(a) then  p(b)” 
q(a). “q(a)” 

“The agents knows only the statements presented above” 

The annotations to the right are warranted by G L
I presented in Table 2. Table  3 presents 

the final component G|=st 

I of the GI informal semantics. In the context of the simple 
program used to illustrate the findings presented in Table 2, the findings of Table 3 
suggest that the only answer set of this program {p(b), q(a)} is a state of affairs inferred 
from the knowledge encoded in this program so that both p(b) and  q(a) are  the case and  
no other proposition is the case. 

3 Formal and informal semantics of extended programs by GL’91 

Here, we recall the formal and informal semantics of extended logic programs by Gelfond 
and Lifschitz (1991). An alternative view of the informal semantics for extended logic 
programs is provided in (Gelfond and Kahl, 2014, Section 2.2.1) reviewed next. 
A literal is either an atom A or an expression ¬A, where  A is an atom. An extended 

rule is an expression of the form (1), where A, Bi, and  Cj are propositional literals. An 
extended program is a finite set of extended rules. Gelfond and Lifschitz (1991) also con-

sidered disjunctive rules of the form D1 or . . . or Dl ←B1, . . . , Bn, not C1, . . . , not Cm, 
where Dk, Bi, and  Cj are propositional literals. Yet, the discussion of such rules is outside 
the scope of this note. 
A consistent set of propositional literals is a set that does not contain both A and its 

complement ¬A for any atom A. A  believed literal set X is a consistent set of propositional 
literals. A believed literal set X satisfies an extended rule r of the form (1) if  A belongs 
to X or there exists an i∈ {1, . . . , n} such that Bi ∈X or a j ∈ {1, . . . , m} such that 
Cj ∈X. A believed literal set is a model of a program Π if it satisfies all rules in Π. For 
a rule  r of the form (1) and a believed literal set X, the reduct rX is defined whenever 
there is no literal Cj for j ∈ {1, . . . , m} such that Cj ∈X. If the reduct rX is defined, 

7 This program stems from Example 2.2.1 (Gelfond and Kahl, 2014) and will reappear in Section 4. 
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then it is the extended rule of the form (2). The reduct ΠX of the program Π consists 
of the rules rX for all r ∈ Π, for which the reduct is defined. A believed literal set X is 
an answer set of Π, denoted X |=st Π, if it is a subset minimal model of ΠX . (A subset 
minimal model is such that none of its strict subsets is also a model.) 

Quotes by Gelfond and Lifschitz (1991) on Intuitive Meaning of Extended Programs 

Quote 3: For an extended program, we will define when a set X of ground literals qualifies 
as its answer set . . . .A “well-behaved” extended program has exactly one answer set, and 
this set is consistent. The answer that the program is supposed to return to a ground 
query A is yes, no, or  unknown, depending on whether the answer set contains A, ¬A, 
or neither. The answer no corresponds to the presence of explicit negative information in 
the program. 

Consider, for instance, the extended program Π1 consisting of just one rule: 

¬q← not p. 

Intuitively, this rule means: “q is false, if there is no evidence that p is true.” We will see 
that the only answer set of this program is {¬q}. The answers that the program should 
give to the queries p and q are, respectively unknown and false. 

As another example, compare two programs that do not contain not : 

¬p←, p←¬q and ¬p←, q←¬p 

. . . Thus our semantics is not “contrapositive” with respect to ← and ¬; it assigns different  
meanings to the rules p←¬q and q←¬p. The reason is that it interprets expressions like 
these as inference rules, rather than conditionals. 

This quote echos Quote 2 about basic programs: the notion of a well-behaved program 
resurfaces. In comparison to basic programs, extended programs provide us with a new 
possibility to answer queries against a program — namely, unknown. The following quote 
echos Quote 1 about basic programs: 

The answer sets of Π are, intuitively, possible sets of beliefs that a rational agent may 
hold on the basis of information expressed by the rules of Π. If X is the set of (ground) 
literals that the agent believes to be true, then any rule that has a subgoal not L with 
L∈X will be of no use to him, and he will view any subgoal not L with L ∈X as trivial. 
Thus he will be able to replace the set of rules Π by the simplified set of rules ΠX . If the  
answer set of ΠX coincides with X, then the choice of X as the set of beliefs is “rational”. 

The following quote states the precise relationship between basic and extended 
programs:8 

Quote 4: the semantics of extended programs applied to basic programs turns into the 
stable model semantics. But there is one essential difference: The absence of an atom A 
in a stable model of a basic program represents the fact that A is false; the absence of A 
and ¬A in an answer set of an extended program is taken to mean that nothing is known 
about A. 

In the section on Representing Knowledge Using Classical Negation, Gelfond and 
Lifschitz (1991) say  

8 In the original quote word basic was replaced by general, yet we use the terminology of this paper for 
clarity. 
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The difference between not p and ¬p in a logic program is essential whenever we can-
not assume that the available positive information about p is complete, that is when the 
“closed world assumption” [Reiter, 1978] is not applicable to p. The closed world assump-
tion for a predicate p can be expressed in the language of extended programs by the rule 

¬p ← not p 

When this rule is included in the program, not p and ¬p can be used interchangeably in 
the bodies of other rules. Otherwise, we use not p to express that p is not known to be 
true, and ¬p to express that p is false. 

To summarize, Gelfond and Lifschitz describe informal semantics for extended pro-
grams based on epistemic notions of default and autoepistemic reasoning. We now present 
the informal semantics GLI for extended programs just as we presented GI for basic pro-
grams. This presentation at times (in particular, Example 4) follows the lines by Denecker 
et al. (2019). 
We begin by discussing a crucial difference between GI and GLI. Informal semantics 

GLI views a believed literal set X as an abstraction of a belief state (in fact, of a class 
of belief states that it cannot distinguish) of some agent; GI views a set X of atoms as a 
state of affairs. The change from “sets of atoms” to “sets of literals” and the elimination 
of Assumption (3) are crucial. Recall how an agent in some belief state considers certain 
states of affairs as possible and others as impossible. Within GI, set  X of atoms ends up 
representing a unique possible state of affairs associated with a belief state so that we 
may identify these two concepts. Yet, believed literal set X is the set of all literals L that 
the agent believes in, that is, those that are true in all states of affairs that the agent 
regards as possible. Importantly, it is not the case that a literal L that does not belong 
to X is believed to be false by the agent. Rather, it is not believed by the agent or as 
stated in Quote 4 nothing is known about L to the agent. Denecker et al. (2019) take  
the following interpretation of a statement literal L is not believed by an agent/nothing 
is known about L: literal L is false in some states of affairs the agent holds possible, and 
L must be true in at least one of the agent’s possible states of affairs (unless the agent 
believes the complement of L). This note adopts such an interpretation. We denote the 
class of informal belief states that are abstracted to a given formal believed literal set 
X under an intended interpretation I as GLS

I (X). Table 4 summarizes a view on a believed 
literal set as an abstraction of a belief state of some agent. 

Example 4. 
We may view this example as a continuation of Example 3. Here we consider what would  
seem the same belief set but change the perspective on it from the point of view of 
informal semantics of basic programs to that of extended programs. Consider believed 
literal set (5) under the obvious intended interpretation I for the elements in X. This  X 
is the abstraction of any belief state in which the agent believes that Mary is a student 
and John is a male, and nothing is known about such statements as John is a student 
or Mary is a male. One such belief state is the state B0 in which the agent considers the 
following states of affairs as possible: 

1. John is the only male in the domain of discourse; Mary is the only student. 
2. John and Mary are both male students. 
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Table 4. The Gelfond-Lifschitz (1991) informal semantics of answer sets – sets 
of literals 

A believed literal set X A belief state B ∈ GL SI (X) that has abstraction X

A ∈ X for atom A B has the belief that I(A) is true; i.e., 
I(A) is true in all states of affairs possible in B 

¬A ∈ X for atom A B has the belief that I(A) is false; i.e., 
I(A) is false in all states of affairs possible in B 

A ∈ X for atom A B does not have the belief that I(A) is true; i.e., 
I(A) is false in some state of affairs possible in B 

¬A ∈ X for atom A B does not have the belief that I(A) is false; i.e., 
I(A) is true in some state of affairs possible in B 

Table 5. The Gelfond-Lifschitz (1991) informal semantics for some 
expressions in extended programs 

Φ GL LI (Φ) 

Propositional literal ¬A it is not the case that I(A) 
Expression of the form not C the agent does not know that GL LI (C) 

3. John and Mary are both male; Mary is the only student. 
4. John is the only male; John and Mary are both students. 

Another belief state corresponding to X is the state B1 in which the agent considers the 
states of affairs 2–4 of B0 as possible. Indeed, for each of these belief states, it holds that 
Mary is a student and John is a male in all possible states of affairs of that belief state. 
Thus, each of the literals in X is believed in each of the belief states B0 and B1. On the  
other hand, John is a student precisely in the state of affairs 2 and 4; Mary is a male in 
the states of affairs 2 and 3. Hence, literals ¬student(john) and  ¬male(mary) are  not  
believed in either of the two belief states B0 and B1. 

The component GL LI captures the informal readings of the connectives of the informal 
semantics of extended programs by Gelfond-Lifschitz (1991). We summarize it by (i) 
the entries in rows 1, 3–5 of Table 2, where we replace G L

I by GL L 
I , and (ii) the entries

in Table 5. The definition of GL L 
I suggests that of the two negation operators, symbol 

¬ is classical negation, whereas not is a non-classical negation. It is commonly called 
default negation. The component GL|=st 

I
explains what it means for a believed literal 

set X to be an answer set/stable model of an extended program. Table 6 presents its 
definition. 
We are now ready to comment on the meaning of querying a well-behaved extended 

program – a program that has exactly one answer set. Take X to be the unique answer 
set/believed literal set of a well-behaved extended program. In accordance with Table 6, 
X is the set of literals the agent believes. In accordance with GLI summarized in Table 4, 
set X is an abstraction of a belief state B ∈ GL S 

I (X ), where B belongs to the unique class 
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Table 6. The Gelfond-Lifschitz (1991) informal semantics for the satisfaction 
relation 

|=st GL |=st
I 

X |=st Π Given GL LI (Π), X could be the set of literals the agent believes 

C of belief states associated with X. In turn, all members of C are indistinguishable 
by their abstraction X, which characterizes some properties of possible states of affairs 
associated with all elements in C. Due to the uniqueness of the believed literal set, 
for the case of well-behaved extended programs, we may simplify the reading of the 
unique believed literal set X as the abstraction of all possible states of affairs (from the 
perspective of a considered agent). In other words, what an agent believes coincides with 
factual information about the world. Take an atom A to be a query. The following table 
summarizes the interpretation of possible query responses. 

Query response 

A∈X Yes I(A) is true in all possible states of affairs 
¬A ∈ X No I(A) is false in all possible states of affairs 
A ∈ X and ¬A ∈ X Unknown I(A) is false in some possible state of 

affairs and I(A) is true in some other 
possible state of affairs 

Provided account of informal semantics of extended logic programs echos the inter-
pretation of an answer set of an extended program as a possible “set of beliefs” and 
can be seen as informal semantics for the syntactic constructs that are fundamental in 
ASP-Prolog. 

4 Informal semantics of extended logic programs by GK’14 

Gelfond and Kahl (2014) consider a language of extended logic programs with the 
addition of (i) disjunctive rules and (ii) rules called constraints that have the form 

←B1, . . . , Bn, not C1, . . . , not Cm, (6) 

where Bi, and  Cj are propositional literals (empty head can be identified with ⊥). It is 
due to note that constraints have been in the prominent use of ASP/ASP-Prolog for some 
time. In particular, they are the kinds of rules that populate the test group of generate-
define-test programs mentioned earlier. We come back to this point in the next section. 
To generalize the concept of an answer set to extended programs with constraints, it is 
sufficient to provide a definition of rule satisfaction when the head of the rule is empty: A 
believed literal set X satisfies a constraint (6), if there exists an i∈ {1, . . . , n} such that 
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Bi ∈X or a j ∈ {1, . . . , m} such that Cj ∈X. As before, we do not present definitions 
for programs with disjunctive rules. 

Quote by Gelfond and Kahl (2014) on Intuitive Meaning of Extended Programs with 
Constraints 

Informally, program Π can be viewed as a specification for answer sets — sets of beliefs 
that could be held by a rational reasoner associated with Π. Answer sets are represented 
by collections of ground literals. In forming such sets the reasoner must be guided by the 
following informal principles: 
1. Satisfy the rules of Π. In other words, believe in the head of a rule if you believe in its 
body. 
2. Do not believe in contradictions. 
3. Adhere to the “Rationality Principle” that says, “Believe nothing you are not forced 
to believe.” 
Let’s look at some examples.  . . .  

Example 2.2.1. 

p(b) ← q(a). “Believe p(b) if you believe q(a)” 
q(a). “Believe q(a)” 

Note that the second rule is a fact. Its body is empty. Clearly, any set of literals satisfies 
an empty collection, and hence, according to our first principle, we must believe q(a). 
The same principle applied to the first rule forces us to believe p(b). The resulting set 
S1 =  {q(a), p(b)} is consistent and satisfies the rules of the program. Moreover, we had 
to believe in each of its elements. Therefore, it is an answer set of our program. Now 
consider set S2 =  {q(a), p(b), q(b)}. It is consistent and satisfies the rules of the program, 
but contains the literal q(b), which we were not forced to believe in by our rules. Therefore, 
S2 is not an answer set of the program. 

Example 2.2.2. (Classical Negation) 

¬p(b)←¬q(a). “Believe that p(b) is false if you believe q(a) is false”  
¬q(a). “Believe that q(a) is false”  

There is no difference in reasoning about negative literals. In this case, the only answer 
set of the program is {¬p(b),¬q(a)}. . . .  

Example 2.2.4. (Constraints) 9 

p(a) or p(b). “Believe p(a) or believe p(b)” 
← p(a). “It is impossible to believe  p(a)” 

The first rule forces us to believe p(a) or to believe p(b). The second rule is a constraint 
that prohibits the reasoner’s belief in p(a). Therefore, the first possibility is eliminated, 
which leaves {p(b)} as the only answer set of the program. In this example you can see 
that the constraint limits the sets of beliefs an agent can have, but does not serve to 
derive any new information. Later we show that this is always the case. . . .  

Example 2.2.5. (Default Negation) Sometimes agents can make conclusions based on 
the absence of information. For example, an agent might assume that with the absence 
of evidence to the contrary, a class has not been canceled. . . .. Such reasoning is captured 

9 This example contains a rule with disjunction – the feature of ASP dialects that we avoid discussing 
here. Yet, this is an original example by Gelfond and Kahl (2014) illustrating the role of constraints 
that take a prominent position in this note. 
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Table 7. The Gelfond-Kahl (2014) informal semantics for extended programs 
with constraints 

Φ GK LI (Φ) 

Propositional atom A Believe I(A) 
Propositional literal ¬A Believe that I(A) is false  
Expression of the form not C The agent is not made to GK LI (C)

Expression of the form Φ1, Φ2 GK LI (Φ 1 ) and  GK LI (Φ 2 )

Constraint ← Body it is impossible to GK LI (Body)

Rule Head  ← Body if GK LI ( Body ) then  GK LI ( Head) (in the 
sense of material implication)

Program P = {r1, . . . , rn} All the agent believes is: GK LI (r1) and  
GK LI (r2) and  . . .  and GK LI (rn)

by default negation. Here are two examples. 

p(a) ← not q(a). “If q(a) does not belong to your set of beliefs 
then p(a) must” 

No rule of the program has q(a) in its head, and hence, nothing forces the reasoner, which 
uses the program as its knowledge base, to believe q(a). So, by the rationality principle, 
he does not. To satisfy the only rule of the program, the reasoner must believe p(a); thus, 
{p(a)} is the only answer set of the program. . . .  

We now state the informal semantics hinted by the quoted examples in unifying terms 
of this paper. We denote it by GKI and detail its three components GKS

I , GK L 
I , and  GK|= 

I
. 

To begin with GK SI coincides with GL S 
I . 

Table 7 presents GK LI . In this presentation, we take the liberty to identify an expression 

(proposition)pdoes not belong to your set of beliefs 

used in the examples of the quote listed last with the expression 

the agent is not made to believe (proposition) p. 

We summarize GK|= 
I

by the entries in Table 6, where we replace GL|= 
I

by GK|= 
I . 

5 Informal semantics of GDT theories by D-V’12 

As discussed earlier, Lifschitz (2002) coined a term generate-define-test for the commonly 
used methodology when applying ASP toward solving difficult combinatorial search prob-
lems. Under this methodology, a program typically consists of three parts: the generate, 
define, and  test groups of rules. 
The role of  generate is to generate the search space. In modern dialects of ASP choice 

rules of the form 

{A}←B1, . . . , Bn, not C1, . . . , not Cm, (7) 
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are typically used within this part of the program. Symbols A, Bi, and  Cj in (7) are  
propositional atoms. The define part consists of basic rules (1). This part defines concepts 
required to state necessary conditions in the generate and test parts of the program. 
The test part is usually modeled by constraints of the form (6), where Bi and Cj are 
propositional atoms. 
Denecker et al. (2012) defined the logic ASP-FO, where they took the generate, define, 

and test parts to be the first-class citizens of the formalism. In particular, the ASP-FO 
language consists of three kinds of expressions: G-modules, D-modules, and T-modules. 
The authors then present formal and informal semantics of the formalism that can be used 
in practicing ASP. Here we simplify the language ASP-FO by focusing on its propositional 
counterpart. We call this language GDT. Focusing on the propositional case of ASP-FO 
helps us in highlighting the key contribution by Denecker et al. (2012) – the development 
of objective informal semantics for logic programs used within ASP or generate-define-test 
approach. 
A G-module is a set of choice rules with the same atom in the head; this atom is called 

open. A  D-module is a basic logic program whose atoms appearing in the heads of the 
rules are called defined or output . A  T-module is a constraint. A GDT theory is a set 
of G-modules, D-modules, and T-modules so that no G-modules or D-modules coincide 
on open or defined atoms. To define the semantics for GDT theory, we introduce several 
auxiliary concepts including that of an input answer set (Lierler and Truszczyński, 2011) 
and G-completion. For a basic program Π, we call a set X of atoms an input answer set 
of Π if X is an answer set of a program Π ∪ (X \Heads(Π)), where Heads(Π) denotes 
the set of atoms that occur in the heads of the rules in Π. 
Rules occurring in modules of GDT theory are such that their bodies have the form 

B1, . . . , Bn, not C1, . . . ,  not Cm. (8) 

Given Body of the form (8) by  Bodycl , we denote a classical formula of the form 

B1 ∧ · · · ∧Bn ∧¬C1 ∧ · · · ∧ ¬Cm. 

For a G-module G of the form 

{{A}←Body1, . . . ,  {A}←Bodyn} 
by G-completion, Gcomp(G) we denote the  classical formula  

A →Bodycl 1 ∨ · · · ∨Bodycl n . 

For a GDT theory P composed of G-modules G1, . . . , Gi, D-modules D1, . . . , Dj , 
T-modules 

←Body1, . . . ,  ←Bodyk, 

we say that set X of atoms is an answer set of Π, denoted X |=st Π, if 

• X satisfies formulas Gcomp(G1), . . .  , Gcomp(Gi) (we associate a set X of atoms 
with an interpretation of classical logic that maps propositional atoms in X to 
truth value true and propositional atoms outside of X to truth value false; we then  
understand the concept of satisfaction in usual terms of classical logic.); 
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Table 8. The Denecker et al. (2012) informal semantics for some expressions in GDT 
theories 

Φ DV LI (Φ) 

T-theory/constraint ←Body it is impossible that DV LI ( Body)

G-module G of the form 
{{A}←Body1, . . . ,  {A}←Bodyn} 

if DV LI )( A ) then  DV LI ( Body1 ) or . . .  or 
DV LI (Bodyn) (in the sense of material 
implication) 

Rule Head  ←Body in a D-module if DV LI (Body) then  DV L 
I (Head) (in the sense of 

definitional implication) 

D-module {r1, . . . , rn} with defined 
atom A 

All that is known about A is: DV LI (r1) and  
DV LI (r2) and  . . .  and DV LI (rn)

GDT theory P = {M1, . . . , Mn} DV LI (M1) and  . . .  and DV LI (Mn)

Table 9. The Denecker et al. (2012) informal semantics for the satisfaction relation 

|=st DV |=st
I 

X |=st GDT theory Π Property DV LI (Π) holds in the state DV SI (X) of affairs. 

• X is an input answer set of D-modules D1 . . . Dj ; and  
• X satisfies formulas Bodycl 1 →⊥, . . .  , Bodycl k →⊥. 

We refer the reader to Denecker et al. (2019) to the discussion of Splitting Theorem 
results that often allows us to identify ASP logic programs with GDT theories. 
We now provide the informal semantics for GDT theory Π by Denecker et al., (2012; 

2019). We denote it by DVI and detail its three components DV LI , DV S 
I , and  DV

|=
I . To  

begin with DV SI coincides with GS

I
. We summarize DV LI by (i) the entries in rows 1–3 of 

Table 2, where we replace GL 
I
by DV LI and (ii) the entries in Table 8. Table  9 presents

DV
|= 
I
. Note how an entry in the right column of Table 9 gives us clues on how to simplify 

the parallel entry in the right column of Table 3. We can rewrite it as follows: For basic 
program Π, property  GL

I
(Π) holds in the state GS

I
(X) of affairs. 

Provided account of informal semantics of GDT theories echos the interpretation of 
an answer set of a basic program as a possible “interpretation” and can be seen as an 
informal semantics for the syntactic constructs that are fundamental in ASP practice 
nowadays. 

6 Conclusions and Acknowledgments 

In this note, we reviewed four papers and their accounts on informal semantics of logic 
programs under answer set semantics. We put these accounts into a uniform perspective 
by focusing on three components of each of the considered informal semantics, namely, 
(i) the interpretation of answer sets; (ii) the interpretation of syntactic expressions; and 
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(iii) the interpretation of semantic satisfaction relation. We also discussed the relations 
of the presented informal semantics to two programming paradigms that emerged in the 
field of logic programming after the inception of the concept of a stable model: ASP and 
ASP-Prolog. 
We would like to thank Michael Gelfond, Marc Denecker, Jorge Fandinno, Vladimir 

Lifschitz, Miroslaw Truszczynski, Joost Vennekens for fruitful discussions on the topic of 
this note. Marc Denecker brought my attention to the subject of informal semantics and 
his enthusiasm for the questions pertaining to this subject was contagious. 

The author was partially supported by NSF 1707371. 
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