
University of Nebraska at Omaha University of Nebraska at Omaha

DigitalCommons@UNO DigitalCommons@UNO

Computer Science Faculty Publications Department of Computer Science

10-10-2024

Historical Review of Variants of Informal Semantics for Logic Historical Review of Variants of Informal Semantics for Logic

Programs under Answer Set Semantics: GL’88, GL’91, GK’14, D-Programs under Answer Set Semantics: GL’88, GL’91, GK’14, D-

V’12 V’12

Yuliya Lierler

Follow this and additional works at: https://digitalcommons.unomaha.edu/compscifacpub

 Part of the Computer Sciences Commons

Please take our feedback survey at: https://unomaha.az1.qualtrics.com/jfe/form/

SV_8cchtFmpDyGfBLE

http://www.unomaha.edu/
http://www.unomaha.edu/
https://digitalcommons.unomaha.edu/
https://digitalcommons.unomaha.edu/compscifacpub
https://digitalcommons.unomaha.edu/compsci
https://digitalcommons.unomaha.edu/compscifacpub?utm_source=digitalcommons.unomaha.edu%2Fcompscifacpub%2F106&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/142?utm_source=digitalcommons.unomaha.edu%2Fcompscifacpub%2F106&utm_medium=PDF&utm_campaign=PDFCoverPages
https://unomaha.az1.qualtrics.com/jfe/form/SV_8cchtFmpDyGfBLE
https://unomaha.az1.qualtrics.com/jfe/form/SV_8cchtFmpDyGfBLE
http://library.unomaha.edu/
http://library.unomaha.edu/

TPLP: Page 1–20. c The Author(s), 2024. Published by Cambridge University Press. This is

an Open Access article, distributed under the terms of the Creative Commons Attribution licence

(http://creativecommons.org/licenses/by/4.0/), which permits unrestricted re-use, distribution and

reproduction, provided the original article is properly cited.

doi:10.1017/S1471068424000218

1

Historical Review of Variants of Informal
Semantics for Logic Programs under Answer Set

Semantics: GL’88, GL’91, GK’14, D-V’12

YULIYA LIERLER
University of Nebraska Omaha, USA

(e-mail: ylierler@unomaha.edu)

submitted 10 May 2022; revised 24 October 2023; accepted 11 July 2024

Abstract

This note presents a historical survey of informal semantics that are associated with logic
programming under answer set semantics. We review these in uniform terms and align them
with two paradigms: Answer Set Programming and ASP-Prolog — two prominent Knowledge
Representation and Reasoning Paradigms in Artificial Intelligence.

KEYWORDS: answer set programming, logic programming, informal semantics.

1 Introduction

The transcript of the talk by Donald E. Knuth titled Let’s Not Dumb Down the History
of Computer Science published by ACM (2021) includes the statement:

. . . it would really be desirable if there were hundreds of papers on history written

by computer scientists about computer science.

This quote was inspirational for this technical note devoted to a historical survey of
informal semantics that are associated with logic programming under answer set seman-

tics (in the sequel, we mostly drop under answer set semantics when referring to logic
programming and logic programs).
We focus on four seminal publications and align informal semantics discussed there

using the same style of presentation and propositional programs. We trust that within
such settings key ideas and tangible differences between the distinct views come to the
surface best. The earliest publication of the four dates back to 1988, and the latest
dates back to 2014. It would seem that the subject of informal semantics is only periph-
eral scoring at such a low count of major references. Rather, the word informal makes
this subject rare in the discussions of logic programming. Nevertheless, the 2014 refer-
ence is an introductory chapter titled Informal Semantics of the textbook on Knowledge

https://doi.org/10.1017/S1471068424000218 Published online by Cambridge University Press

https://doi.org/10.1017/S1471068424000218
https://orcid.org/0000-0002-6146-623X
mailto:ylierler@unomaha.edu
http://crossmark.crossref.org/dialog?doi=https://doi.org/10.1017/S1471068424000218&domain=pdf
https://doi.org/10.1017/S1471068424000218
http://creativecommons.org/licenses/by/4.0

Y. Lierler 2

Representation, Reasoning, and Design of Intelligent Agents by Gelfond and Kahl. The
prominent position of this chapter points at the importance of the subject, especially
when we consider passing on the knowledge and practice of logic programming to a broad
audience.
As the presentation unfolds, a story of two views on logic programs will emerge. One

view is via the prism of answer set programming (ASP) and another view is via the prism
of ASP-Prolog. We reserve the term – ASP – to a constraint programming paradigm,
where an ASP practitioner while coding specifications of a considered problem ensures
that the solutions to this problem correspond to answer sets of the coded program
(Brewka et al., 2011). ASP is frequently associated with solving difficult combinatorial
search problems via a programming methodology of generate-define-test and underly-
ing grounding and solving technology. The term – ASP-Prolog – is used to denote a
knowledge representation language geared to model and capture domain knowledge with
the underlying intelligent/rational agent in mind (Gelfond and Kahl, 2014, Section 2).
One may utilize ASP-Prolog as a programming language, but may also simply use it
for describing specifications without thinking about a computational task or solving this
task.
This presentation of the four surveyed publications almost follows their timeline start-

ing with the earliest work. In many places, we present the original quotes from the
discussed sources to avoid misrepresentation of the originals.

2 Formal and informal semantics of basic programs by GL’88

We start by recalling the formal and informal semantics of basic logic programs as they
were introduced by Gelfond and Lifschitz (1988).
A basic rule is an expression of the form

A←B1, . . . , Bn, not C1, . . . , not Cm, (1)

where A, Bi, and Cj are propositional atoms. The atom A is the head of the rule and
the expression B1, . . . , Bn, not C1, . . . , not Cm is its body . A basic (logic) program is a
finite set of such rules. In the sequel, we introduce rules of somewhat different syntactic
structure, yet we agree to call the left-hand side of the rule operator/connective, denoted
by ←, head and the right-hand side body . A rule whose body is empty (n= m= 0) is
called a fact ; in such rules connective ← is often dropped.
For a rule r of the form (1) and a set X of atoms, the reduct rX is defined whenever

there is no atom Cj for j ∈ {1, . . . , m} such that Cj ∈X. If the reduct rX is defined, then
it is the rule

A←B1, . . . , Bn. (2)

The reduct ΠX of the program Π consists of the rules rX for all r ∈Π, for which the
reduct is defined. A set X of atoms satisfies rule (2) if A belongs to X or there exists
i∈ {1, . . . , n} such that Bi ∈X. We say that a set X of atoms is a model of a program
consisting of rules of the form (2) when X satisfies all rules of this program. A set X is

https://doi.org/10.1017/S1471068424000218 Published online by Cambridge University Press

https://doi.org/10.1017/S1471068424000218

Theory and Practice of Logic Programming 3

a stable model/answer set of Π, denoted X |=st Π, if it is a subset minimal model of ΠX ;
A subset minimal model is such that none of its strict subsets is also a model.

Quotes by Gelfond and Lifschitz (1988) on Intuitive Meaning of Basic Programs
(verbatim modulo names for programs and sets of atoms):

Quote 1: The intuitive meaning of stable sets 1 can be described in the same way as
the intuition behind “stable expansions” in autoepistemic logic: they are “possible sets
of beliefs that a rational agent might hold” (Moore, 1985) given Π as his premises. If
X is the set of (ground) atoms that I consider true, then any rule that has a subgoal
not C with C ∈ X is, from my point of view, useless; furthermore, any subgoal not C
with C ∈ X is, from my point of view, trivial. Then I can simplify the premises Π and
replace them by ΠX . If X happens to be precisely the set of atoms that logically follow
from the simplified set of premises ΠX , then I am “rational”.

Later, Gelfond and Lifschitz (1991) say about a basic program the following:

Quote 2: A “well-behaved” program has exactly one stable model, and the answer that
such a program is supposed to return for a ground query A is yes or no, depending on
whether A belongs to the stable model or not. (The existence of several stable models
indicates that the program has several possible interpretations).

The historical roots of stable model semantics for logic programs as a formal tool for
model-theoretic declarative semantics of Prolog (Kowalski, 1988) are apparent in these
quotes. The expectation is to consider a well-behaved program with a single stable model.
Yet, the authors acknowledge the possibility of programs with several stable models
that indicates that the program has several possible interpretations or induces several
possible sets of beliefs. In this paper, it will prove of value to distinguish between the con-
cepts possible interpretations and possible sets of beliefs . In 1988, these terms were used
as synonyms. It is convenient to imagine that the concept of possible interpretation stands
behind what we characterize here as ASP, whereas the concept of possible sets of beliefs
stands behind ASP-Prolog. We now review these frameworks prior to an attempt to for-
malize the presented quotes that will result in what we denote as an original informal
semantics of basic programs.

2.1 ASP and ASP-Prolog

2.1.1 Answer set programming

Marek and Truszczynski (1999) and Niemelä (1999) open a new era for stable model
semantics by proposing the use of logic programs under this semantics as constraint
programming paradigm for modeling combinatorial search problems. This marks the
birth of ASP . Here is what the abstract of the paper by Marek and Truszczynski says:

We demonstrate that inherent features of stable model semantics naturally lead to a logic
programming system that offers an interesting alternative to more traditional logic pro-
gramming 2 . . . The proposed approach is based on the interpretation of program clauses as
constraints. In this setting programs do not describe a single intended model, but a family
of stable models. These stable models encode solutions to the constraint satisfaction prob-
lem described by the program. . . .We argue that the resulting logic programming system

1 Gelfond and Lifschitz (1988) use terms stable set and stable model interchangeably.
2 “More traditional logic programming” refers to Prolog (Kowalski, 1988).

https://doi.org/10.1017/S1471068424000218 Published online by Cambridge University Press

https://doi.org/10.1017/S1471068424000218

Y. Lierler 4

is well-attuned to problems in the class NP, has a well-defined domain of applications,
and an emerging methodology of programming.

In other words, Marek and Truszczynski and Niemelä propose to see logic rules of the
program as specifications of the constraints of a problem at hand. Logic programming
is seen as a provider of a general-purpose modeling language that supports solutions for
search problems. Let us make these claims precise by considering the notion of a search
problem following the lines by Brewka et al. (2011). A search problem P consists of a set
of instances with each instance I assigned a finite set SP (I) of solutions. In the proposal
by Marek and Truszczynski and Niemelä, to solve a search problem P , one constructs a
logic program ΠP that captures problem specifications so that when extended with facts
FI representing an instance I of the problem, the answer sets of ΠP ∪ FI are in one-
to-one correspondence with members in SP (I). In other words, answer sets of ΠP ∪ FI

describe all solutions of problem P for the instance I. Thus, solving a search problem P
is reduced to finding a uniform logic program – that we denoted as ΠP – which encodes
problem’s specifications/constraints.
The logic rules of the program – the key syntactic building blocks of logic program-

ming – become the vehicles for stating constraints/specifications of a problem under
consideration. A program is typically evaluated by means of a grounder-solver pair. A
grounder (Syrjänen and Niemelä, 2001; Gebser et al., 2007; Calimeri et al., 2008) is
responsible for eliminating first-order variables occurring in a logic program in favor of
suitable object constants resulting in a propositional program – atoms of such programs
are called ground . An answer set solver – a system in the spirit of SAT solvers (see,
e.g. (Lierler, 2017)) – is responsible for computing answer sets (solutions) of a program.
Let us draw a parallel with Prolog. In Prolog (Kowalski, 1988), a single intended model
is assigned to a logic program. The SLD-resolution (Kowalski, 1974) is at the heart of
the control mechanism behind Prolog implementations. Together with a logic program, a
Prolog system expects a query (possibly multiple queries). This query is then evaluated
by means of SLD-resolution and a given program against an intended model. Thus, even
though Prolog and ASP share the basic language of logic programs, their programming
methodologies and underlying solving/control technologies are different.3

2.1.2 ASP programming methodology

Eiter et al. (2000) illustrate how logic programs under answer set semantics can be used
to encode problems in a highly declarative fashion, following a “Guess&Check” paradigm.
We restate this paradigm verbatim utilizing the terminology of search problem and its
instance introduced before.

3 A term “constraint logic programming” (Jaffar and Lassez, 1987) may come to reader’s mind. This
concept is vaguely related to the discussion here. It comes from an era predating logic programs under
answer set semantics. Yet, it is also a form of constraint programming, in which logic programming –
understood as Prolog – is extended to include concepts from constraint satisfaction (Dechter, 2003). For
instance, a program may contain numeric constraints in the bodies of its rules. In some way, constraint
logic programming is closer in spirit to what is called constraint ASP (see, e.g., (Lierler, 2014)), where a
logic program under answer set semantics may, for instance, contain numeric constraints in the bodies
of its rules.

https://doi.org/10.1017/S1471068424000218 Published online by Cambridge University Press

https://doi.org/10.1017/S1471068424000218

Theory and Practice of Logic Programming 5

Given a set FI of facts that specify an instance I of some problem P , a Guess&Check
program Π for P consists of the following two parts

Guessing Part: The guessing part G ⊆ Π of the program defines the search
space, in a way such that answer sets of G ∪ FI represent “solution candidates”
for I.

Checking Part: The checking part C ⊆ Π of the program tests whether a solution
candidate is in fact a solution, such that the answer sets G ∪ C ∪ FI represent the solutions
of the problem instance I.

Eiter et al. point at a close relation of the Guess&Check approach with the generate-
and-test paradigm in the AI community (Winston, 1992).

Lifschitz (2002) refines the Guess&Check approach and coins a term generate-define-
test for this emerging methodology in logic programming that splits program rules into
three groups:

• the generate group is responsible for defining a large class of “potential solutions”
• the test group is responsible for stating conditions to weed out potential solutions

that do not satisfy the problem’s specifications; and
• the define group is responsible for defining concepts that are essential in stating the

conditions of generate and test .

In this work, “the idea of ASP is to represent a given computational problem by a program
whose answer sets correspond to solutions, and then use an answer set solver to find a
solution”. The paper illustrates the use of ASP to solve a sample planning problem. Yet,
there are no references to how one would intuitively read, for example, an occurrence of
atom A or expression not A in rules. This is also true of many other instances of papers
describing various applications of ASP.
To the best of our knowledge, Denecker et al. (2012) in addition to earlier reviewed

quotes in this section are the two major accounts for reconciling the use of ASP (not
ASP-Prolog) in practice and intuitive readings of answer sets and rules of programs. The
previous to the last section reviews an account by Denecker et al., while the remainder
of this section predominantly concerns making already reviewed quotes more precise.

2.1.3 ASP-prolog

We reviewed the concept of ASP as championed by Marek and Truszczynski (1999) and
Niemelä (1999). In this view, a search problem at hand is a center piece. An ability to
model a considered search problem by means of a logic program so that the answer sets
of this program are in one-to-one correspondence to the problem’s solutions constitutes
this paradigm.
The textbook by Gelfond and Kahl (2014) focuses on an alternative practice of logic

programming under answer set semantics. It champions a view on answer sets as possible
sets of beliefs. Interpreting answer sets as such implies the presence of an intelligent
agent behind a program. The program itself is seen to represent a knowledge base of this
agent. This corresponds to the view of a logic program as a knowledge representation
and reasoning formalism for the design of intelligent agents . This is largely a position
advocated in the Gelfond and Kahl textbook. We use the term ASP-Prolog to denote
such use of logic programs. It makes sense to reflect on the notion of an intelligent agent
provided in Section 1.1 of the cited textbook:

https://doi.org/10.1017/S1471068424000218 Published online by Cambridge University Press

https://doi.org/10.1017/S1471068424000218

Y. Lierler 6

In this book when we talk about an agent, we mean an entity that observes and acts on
an environment and directs its activity toward achieving goals. Note that this definition
allows us to view the simplest programs as agents. A program usually gets information
from the outside world, performs an appointed reasoning task, and acts on the outside
world, say by printing the output, making the next chess move, starting a car, or giving
advice. If the reasoning tasks that an agent performs are complex and lead to nontrivial
behavior, we call it intelligent.

Brief discussions by Gelfond and Lifschitz (1991) and Section 2.2.1 of the mentioned
textbook are major two accounts that speak of intuitive readings of answer sets and
rules of programs when ASP-Prolog is used in practice. Sections 3 and 4 of this note are
devoted to these accounts.

2.2 “Formalizing” quotes 1 and 2 or informal semantics of basic programs
by GL’88

Before we attempt to make the claims of Quote 1 by Gelfond and Lifschitz (1988) precise
it is due to discuss three interrelated and yet different concepts and how we understand
them within this note:

• a state of affairs,
• a belief state, and
• a set of beliefs/belief set.

The following example is our key vehicle in this discussion.

Example 1.
Consider a toy world with four possible states of affairs that fully describe it:

1 Mary is a student 2 Mary is a student
John is a student John is not a student

3 Mary is not a student 4 Mary is not a student
John is a student John is not a student

A belief state is associated with/represented by a conglomeration of states of affairs.
In other words, a belief state assumes that multiple states of affairs can be deemed as
possible by an agent. Thus, a belief state is often associated with an agent who has partial
knowledge of the world.
Returning to our toy world, the powerset of the listed four states of affairs forms the

set of belief states for an agent operating in this world. For example, if an agent assumes
a belief state consisting of states 1, 2, 3, 4 of affairs – let us denote it as bs1–, we may
conclude that this agent deems everything possible (or knows nothing factual about the
world). If an agent assumes a belief state consisting of states 1 and 2 of affairs – let us
denote it as bs2–, we may conclude that this agent is aware of the fact that Mary is a
student, whereas John may or may not be a student. In turn, if an agent assumes a belief
state consisting of a single state 1 – let us denote it as bs3–, then we may conclude that
this agent is aware of the two facts: Mary is a student and John is a student.

https://doi.org/10.1017/S1471068424000218 Published online by Cambridge University Press

https://doi.org/10.1017/S1471068424000218

Theory and Practice of Logic Programming 7

We now connect the concepts of a belief set (or, a set of beliefs) and a belief state.
The former is an abstraction of the latter. In other words, we understand belief sets as
entities that capture/encode belief states. This encoding may lose some information so
that multiple belief states may be “consistent” with a single belief set. For instance, in
the context of our toy world, a belief set consisting of a single proposition Mary is a
student is consistent with any belief state that contains either state 1 of affairs or state
2 of affairs. Note how this belief set cannot distinguish between these different belief
states. Indeed, a belief set consisting of a single proposition Mary is a student cannot
distinguish between belief states bs1, bs2, and bs3.

We are now ready to return to the claims of Quote 1 by Gelfond and Lifschitz (1988)
and attempt to make these precise with the allowance that programs with multiple answer
sets that correspond to possible sets of beliefs/possible interpretations are as valid pro-
grams as so-called well-behaved programs. In other words, per Quote 1 each answer set
represents a set of beliefs of a rational agent (or I); thus this agent may have multiple
sets of beliefs. In the sequel, we drop the reference to “or I” and use “an agent” in the
discourse.4 In the case of basic programs, we take an understanding that

The absence of an atom A in a stable model represents the fact that A is false. (3)

This understanding is consistent with the view by Gelfond and Lifschitz, which is
reiterated in Quote 4 in Section 3.
Claim (3) on the interpretation of answer sets has profound ramifications. Namely,

this claim makes the three concepts — a state of affairs, a belief state, and a set of
beliefs/belief set — exemplified earlier by highlighting their differences collapse into a
single entity. Let us use an example to illustrate this point.

Example 2.
Recall the toy world from Example 1. Let us take atoms student(mary) and
student(john) to represent propositions Mary is a student and John is a student , respec-
tively. If our signature of discourse is composed only of these two atoms, we can construct
four distinct subsets of atoms within this signature, namely,

{student(mary), student(john)}; {student(mary)}; {student(john)}; ∅. (4)

Each of these sets of atoms can be identified in a natural manner with one of the four
states of affairs that capture our toy world from Example 15; below we rewrite the table
presented in that example by substituting propositions depicting distinct states of affairs
with the respective sets of atoms:

4 In personal communication with Michael Gelfond on the 27th of April, 2023, he confirmed that “I” in
Quote 1 was meant to refer to a rational agent invoked in the same quote.

5 It is common in propositional logic to identify sets of atoms over particular signature with inter-
pretations: namely, an atom that is part of the set is considered mapped to true in the respective
interpretation, whereas an atom not in the considered set is mapped to false.

https://doi.org/10.1017/S1471068424000218 Published online by Cambridge University Press

https://doi.org/10.1017/S1471068424000218

Y. Lierler 8

{student(mary), 2 {student(mary)}
student(john)}

3 4 ∅
{student(john)}

Alternatively, let us take sets listed in (4) to represent distinct belief states under the
assumption that any atom not listed explicitly in a set under consideration is considered
to be false. Thus, the belief state {student(mary), student(john)} represents a belief
state consisting of a single state of affairs denoted by 1 and represented by the same
set of atoms as illustrated above; belief state {student(mary)} represents a belief state
consisting of a single state of affairs denoted by 2 and represented by the same set of
atoms. The same observation holds for the remaining two belief states depicted by sets
of atoms in (4). Thus, given the considered settings we may identify belief states and
states of affairs. The same argument applies to the concept of a belief set.

We denote the informal semantics for basic programs as GI, where I stands for intended
interpretations of the program’s propositional atoms. It is typical in the informal seman-

tics for classical logic expressions that each atom A has an intended interpretation, I(A),
which is represented linguistically as a noun phrase about the application domain. The
informal semantics GI consists of three components:

• the interpretation of structures – here, answer sets – denoted by GIS,
• the interpretation of syntactical expressions in a program, denoted by GL

I , and

• the interpretation of the semantic relation – here, satisfaction – denoted by G|=
I
.

The first component determines a function from an answer set/a set of beliefs encoded
by a set X of atoms to a belief state of some agent (or, a state of affairs). The second
component determines the informal reading of syntactical expressions in a program. The
third component determines the informal reading of the satisfaction relation.

In the view of informal semantics GI, an answer set encodes a belief state of some
agent (or, a state of affairs – as we have seen earlier, these concepts are indistinguishable
under claim (3)). To reiterate, An agent in some belief state – represented by a set X of
atoms – considers the set of all atoms in X to be the case (believes in them), whereas any
atom that does not belong to X is believed to be false by the agent, that is is not the case.
Thus, we may explain the meaning of a program in terms of what atoms an agent with
its knowledge of the application domain encoded as the program believes as true and
what atoms an agent believes as false. Generally, an agent in some belief state considers
certain states of affairs as possible and others as impossible. For basic programs, set X of
atoms defines a unique state of affairs that the agent regards as possible in a belief state
that X represents. Thus, we may identify any belief state captured by X with this state
of affairs. We denote a state of affairs captured by a set X of atoms under an intended
interpretation I as GS

I
(X). Table 1 summarizes a role of an answer set as a state of affairs

in the considered view.

https://doi.org/10.1017/S1471068424000218 Published online by Cambridge University Press

https://doi.org/10.1017/S1471068424000218

Theory and Practice of Logic Programming 9

Table 1. The Gelfond-Lifschitz (1988) informal semantics of
answer sets – sets of atoms

A set X of atoms A state G SI (X) of affairs

A ∈ X for atom A I(A) is true in state G SI (X) of affairs
A ∈ X A ∈ X for atom A I(A) is false in state G SI (X) of affairs

Table 2. The Gelfond-Lifschitz (1988) informal semantics for basic logic programs

Φ G LI (Φ)

1. Propositional atom A I(A)
2. Expression of the form not C it is not the case that I(C)
3. Expression of the form Φ1, Φ2 G LI (Φ1) and G LI (Φ2)

4. Rule Head ← Body if G LI (Body) then G LI (Head) (in the sense
of material implication)

5. Program P = {r1, . . . , rn} All the agent knows is: G LI (r1) and G LI (r2)
and . . . and G LI (rn)

Example 3.
Consider a set of beliefs encoded as a set

X = {student(mary), male(john)} (5)

of atoms under the obvious intended interpretation I for the propositional atoms in X.
This X represents a state of affairs in which the agent considers that both statements
Mary is a student and John is a male are true. At the same time, the agent considers
any other statements, including John is a student and Mary is a male, false. The G S

I (X)
component of informal semantics of basic programs provides us with this understanding
of set X.

Table 2 shows the Gelfond-Lifschitz (1988) informal semantics G L
I of syntactic elements

of programs. The term material implication used within the table assumes the confor-
mance to the usual truth table of implication and thus a conditional statement can be
identified with a disjunction in which the antecedent of the conditional statement is
negated. As it is clear from this table, under G L

I , extended logic programs have both clas-
sical and non-classical connectives.6 On the one hand, the comma connective (appearing
in the body of rules) is classical conjunction and the rule connective ← is the classical
implication. Note that such reading of the comma connective and the rule connective
allows us to identify the empty body of the rule with – a propositional constant whose
value is always interpreted as true – and a rule with an empty body with a simple propo-
sitional statement that contains only head of this rule. Not surprisingly such rules are
typically denoted as facts. On the other hand, the implicit composition operator (con-
structing a program out of individual rules) is non-classical because it performs a closure
operation (resulting in the implementation of closed world assumption – presumption

6 We understand connectives reminiscent of the ones appearing in classical propositional logic as classical.

https://doi.org/10.1017/S1471068424000218 Published online by Cambridge University Press

https://doi.org/10.1017/S1471068424000218

Y. Lierler 10

Table 3. The Gelfond-Lifschitz (1988) informal semantics for the satisfaction
relation

|=st G |=st
I

X |=st Π Given G LI (Π), X could be a state of affairs inferred from this knowledge so
that any proposition in X is the case whereas any propositionnot in X is
not the case

that what is not currently known to be true is false): only what is explicitly stated is
known. To summarize, Table 2 is devoted to the interpretation of syntactical expressions
in a program allowing us to “translate” its syntactic elements and the program itself into
natural language expressions. For instance, take I to be an identity function and consider
a simple program 7

p(b) ← q(a). “If q(a) then p(b)”
q(a). “q(a)”

“The agents knows only the statements presented above”

The annotations to the right are warranted by G L
I presented in Table 2. Table 3 presents

the final component G|=st

I of the GI informal semantics. In the context of the simple
program used to illustrate the findings presented in Table 2, the findings of Table 3
suggest that the only answer set of this program {p(b), q(a)} is a state of affairs inferred
from the knowledge encoded in this program so that both p(b) and q(a) are the case and
no other proposition is the case.

3 Formal and informal semantics of extended programs by GL’91

Here, we recall the formal and informal semantics of extended logic programs by Gelfond
and Lifschitz (1991). An alternative view of the informal semantics for extended logic
programs is provided in (Gelfond and Kahl, 2014, Section 2.2.1) reviewed next.
A literal is either an atom A or an expression ¬A, where A is an atom. An extended

rule is an expression of the form (1), where A, Bi, and Cj are propositional literals. An
extended program is a finite set of extended rules. Gelfond and Lifschitz (1991) also con-

sidered disjunctive rules of the form D1 or . . . or Dl ←B1, . . . , Bn, not C1, . . . , not Cm,
where Dk, Bi, and Cj are propositional literals. Yet, the discussion of such rules is outside
the scope of this note.
A consistent set of propositional literals is a set that does not contain both A and its

complement ¬A for any atom A. A believed literal set X is a consistent set of propositional
literals. A believed literal set X satisfies an extended rule r of the form (1) if A belongs
to X or there exists an i∈ {1, . . . , n} such that Bi ∈X or a j ∈ {1, . . . , m} such that
Cj ∈X. A believed literal set is a model of a program Π if it satisfies all rules in Π. For
a rule r of the form (1) and a believed literal set X, the reduct rX is defined whenever
there is no literal Cj for j ∈ {1, . . . , m} such that Cj ∈X. If the reduct rX is defined,

7 This program stems from Example 2.2.1 (Gelfond and Kahl, 2014) and will reappear in Section 4.

https://doi.org/10.1017/S1471068424000218 Published online by Cambridge University Press

https://doi.org/10.1017/S1471068424000218

Theory and Practice of Logic Programming 11

then it is the extended rule of the form (2). The reduct ΠX of the program Π consists
of the rules rX for all r ∈ Π, for which the reduct is defined. A believed literal set X is
an answer set of Π, denoted X |=st Π, if it is a subset minimal model of ΠX . (A subset
minimal model is such that none of its strict subsets is also a model.)

Quotes by Gelfond and Lifschitz (1991) on Intuitive Meaning of Extended Programs

Quote 3: For an extended program, we will define when a set X of ground literals qualifies
as its answer setA “well-behaved” extended program has exactly one answer set, and
this set is consistent. The answer that the program is supposed to return to a ground
query A is yes, no, or unknown, depending on whether the answer set contains A, ¬A,
or neither. The answer no corresponds to the presence of explicit negative information in
the program.

Consider, for instance, the extended program Π1 consisting of just one rule:

¬q← not p.

Intuitively, this rule means: “q is false, if there is no evidence that p is true.” We will see
that the only answer set of this program is {¬q}. The answers that the program should
give to the queries p and q are, respectively unknown and false.

As another example, compare two programs that do not contain not :

¬p←, p←¬q and ¬p←, q←¬p

. . . Thus our semantics is not “contrapositive” with respect to ← and ¬; it assigns different
meanings to the rules p←¬q and q←¬p. The reason is that it interprets expressions like
these as inference rules, rather than conditionals.

This quote echos Quote 2 about basic programs: the notion of a well-behaved program
resurfaces. In comparison to basic programs, extended programs provide us with a new
possibility to answer queries against a program — namely, unknown. The following quote
echos Quote 1 about basic programs:

The answer sets of Π are, intuitively, possible sets of beliefs that a rational agent may
hold on the basis of information expressed by the rules of Π. If X is the set of (ground)
literals that the agent believes to be true, then any rule that has a subgoal not L with
L∈X will be of no use to him, and he will view any subgoal not L with L ∈X as trivial.
Thus he will be able to replace the set of rules Π by the simplified set of rules ΠX . If the
answer set of ΠX coincides with X, then the choice of X as the set of beliefs is “rational”.

The following quote states the precise relationship between basic and extended
programs:8

Quote 4: the semantics of extended programs applied to basic programs turns into the
stable model semantics. But there is one essential difference: The absence of an atom A
in a stable model of a basic program represents the fact that A is false; the absence of A
and ¬A in an answer set of an extended program is taken to mean that nothing is known
about A.

In the section on Representing Knowledge Using Classical Negation, Gelfond and
Lifschitz (1991) say

8 In the original quote word basic was replaced by general, yet we use the terminology of this paper for
clarity.

https://doi.org/10.1017/S1471068424000218 Published online by Cambridge University Press

https://doi.org/10.1017/S1471068424000218

Y. Lierler 12

The difference between not p and ¬p in a logic program is essential whenever we can-
not assume that the available positive information about p is complete, that is when the
“closed world assumption” [Reiter, 1978] is not applicable to p. The closed world assump-
tion for a predicate p can be expressed in the language of extended programs by the rule

¬p ← not p

When this rule is included in the program, not p and ¬p can be used interchangeably in
the bodies of other rules. Otherwise, we use not p to express that p is not known to be
true, and ¬p to express that p is false.

To summarize, Gelfond and Lifschitz describe informal semantics for extended pro-
grams based on epistemic notions of default and autoepistemic reasoning. We now present
the informal semantics GLI for extended programs just as we presented GI for basic pro-
grams. This presentation at times (in particular, Example 4) follows the lines by Denecker
et al. (2019).
We begin by discussing a crucial difference between GI and GLI. Informal semantics

GLI views a believed literal set X as an abstraction of a belief state (in fact, of a class
of belief states that it cannot distinguish) of some agent; GI views a set X of atoms as a
state of affairs. The change from “sets of atoms” to “sets of literals” and the elimination
of Assumption (3) are crucial. Recall how an agent in some belief state considers certain
states of affairs as possible and others as impossible. Within GI, set X of atoms ends up
representing a unique possible state of affairs associated with a belief state so that we
may identify these two concepts. Yet, believed literal set X is the set of all literals L that
the agent believes in, that is, those that are true in all states of affairs that the agent
regards as possible. Importantly, it is not the case that a literal L that does not belong
to X is believed to be false by the agent. Rather, it is not believed by the agent or as
stated in Quote 4 nothing is known about L to the agent. Denecker et al. (2019) take
the following interpretation of a statement literal L is not believed by an agent/nothing
is known about L: literal L is false in some states of affairs the agent holds possible, and
L must be true in at least one of the agent’s possible states of affairs (unless the agent
believes the complement of L). This note adopts such an interpretation. We denote the
class of informal belief states that are abstracted to a given formal believed literal set
X under an intended interpretation I as GLS

I (X). Table 4 summarizes a view on a believed
literal set as an abstraction of a belief state of some agent.

Example 4.
We may view this example as a continuation of Example 3. Here we consider what would
seem the same belief set but change the perspective on it from the point of view of
informal semantics of basic programs to that of extended programs. Consider believed
literal set (5) under the obvious intended interpretation I for the elements in X. This X
is the abstraction of any belief state in which the agent believes that Mary is a student
and John is a male, and nothing is known about such statements as John is a student
or Mary is a male. One such belief state is the state B0 in which the agent considers the
following states of affairs as possible:

1. John is the only male in the domain of discourse; Mary is the only student.
2. John and Mary are both male students.

https://doi.org/10.1017/S1471068424000218 Published online by Cambridge University Press

https://doi.org/10.1017/S1471068424000218

Theory and Practice of Logic Programming 13

Table 4. The Gelfond-Lifschitz (1991) informal semantics of answer sets – sets
of literals

A believed literal set X A belief state B ∈ GL SI (X) that has abstraction X

A ∈ X for atom A B has the belief that I(A) is true; i.e.,
I(A) is true in all states of affairs possible in B

¬A ∈ X for atom A B has the belief that I(A) is false; i.e.,
I(A) is false in all states of affairs possible in B

A ∈ X for atom A B does not have the belief that I(A) is true; i.e.,
I(A) is false in some state of affairs possible in B

¬A ∈ X for atom A B does not have the belief that I(A) is false; i.e.,
I(A) is true in some state of affairs possible in B

Table 5. The Gelfond-Lifschitz (1991) informal semantics for some
expressions in extended programs

Φ GL LI (Φ)

Propositional literal ¬A it is not the case that I(A)
Expression of the form not C the agent does not know that GL LI (C)

3. John and Mary are both male; Mary is the only student.
4. John is the only male; John and Mary are both students.

Another belief state corresponding to X is the state B1 in which the agent considers the
states of affairs 2–4 of B0 as possible. Indeed, for each of these belief states, it holds that
Mary is a student and John is a male in all possible states of affairs of that belief state.
Thus, each of the literals in X is believed in each of the belief states B0 and B1. On the
other hand, John is a student precisely in the state of affairs 2 and 4; Mary is a male in
the states of affairs 2 and 3. Hence, literals ¬student(john) and ¬male(mary) are not
believed in either of the two belief states B0 and B1.

The component GL LI captures the informal readings of the connectives of the informal
semantics of extended programs by Gelfond-Lifschitz (1991). We summarize it by (i)
the entries in rows 1, 3–5 of Table 2, where we replace G L

I by GL L
I , and (ii) the entries

in Table 5. The definition of GL L
I suggests that of the two negation operators, symbol

¬ is classical negation, whereas not is a non-classical negation. It is commonly called
default negation. The component GL|=st

I
explains what it means for a believed literal

set X to be an answer set/stable model of an extended program. Table 6 presents its
definition.
We are now ready to comment on the meaning of querying a well-behaved extended

program – a program that has exactly one answer set. Take X to be the unique answer
set/believed literal set of a well-behaved extended program. In accordance with Table 6,
X is the set of literals the agent believes. In accordance with GLI summarized in Table 4,
set X is an abstraction of a belief state B ∈ GL S

I (X), where B belongs to the unique class

https://doi.org/10.1017/S1471068424000218 Published online by Cambridge University Press

https://doi.org/10.1017/S1471068424000218

Y. Lierler 14

Table 6. The Gelfond-Lifschitz (1991) informal semantics for the satisfaction
relation

|=st GL |=st
I

X |=st Π Given GL LI (Π), X could be the set of literals the agent believes

C of belief states associated with X. In turn, all members of C are indistinguishable
by their abstraction X, which characterizes some properties of possible states of affairs
associated with all elements in C. Due to the uniqueness of the believed literal set,
for the case of well-behaved extended programs, we may simplify the reading of the
unique believed literal set X as the abstraction of all possible states of affairs (from the
perspective of a considered agent). In other words, what an agent believes coincides with
factual information about the world. Take an atom A to be a query. The following table
summarizes the interpretation of possible query responses.

Query response

A∈X Yes I(A) is true in all possible states of affairs
¬A ∈ X No I(A) is false in all possible states of affairs
A ∈ X and ¬A ∈ X Unknown I(A) is false in some possible state of

affairs and I(A) is true in some other
possible state of affairs

Provided account of informal semantics of extended logic programs echos the inter-
pretation of an answer set of an extended program as a possible “set of beliefs” and
can be seen as informal semantics for the syntactic constructs that are fundamental in
ASP-Prolog.

4 Informal semantics of extended logic programs by GK’14

Gelfond and Kahl (2014) consider a language of extended logic programs with the
addition of (i) disjunctive rules and (ii) rules called constraints that have the form

←B1, . . . , Bn, not C1, . . . , not Cm, (6)

where Bi, and Cj are propositional literals (empty head can be identified with ⊥). It is
due to note that constraints have been in the prominent use of ASP/ASP-Prolog for some
time. In particular, they are the kinds of rules that populate the test group of generate-
define-test programs mentioned earlier. We come back to this point in the next section.
To generalize the concept of an answer set to extended programs with constraints, it is
sufficient to provide a definition of rule satisfaction when the head of the rule is empty: A
believed literal set X satisfies a constraint (6), if there exists an i∈ {1, . . . , n} such that

https://doi.org/10.1017/S1471068424000218 Published online by Cambridge University Press

https://doi.org/10.1017/S1471068424000218

Theory and Practice of Logic Programming 15

Bi ∈X or a j ∈ {1, . . . , m} such that Cj ∈X. As before, we do not present definitions
for programs with disjunctive rules.

Quote by Gelfond and Kahl (2014) on Intuitive Meaning of Extended Programs with
Constraints

Informally, program Π can be viewed as a specification for answer sets — sets of beliefs
that could be held by a rational reasoner associated with Π. Answer sets are represented
by collections of ground literals. In forming such sets the reasoner must be guided by the
following informal principles:
1. Satisfy the rules of Π. In other words, believe in the head of a rule if you believe in its
body.
2. Do not believe in contradictions.
3. Adhere to the “Rationality Principle” that says, “Believe nothing you are not forced
to believe.”
Let’s look at some examples. . . .

Example 2.2.1.

p(b) ← q(a). “Believe p(b) if you believe q(a)”
q(a). “Believe q(a)”

Note that the second rule is a fact. Its body is empty. Clearly, any set of literals satisfies
an empty collection, and hence, according to our first principle, we must believe q(a).
The same principle applied to the first rule forces us to believe p(b). The resulting set
S1 = {q(a), p(b)} is consistent and satisfies the rules of the program. Moreover, we had
to believe in each of its elements. Therefore, it is an answer set of our program. Now
consider set S2 = {q(a), p(b), q(b)}. It is consistent and satisfies the rules of the program,
but contains the literal q(b), which we were not forced to believe in by our rules. Therefore,
S2 is not an answer set of the program.

Example 2.2.2. (Classical Negation)

¬p(b)←¬q(a). “Believe that p(b) is false if you believe q(a) is false”
¬q(a). “Believe that q(a) is false”

There is no difference in reasoning about negative literals. In this case, the only answer
set of the program is {¬p(b),¬q(a)}. . . .

Example 2.2.4. (Constraints) 9

p(a) or p(b). “Believe p(a) or believe p(b)”
← p(a). “It is impossible to believe p(a)”

The first rule forces us to believe p(a) or to believe p(b). The second rule is a constraint
that prohibits the reasoner’s belief in p(a). Therefore, the first possibility is eliminated,
which leaves {p(b)} as the only answer set of the program. In this example you can see
that the constraint limits the sets of beliefs an agent can have, but does not serve to
derive any new information. Later we show that this is always the case. . . .

Example 2.2.5. (Default Negation) Sometimes agents can make conclusions based on
the absence of information. For example, an agent might assume that with the absence
of evidence to the contrary, a class has not been canceled. Such reasoning is captured

9 This example contains a rule with disjunction – the feature of ASP dialects that we avoid discussing
here. Yet, this is an original example by Gelfond and Kahl (2014) illustrating the role of constraints
that take a prominent position in this note.

https://doi.org/10.1017/S1471068424000218 Published online by Cambridge University Press

https://doi.org/10.1017/S1471068424000218

Y. Lierler 16

Table 7. The Gelfond-Kahl (2014) informal semantics for extended programs
with constraints

Φ GK LI (Φ)

Propositional atom A Believe I(A)
Propositional literal ¬A Believe that I(A) is false
Expression of the form not C The agent is not made to GK LI (C)

Expression of the form Φ1, Φ2 GK LI (Φ 1) and GK LI (Φ 2)

Constraint ← Body it is impossible to GK LI (Body)

Rule Head ← Body if GK LI (Body) then GK LI (Head) (in the
sense of material implication)

Program P = {r1, . . . , rn} All the agent believes is: GK LI (r1) and
GK LI (r2) and . . . and GK LI (rn)

by default negation. Here are two examples.

p(a) ← not q(a). “If q(a) does not belong to your set of beliefs
then p(a) must”

No rule of the program has q(a) in its head, and hence, nothing forces the reasoner, which
uses the program as its knowledge base, to believe q(a). So, by the rationality principle,
he does not. To satisfy the only rule of the program, the reasoner must believe p(a); thus,
{p(a)} is the only answer set of the program. . . .

We now state the informal semantics hinted by the quoted examples in unifying terms
of this paper. We denote it by GKI and detail its three components GKS

I , GK L
I , and GK|=

I
.

To begin with GK SI coincides with GL S
I .

Table 7 presents GK LI . In this presentation, we take the liberty to identify an expression

(proposition)pdoes not belong to your set of beliefs

used in the examples of the quote listed last with the expression

the agent is not made to believe (proposition) p.

We summarize GK|=
I

by the entries in Table 6, where we replace GL|=
I

by GK|=
I .

5 Informal semantics of GDT theories by D-V’12

As discussed earlier, Lifschitz (2002) coined a term generate-define-test for the commonly
used methodology when applying ASP toward solving difficult combinatorial search prob-
lems. Under this methodology, a program typically consists of three parts: the generate,
define, and test groups of rules.
The role of generate is to generate the search space. In modern dialects of ASP choice

rules of the form

{A}←B1, . . . , Bn, not C1, . . . , not Cm, (7)

https://doi.org/10.1017/S1471068424000218 Published online by Cambridge University Press

https://doi.org/10.1017/S1471068424000218

Theory and Practice of Logic Programming 17

are typically used within this part of the program. Symbols A, Bi, and Cj in (7) are
propositional atoms. The define part consists of basic rules (1). This part defines concepts
required to state necessary conditions in the generate and test parts of the program.
The test part is usually modeled by constraints of the form (6), where Bi and Cj are
propositional atoms.
Denecker et al. (2012) defined the logic ASP-FO, where they took the generate, define,

and test parts to be the first-class citizens of the formalism. In particular, the ASP-FO
language consists of three kinds of expressions: G-modules, D-modules, and T-modules.
The authors then present formal and informal semantics of the formalism that can be used
in practicing ASP. Here we simplify the language ASP-FO by focusing on its propositional
counterpart. We call this language GDT. Focusing on the propositional case of ASP-FO
helps us in highlighting the key contribution by Denecker et al. (2012) – the development
of objective informal semantics for logic programs used within ASP or generate-define-test
approach.
A G-module is a set of choice rules with the same atom in the head; this atom is called

open. A D-module is a basic logic program whose atoms appearing in the heads of the
rules are called defined or output . A T-module is a constraint. A GDT theory is a set
of G-modules, D-modules, and T-modules so that no G-modules or D-modules coincide
on open or defined atoms. To define the semantics for GDT theory, we introduce several
auxiliary concepts including that of an input answer set (Lierler and Truszczyński, 2011)
and G-completion. For a basic program Π, we call a set X of atoms an input answer set
of Π if X is an answer set of a program Π ∪ (X \Heads(Π)), where Heads(Π) denotes
the set of atoms that occur in the heads of the rules in Π.
Rules occurring in modules of GDT theory are such that their bodies have the form

B1, . . . , Bn, not C1, . . . , not Cm. (8)

Given Body of the form (8) by Bodycl , we denote a classical formula of the form

B1 ∧ · · · ∧Bn ∧¬C1 ∧ · · · ∧ ¬Cm.

For a G-module G of the form

{{A}←Body1, . . . , {A}←Bodyn}
by G-completion, Gcomp(G) we denote the classical formula

A →Bodycl 1 ∨ · · · ∨Bodycl n .

For a GDT theory P composed of G-modules G1, . . . , Gi, D-modules D1, . . . , Dj ,
T-modules

←Body1, . . . , ←Bodyk,

we say that set X of atoms is an answer set of Π, denoted X |=st Π, if

• X satisfies formulas Gcomp(G1), . . . , Gcomp(Gi) (we associate a set X of atoms
with an interpretation of classical logic that maps propositional atoms in X to
truth value true and propositional atoms outside of X to truth value false; we then
understand the concept of satisfaction in usual terms of classical logic.);

https://doi.org/10.1017/S1471068424000218 Published online by Cambridge University Press

https://doi.org/10.1017/S1471068424000218

Y. Lierler 18

Table 8. The Denecker et al. (2012) informal semantics for some expressions in GDT
theories

Φ DV LI (Φ)

T-theory/constraint ←Body it is impossible that DV LI (Body)

G-module G of the form
{{A}←Body1, . . . , {A}←Bodyn}

if DV LI)(A) then DV LI (Body1) or . . . or
DV LI (Bodyn) (in the sense of material
implication)

Rule Head ←Body in a D-module if DV LI (Body) then DV L
I (Head) (in the sense of

definitional implication)

D-module {r1, . . . , rn} with defined
atom A

All that is known about A is: DV LI (r1) and
DV LI (r2) and . . . and DV LI (rn)

GDT theory P = {M1, . . . , Mn} DV LI (M1) and . . . and DV LI (Mn)

Table 9. The Denecker et al. (2012) informal semantics for the satisfaction relation

|=st DV |=st
I

X |=st GDT theory Π Property DV LI (Π) holds in the state DV SI (X) of affairs.

• X is an input answer set of D-modules D1 . . . Dj ; and
• X satisfies formulas Bodycl 1 →⊥, . . . , Bodycl k →⊥.

We refer the reader to Denecker et al. (2019) to the discussion of Splitting Theorem
results that often allows us to identify ASP logic programs with GDT theories.
We now provide the informal semantics for GDT theory Π by Denecker et al., (2012;

2019). We denote it by DVI and detail its three components DV LI , DV S
I , and DV

|=
I . To

begin with DV SI coincides with GS

I
. We summarize DV LI by (i) the entries in rows 1–3 of

Table 2, where we replace GL
I
by DV LI and (ii) the entries in Table 8. Table 9 presents

DV
|=
I
. Note how an entry in the right column of Table 9 gives us clues on how to simplify

the parallel entry in the right column of Table 3. We can rewrite it as follows: For basic
program Π, property GL

I
(Π) holds in the state GS

I
(X) of affairs.

Provided account of informal semantics of GDT theories echos the interpretation of
an answer set of a basic program as a possible “interpretation” and can be seen as an
informal semantics for the syntactic constructs that are fundamental in ASP practice
nowadays.

6 Conclusions and Acknowledgments

In this note, we reviewed four papers and their accounts on informal semantics of logic
programs under answer set semantics. We put these accounts into a uniform perspective
by focusing on three components of each of the considered informal semantics, namely,
(i) the interpretation of answer sets; (ii) the interpretation of syntactic expressions; and

https://doi.org/10.1017/S1471068424000218 Published online by Cambridge University Press

https://doi.org/10.1017/S1471068424000218

Theory and Practice of Logic Programming 19

(iii) the interpretation of semantic satisfaction relation. We also discussed the relations
of the presented informal semantics to two programming paradigms that emerged in the
field of logic programming after the inception of the concept of a stable model: ASP and
ASP-Prolog.
We would like to thank Michael Gelfond, Marc Denecker, Jorge Fandinno, Vladimir

Lifschitz, Miroslaw Truszczynski, Joost Vennekens for fruitful discussions on the topic of
this note. Marc Denecker brought my attention to the subject of informal semantics and
his enthusiasm for the questions pertaining to this subject was contagious.

The author was partially supported by NSF 1707371.

References

Brewka, G., Eiter, T. and Truszczynski, M. 2011. Answer set programming at a glance.
Communications of the ACM 54, 12, 92–103.

Calimeri, F., Cozza, S., Ianni, G. and Leone, N. 2008. Computable functions in ASP: Theory
and implementation. In Proc. of International Conference on Logic Programming (ICLP), 9-13
Dec. 2008 , 407–424.

Dechter, R. 2003. Constraint Processing. Morgan Kaufmann Publishers Inc, San Francisco,
CA, USA.

Denecker, M., Lierler, Y., Truszczy´ nski, M. and Vennekens, J. 2012. A Tarskian informal
semantics for answer set programming. In Technical Communications of the 28th International
Conference on Logic Programming (ICLP), 277–289.

Denecker, M., Lierler, Y., Truszczynski, M. and Vennekens, J. 2019. The informal
semantics of answer set programming: A tarskian perspective. CoRR, abs/1901.09125.

Eiter, T., Faber, W., Leone, N. and Pfeifer, G. (2000) Declarative problem-solving using
the DLV system. In Logic-Based Artificial Intelligence, Minker, J. (ed.), Kluwer, 79–103.

Gebser, M., Schaub, T. and Thiele, S. 2007. Gringo: A new grounder for answer set
programming, In Proc. of the Ninth International Conference on Logic Programming and
Nonmonotonic Reasoning , 27 April 2007 , 266–271.

Gelfond, M. and Kahl, Y. 2014. Knowledge Representation, Reasoning, and the Design of
Intelligent Agents. Cambridge University Press,

Gelfond, M. and Lifschitz, V. 1988. The stable model semantics for logic programming. In
The Stable Model Semantics for Logic Programming , Kowalski, R. and Bowen, K., Eds.
MIT Press, Cambridge, MA, 1070–1080.

Gelfond, M. and Lifschitz, V. 1991. Classical negation in logic programs and disjunctive
databases. New Generation Computing. 9, 3–4, 365–385.

Jaffar, J. and Lassez, J.-L. 1987. Constraint logic programming. In Proc. of the 14th
ACM SIGACT-SIGPLAN Symposium on Principles of Programming Languages. POPL ’87 ,
Association for Computing Machinery, New York, NY, USA, 111–119.

Knuth, D. E. and Shustek, L. 2021. Let’s not dumb down the history of computer science.
Communications of the ACM 64, 2, 33–35.

Kowalski, R. A. 1974. Predicate logic as programming language. Rosenfeld, J. L., In Proc. of
International Federation of Information Processing Conference, North–Holland, Stockholm,
Sweden, 569–574.

Kowalski, R. A. 1988. The early years of logic programming. Communications of the ACM
31,1, 38–43.

Lierler, Y. 2014. Relating constraint answer set programming languages and algorithms.
Artificial Intelligence. 207, 1–22.

https://doi.org/10.1017/S1471068424000218 Published online by Cambridge University Press

https://doi.org/10.1017/S1471068424000218

Y. Lierler 20

Lierler, Y. 2017. What is answer set programming to propositional satisfiability. Constraints
22, 3, 307–337.

Lierler, Y. and Truszczy´ nski, M. 2011. Transition systems for model generators — A uni-
fying approach. Theory and Practice of Logic Programming, 27th Int’l. Conference on Logic
Programming (ICLP) Special 11, 4-5, 629–646.

Lifschitz, V. 2002. Answer set programming and plan generation. Artificial Intelligence. 138,
1-2, 39–54.

Marek, V. and Truszczynski, M. 1999 . Stable models and an alternative logic programming
paradigm. In The Logic Programming Paradigm: a 25-Year Perspective, Apt, K., Marek, V.,
Truszczynski, M. and Warren, D., Eds. Berlin, Springer, 375–398.

Moore, R. C. 1985. Semantical considerations on nonmonotonic logic. Artificial Intelligence 25,
1, 75–94.

Niemel¨ a, I. 1999. Logic programs with stable model semantics as a constraint programming
paradigm. Annals of Mathematics and Artificial Intelligence. 25, 3/4, 241–273.

Syrj¨ anen, T. and Niemel¨ a, I. 2001. The smodels system. In Proceedings of the 6th
International Conference on Logic Programming and Nonmonotonic Reasoning. LPNMR ’01 ,
Springer-Verlag, Berlin, Heidelberg, 434–438.

Winston, P. H. 1992. Artificial Intelligence. 3rd ed. Addison-Wesley Longman Publishing Co.,
Inc., MA, USA.

https://doi.org/10.1017/S1471068424000218 Published online by Cambridge University Press

https://doi.org/10.1017/S1471068424000218

	Historical Review of Variants of Informal Semantics for Logic Programs under Answer Set Semantics: GL’88, GL’91, GK’14, D-V’12
	Introduction
	Formal and informal semantics of basic programs by GL"2019`88
	ASP and ASP-Prolog
	Answer set programming
	ASP programming methodology
	ASP-prolog

	"201C`Formalizing"201D` quotes 1 and 2 or informal semantics of basic programs by GL"2019`88

	Formal and informal semantics of extended programs by GL"2019`91
	Informal semantics of extended logic programs by GK"2019`14
	Informal semantics of GDT theories by D-V"2019`12
	Conclusions and Acknowledgments
	References

	KEYWORDS answer set programming logic programming informal semantics:
	submitted 10 May 2022 revised 24 October 2023 accepted 11 July 2024:
	fill_2:
	A state G:
	Aset X of atoms:
	relation:
	fill_5:
	GL:
	fill_2_2:
	X that has abstraction X:
	fill_4:
	A believed literal set X:
	summarizes the interpretation of possible query responses:
	relation_2:
	fill_2_3:
	GKL:
	fill_3:
	fill_2_4:
	theories:

