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Abstract

Glucose transport in humans is a vital process which is tightly regulated by the endocrine system. 

Specifically, the insulin hormone triggers a cascade of intracellular signals in target cells 

mediating the uptake of glucose. Insulin signaling triggers cellular relocalization of the glucose 

transporter protein GLUT4 to the cell surface, which is primarily responsible for regulated glucose 

import. Pathology associated with the disruption of this pathway can lead to metabolic disorders, 

such as type II diabetes mellitus, characterized by the failure of cells to appropriately uptake 

glucose from the blood. We describe a novel simulation tool of the insulin intracellular response, 

incorporating the latest findings regarding As160 and GEF interactions. The simulation tool 

differs from previous computational approaches which employ algebraic or differential equations; 

instead, the tool incorporates statistical variations of kinetic constants and initial molecular 

concentrations which more accurately mimic the intracellular environment. Using this approach, 

we successfully recapitulate observed in vitro insulin responses, plus the effects of Wortmannin-

like inhibition of the pathway. The developed tool provides insight into transient changes in 

molecule concentrations throughout the insulin signaling pathway, and may be employed to 

identify or evaluate potentially critical components of this pathway, including those associated 

with insulin resistance. In the future, this highly tractable platform may be useful for simulating 

other complex cell signaling pathways.
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Introduction

Insulin is known to be essential for regulating glucose levels intracellularly and in the blood, 

as well as contributing to other carbohydrate and lipid metabolism in mammals (Banting, 

1937). The insulin molecule is a small peptide hormone manufactured in the beta cells of the 

pancreas (Gallenberger et al., 2012). Interruption of insulin signaling can result in high 

blood glucose (hyperglycemia), which is associated with both life-long health complications 

and acute life-threatening disease. Among these are mild insulin resistance, diabetes 

mellitus, and metabolic syndrome (Beale, 2012). Unfortunately, the underlying etiologies of 

these diseases are poorly understood. Understanding and simulating the cellular response to 

insulin could lead to the development of new treatments.

Many early processes in the insulin signaling pathway are clearly understood, with 

downstream processes being the focus of the most recent studies. The key feature of insulin 

signaling is the process whereby the cell translocates glucose transporters (GLUT4) from 

intracellular endosomes to the cell surface, where they function via facilitated diffusion to 

import glucose from the extracellular fluid (James et al., 1988). For this to take place, insulin 

signaling activates intracellular pathways which facilitate GLUT4 translocation, in addition 

to ancillary cellular functions not directly related to glucose uptake (Leto & Saltiel, 2012). 

Thus, previous computational models, as well as the proposed simulation approach 

described herein, annotate only the molecular interactions shown or anticipated to relate to 

glucose uptake. Moreover, eventual recycling of insulin receptors and GLUT4 is an added 

dimension of downstream regulation that is not addressed in this current approach.

Figure 1 provides a simplified overview of the insulin signaling pathway. In Figure 1A, 

following insulin release into the bloodstream, insulin is detected by target cells via binding 

to the insulin receptor. Once insulin and the receptor have engaged, the insulin receptor 

undergoes autophosphorylation. The signal is propagated as activated insulin receptors 

phosphorylate downstream substrates. Insulin receptor substrates then activate 

phosphoinositide 3-kinase (PI3K) which converts membrane lipids to phosphatidylinositol 

(3,4,5)-triphosphate. Accumulation of phosphatidylinositol (3,4,5)-triphosphates are 

necessary to Akt and phosphoinositide-dependent kinase (PDK) interaction, which results in 

the double phosphorylation of Akt. Figure 1B shows the effector functions of insulin 

signaling following Akt activation. Double phosphorylated Akt is able to turn off GTPase 

activating proteins (GAPs), one of which is the Akt substrate of a 160 kDa size (As160). An 

unstimulated cell contains active GAPs that are able to prevent GLUT4 vesicle translocation 

through the prevention of accumulating RabGTP in GLUT4 endosomes. The inactivation of 

GAPs such as the As160 through the insulin stimulated PI3K/Akt cascade results in the 

accumulation of RabGTP's and ultimately GLUT4 translocation.

Traditionally, signaling pathways have been modeled using sets of differential equations 

describing changes in molecular concentrations at rest and in response to upstream signals 

(Chou and Voit, 2009). This approach, albeit useful, fails to readily incorporate random 

variations of the kinetic constants (e.g., due to local temperature variations) and local 

molecule concentrations (e.g., due to Brownian motion). To incorporate such random 

variation, which more accurately mimics the intracellular environment, the proposed 
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simulation platform mimics transitions of molecules involved in insulin signaling pathway 

independently inside each considered cell as shown in Figure 2. Distinct from the traditional 

approach, this “queuing theory” approach has been successfully used to accurately and 

rapidly model packet transfer in data-dense telecommunication networks (Giambene, 2005). 

Such an approach was recently reported to accurately delineate non-viral gene delivery 

intracellularly (Wysocki et al., 2012).

To confirm that the simulation accurately models cellular responses, we compare our data to 

published results largely derived from human adipocyte studies. The simulation yielded 

time-dependent changes in GLUT4 present at the cell surface consistent with published 

observations for various insulin concentrations (Martin et al., 2006). Moreover, the platform 

accurately simulated abnormal cellular conditions, such as inhibition of phosphoinositide 3-

kinase (Clarke et al., 1994; Hara et al., 1994). Furthermore, the simulator was employed to 

independently demonstrate the critical role of the PTEN protein in insulin response. 

Whereas previous models often mimicked known insulin responses, the proposed simulation 

offers additional advantages. First, individual component concentrations and kinetic 

constants can be derived if unknown or not well established (see Fig. 2, shaded area). 

Second, the model is able to mimic a configurable cell population number. Finally, the 

developed platform is extremely rapid: simulating responses within 100 cells for 1 min 

required less than 10 compute minutes. Such rapid calculation can therefore be used to 

extensively explore variations of concentrations or kinetics resulting in promotion of or 

interference with the insulin pathway. Such an approach may help identify additional key 

steps in the insulin pathway. Ultimately, this “queuing theory” approach may be more 

broadly employable to additional signaling pathways. As a first step, further validation of 

the simulation could verify that cells other than adipocytes respond to insulin in a similar 

fashion.

Materials and Methods

Kinetic constants and molecular concentration values were obtained via a Pubmed search for 

publications within the last 50 years. Particularly useful were previous reports which 

included multiple compiled, derived, or observed values (Faratian et al., 2009; Hatakeyama 

et al., 2003; Kozka et al., 1995; Sedaghat et al., 2002; Shin et al., 2005; Stephan et al., 

2009). Values that were not available in the literature were estimated (below). Error values 

associated with constants were used in the stochastic model when provided by sources. To 

simplify the branching effect of downstream components of Akt in the insulin mediated 

signal cascade, we use As160 to refer to multiple family members of Rab GAPs involved in 

GLUT4 translocation. Thus, the derived kinetics for GAP effector functions are associated 

with the family of downstream Akt effectors as a whole rather than the primary target of 

As160. This is due to previous studies that have shown that, while As160 may be the 

primary target of Akt in the insulin mediated pathway, it is not the only one (Eguez et al., 

2005).

During simulations, each simulated cell was calculated independently; that is, concentrations 

of each molecule in the signaling chain (Fig. 2) is stochastic, and bound by the provided 

error values. Implementation of the queuing theory approach causes that the actual 
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concentrations of given molecule types in the cell are simulated as separate storages 

(queues) for each cell. The probability of a movement happening at any time instant from 

one queue to the next is determined by the relevant reaction speed. Movements between 

storages happen at a particular time instant if a number randomly drawn from the interval 

[0,1] at that time instant is smaller than the reaction speed governing the movement. After 

simulations have been performed for every considered cell, the results are averaged over the 

cell population. This queuing approach is therefore distinct from molecular dynamic 

simulations and stochastic chemical kinetics. The current approach is most similar to 

modeling information packets trafficking through a computer network using queuing theory 

which utilizes the given service rates of particular nodes rather than by solving Maxwell's 

equations for the individual links. Although differential equations are excellent tool to model 

continuous time analog processes, discrete processes are better modeled using difference 

equations that for random scenarios are well represented by the queues, where the input to 

the queue is described by one difference equation and the output by another difference 

equation. Connecting those queues into a network thus models a set of difference equations, 

where the lengths of the queues provide instantaneous solutions. Such a queuing network 

can be easily used to model scenarios where the arrival/service rates change dynamically 

depending on the lengths of some queues in the system or where changes happen randomly.

Most of the kinetic constants used for the simulation are given in the literature with quite 

wide margins, up to ±80%. Therefore, in the developed platform, the randomization of their 

values was adopted through the following formula:

(1)

where k(i) is the value of the constant at the ith time instant, k is the average value of the 

constant, m is the margin for the constant, such that

(2)

and x(i) are Gaussian distributed random variable with a zero mean and a variance equal to 1 

drawn at every consecutive time instant. A similar approach was taken in randomization of 

initial concentrations; however, the concentrations were randomized only once per cell, at 

the beginning of simulations, that is for i = 0. For constants/concentrations that have no 

margins available in literature, a ±20% range was adopted, although the model is readily 

adjustable to different ranges. Moreover, the simulation prohibits the very unlikely event of 

kinetic constants being negative values, making it zero instead. Although Gaussian 

distributions were assumed in the model, any other (e.g., uniform) distribution can be used if 

desired.

In order to estimate values of kinetic constants V45, V46, (Fig. 2) and to approximate suitable 

ranges for the kinetic constants needed to calculate V39 and the steady state number of free 

RabGTP molecules in a cell, the final stages of the process have been computationally 

imputed. A constant number of GLUT4 molecules localized at the cell surface in the 

absence of insulin was assumed, as shown by Kozka et al. (1995) to be 18,000–20,000 per 

Jezewski et al. Page 4

Biotechnol Bioeng. Author manuscript; available in PMC 2014 December 01.

N
IH

-P
A

 A
uthor M

anuscript
N

IH
-P

A
 A

uthor M
anuscript

N
IH

-P
A

 A
uthor M

anuscript



cell. Published rates of GLUT4 vesicle translocation without insulin is 58,000 GLUT4 

transferred to the plasma membrane per minute (Kozka et al., 1995), and 10 RabGTP 

molecules are required to move one vesicle containing 20 GLUT4 molecules (Carvalho et 

al., 2004; Kessler et al., 2000). Based on these values, and assuming that the formats of V45 

and V46 are:

(3)

(4)

where RabGTP, Glut4Membrane, and As160 are the number of molecules of free RabGTP 

molecules in the cell, the number of Glut4 molecules at the cell membrane, and the number 

of As160 molecules in a cell, at a given time instant, respectively, one can calculate the 

estimates for k45 and k46 (see Tables I and II). Because less is known about the interactions 

between As160-RabGTPase and SNARE engagement of the GLUT4 vesicle, it is still 

possible that a yet unobserved rate-limiting step may occur in this gap; however, this is 

unlikely as our simulation accurately models multiple previous studies (Figs. 3 and 4).

For the simulated pathway to stay stable in the absence of insulin, the number of RabGTP 

molecules reacting with As160 (reaction speed V39) needs to be equal to the number of 

RabGDP-GEF molecules being recycled back into RabGTP and GEF molecules, 

respectively. Based on this assumption, the relationship

(5)

must hold without insulin applied. Solving these equations for the unknown kinetic 

constants resulted in the about 18,200 GLUT4 at the cell surface in the absence of insulin 

after 5 minutes (Fig. 3).

Except for Figure 5, all simulation-derived figures were averaged responses from 100 cells. 

The simulation platform was implemented in MATLAB software and all the results were 

obtained using 1 ms time increments, although the simulation allows the choice of any user-

selected time increment.

Results

Simulating Insulin-Dependent GLUT4 Translocation

It was first important to confirm that experimentally determined enzyme kinetics would be 

mimicked by the simulation model. As increased GLUT4 concentrations on the plasma 

membrane leads to productive influx of glucose, an effective measure of the outcome of 

cellular activation by insulin signaling is the quantitation of GLUT4 vesicles activated for 

translocation to the surface. As shown in Figure 3, the pathway achieves dynamic 

equilibrium in pre-insulin (0 nM insulin) in vitro conditions by preventing increased GLUT4 

transport to the cell surface. Due to the inherent stochastic nature of the approach used, a 

non-trivial amount of cells were simulated for each plot (typically, 100 cells) and the 
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average concentrations per cell were graphed. Adding validity, when extracellular insulin 

concentrations are varied, the simulation mimics the response and timing of previously 

studied in vitro conditions of glucose transport (Fig. 3). Differences between experimental 

and simulated curves were analyzed by a series of Z-tests. For five of six data points where 

mean and standard deviation of in vitro GLUT4 translocation has been reported as a 

function of time and concentration of insulin, the in silico model was able to recapitulate the 

results within one standard deviation (|Z| < 1.0). For all six data points, our in silico model 

was able to recapitulate results within two standard deviations (|Z| < 2.0).

Recent studies have shown that GLUT4 translocation is effected by Rab-GAP/GEF 

interactions downstream of a PI3K/PDK/Akt signal cascade (Eguez et al., 2005; Larance et 

al., 2005; Sano et al., 2003). As demonstrated in in vitro studies, As160, a GAP, plays a 

pivotal role in regulating GLUT4 translocation (Sharma et al., 2010). During pre-insulin 

conditions, As160 actively dephosphorylates Rab-GTP (present on the GLUT4 intracellular 

vesicles) to Rab-GDP (Fig. 1). The resultant lack of Rab-GTP prevents Rab-GTP-dependent 

GLUT4 vesicle translocation to the cell surface. Upon phosphorylation of As160 post 

insulin binding at the insulin receptor, the phosphatase activity of As160 against Rab-GTP is 

inhibited (Sano et al., 2003). The absence of As160 activity permits guanosine exchange 

factor (GEF) activity to increase the amount of Rab-GTP present on the GLUT4 vesicle 

(Eguez et al., 2005). Increased amounts of Rab-GTP on the surface of GLUT4 containing 

vesicles catalyze intracellular vesicle translocation, membrane fusion, and incorporation of 

the vesicle into the cell membrane, thereby depositing GLUT4. Upon deposition, the 

GLUT4 molecules are active in importing glucose from the surrounding fluid.

Accurately Simulating Pathway Modulation on GLUT4 Translocation

Beyond the ability to accurately simulate steady state or insulin activation, a third approach 

to evaluate the simulation was a comparison of predicted and observed insulin mediated 

GLUT4 translocation generated under disrupted conditions. Wortmannin, a fungal 

metabolite, functions by inhibiting PI3K activity and is highly effective at interrupting 

metabolic pathways that require PI3K dependent signal transduction (Okada et al., 1994). It 

has been demonstrated in vitro that inhibition of PI3K activity results in complete cessation 

of insulin stimulated GLUT4 translocation (Hara et al., 1994; James et al., 2004; Sharma et 

al., 1998). To mimic the effects of wortmannin inhibition, the pathway was simulated by 

substituting the steady state concentration of PI3K's substrate, PI, with multiple 

concentrations below this steady state value. Simulating near complete inhibition of PI3K by 

reducing PI levels yielded strong inhibition of insulin dependent GLUT4 translocation (Fig. 

4A), in concordance with previous studies describing application of wortmannin (Clarke et 

al., 1994; James et al., 2004).

As the role of As160 in GLUT4 translocation was only recently described, the effect of 

varying concentrations of As160 which deviated from the standard-state values was 

analyzed to investigate its role. GAP activity targeted at GLUT4 containing vesicles 

prevents translocation of GLUT4 to the cell membrane, effectively inhibiting insulin 

dependent glucose uptake (Sharma et al., 2010). As shown in Figure 4B, variation in the 

effective concentration of As160 (which could be induced by an inhibitor or enhancer) has 
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little effect on the cells ability to reach a maximal level of GLUT4 on the cell membrane in 

response to insulin after 15 min. However, simulated changes in As160 effective 

concentrations demonstrate a delay in GLUT4 translocation by a population of cells in 

response to insulin. It is also possible that GEF activity is further stimulated beyond 

increases caused by As160 inactivation; however, this is not established in vitro, but can be 

effectively simulated.

Previously, phosphatase and tensin homolog (PTEN) has been shown to be a key target in 

the control of diabetes (Butler et al., 2002). Experimentation with our simulation platform 

highlighted this component as a key regulator in the insulin mediated GLUT4 translocation 

pathway. Figure 4C demonstrates how small increases in PTEN cause major changes in the 

cellular response to insulin stimulation.

One feature of signaling cascades, including the insulin signal cascade, is that on a per cell 

basis, once an activation threshold for signaling has been reached, the signal cascade 

proceeds in a robust and rapid form. To accurately mimic the effects of tissues, the presented 

results are the averages as computed from 100 cells. Figure 5 demonstrates that there is no 

significant difference among the curves obtained while averaging over 50, 100, or 500 cells 

for the simulated scenarios.

Discussion

When studying disease it is important to understand the underlying processes involved. We 

sought to simulate the insulin mediated GLUT4 translocation pathway with three novel 

characteristics: (1) the pathway is the most complete representation of the required 

components to date, especially those beyond As160; (2) the simulation platform 

incorporates stochastic variations among individual cells and realistically mimics local 

molecule availability in the signaling pathway, and (3) the response of hundreds of cells can 

be simulated in near real-time. Previous models of insulin signaling have not included the 

effector function of GLUT4 translocation, nor have they taken a simulation approach, but 

rather a mathematical modeling approach.

Importantly, this novel simulation approach has recapitulated findings and observations of in 

vitro studies. In the absence of insulin stimulation, results from simulation show essentially 

no insulin mediated GLUT4 glucose influx, which is consistent with steady state values 

determined in in vitro experiments (Fig. 3). For comparison to previously published in vitro 

data which controlled the amount of insulin exposed to cells, we simulated the same 

effective insulin concentration and observed the results (Martin et al., 2006). Again, the 

simulation results accurately mimics results found in laboratory conditions, wherein very 

low doses of insulin eventually lead to GLUT4 activation across exposed cells. The 

simulation also predicts that increasing insulin dosage does not change the amount of 

GLUT4 on each cell's surface in an arithmetic fashion; rather, the signal cascade occurs 

when a given cell achieves an activation threshold. Consequently, low levels of insulin 

dosage delays the average time it takes for an individual cell to receive and react to the 

required signal. This concept is supported by previous findings that show insulin stimulates 

GLUT4 activity in a quantal manner rather than a dose dependent increase in exocytosis 
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and/or decrease in endocytosis rates (Coster et al., 2004; Stockli et al., 2011). Conversely, 

delivering a dose 200-fold beyond physiologically normal activation levels does not 

significantly increase the rate of GLUT4 translocation.

Following the validation of our simulation platform's ability to function in maintaining a 

non-activated steady-state, and responding appropriately to insulin signals, we looked at its 

ability to replicate in vitro experimental data resulting from disruption of the metabolic 

pathway. First, we considered the inhibition of PI3K, known to be essential in transducing 

the insulin signal. This was accomplished by adjusting the simulated level of PI, available to 

PI3K (the target of the fungal metabolite wortmannin, which potently inhibits its function). 

By lowering the effective concentration of PI3K substrate, we were able to generate results 

that mimic wortmannin inhibition of PI3K: GLUT4 translocation being slowed or ultimately 

limited. Studies of PI3K suggest that time course and signal amplitude contribute to the 

specificity of the insulin signal (Tengholm and Meyer, 2002); once these pathways are 

further deduced, the simulation can be readily modified to incorporate such understanding.

Separately, GAP availability was simulated to more fully understand the effects of these 

recently described processes. Uniquely, simulation results indicate that twofold overabun-

dance of GAP activity delays maximum GLUT4 translocation to the cell surface by only 5 

min, and the reverse is true for a twofold decrease in GAP activity. Lastly, we looked at the 

effects of modulating PTEN. While several regulatory molecules elements are known to 

have effects on the insulin pathway, only relatively small changes in PTEN activity have the 

ability to completely shut down the insulin response. This correlates to recent studies which 

implicate over-expression of PTEN as a strong negative regulator of the insulin signal 

(Hiraku et al., 2001; Leslie and Downes, 2002). Additional studies have shown that PTEN 

knockdown stimulates GLUT4 translocation to the cell membrane in an insulin dependent 

manner (Liu et al., 2009). Interestingly, it has been reported that, although cellular amounts 

of PTEN are independent of insulin resistance factors (i.e., obesity) in muscle cells, insulin 

sensitization factors (i.e., regular exercise) can yield a decrease in the amount of PTEN 

present in muscle cells in both obese and healthy organisms, pointing to a possible 

mechanism by which regular exercise mitigates the effects of insulin resistance factors (Pons 

et al., 2013). The simulation results indicate that relatively small increases (less than 

twofold) are necessary to generate near zero response to insulin stimulation. The ability to 

demonstrate the role of PTEN regulation on the insulin pathway suggests that the extensible 

platform can accurately be used to simulate additional regulatory proteins as they are 

discovered or hypothesized.

Conclusions

We have developed a metabolic simulation platform of insulin signaling utilizing a novel 

stochastic theory approach which recapitulates experimental data. Moreover, the developed 

platform has allowed us to validate previously published concentration estimates, as well as 

derive concentrations for understudied components of the pathway. This was accomplished 

by producing simulation results that agree with the well-established time courses between 

insulin binding to its receptor and GLUT4 translocation. One caveat to comparing our 

simulation results to the studies described herein is that much of the in vitro data is from the 
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study of 3T3-L1 adipocytes. It is possible that GLUT4 regulation varies in muscle or 

adipose tissues. Despite this, the extensibility and the ease of incorporating additional data 

into our platform allows for the study of these differences as they become known. This 

report can serve as a roadmap for additional experimental evaluations of under-documented 

kinetics and concentrations. Moreover, the simulation platform produced average functions 

at near real-time rates: the time required to simulate one minute of a single cell response 

varied between 4.19 and 4.37 s. This suggests that the approach described here can be 

expanded without significant decrease in usable performance. Lastly, the simulation was 

built in MATLAB, and is entirely extensible, capable of including additional components, or 

simulating completely new cellular pathways. In the future, it is anticipated that additional 

components will be identified for the pathway which, when varied, potently affect the 

outcome of insulin signaling. This approach would be useful to identify proteins for which 

molecular inhibitors or activators would be effective in reducing dysregulation of the 

pathway.
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Figure 1. 
Cartoon representation of the insulin dependent GLUT4 translocation from insulin binding 

to its receptor to GLUT4-containing vesicles translocating to the outer cell membrane. This 

figure summarizes the signal amplification pathway from insulin receptor binding to the 

ultimate product of GLUT4 vesicle translocation. Details such as subunit composition (e.g., 

the insulin receptor tetramer), phosphorylation sites or mechanism, and relative 

concentrations are not shown to provide simplicity. A: Insulin binding triggers a series of 

phosphorylation events which propagates the insulin signal. B: Downstream Akt activation 

leads to GLUT4 translocation to the cell surface. The representation highlights the recently 

described role of the GAP As160 in regulating Rab dependent vesicular translocation. A 

complete description is available in the text, and abbreviations are found in the glossary. 

Image designed by Avery Mazor, © 2014.
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Figure 2. 
Block model of the insulin signal transduction pathway. Schematic of the computational 

model of insulin mediated GLUT4 translocation. Each block represents one intermediate in 

the signal transduction pathway from insulin recognition to GLUT4 vesicle translocation. 

Arrows between blocks are representative of a metabolic reaction between those two 

intermediates. The rate of most metabolic reactions have been determined experimentally by 

others. Labels on arrows refer to the enzyme kinetics attributed to that reaction. The 

equations that correspond to these enzyme kinetics can be found in Table II. Component 

abbreviations can be found in the glossary. This figure additionally illustrates the relative 

level of understanding for kinetic parameters involved in different parts of this pathway.
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Figure 3. 
Comparison of in silico and in vitro models of insulin dependent GLUT4 translocation. 

Simulated GLUT4 concentrations were plotted as averaged over 100 cell following insulin 

stimulation in vitro. Simulations of insulin dosed at 200 nM, 0.5 nM, and 0 nMare plotted in 

full lines. The cell membrane is loaded with approximately 10 × more GLUT4 molecules as 

compared to the unstimulated cell. Data points will error bars represent experimentally 

determined GLUT4 levels following both 200 nM (represented by thin rectangles) and 0.5 

nM (represented by squares) doses of insulin, previously collected by others and replotted 

here for comparison (Martin et al., 2006). A series of Z-tests were performed to determine 

the significance in the differences between the in vitro and in silico models. Five of six time 

points from simulated and measured in vitro experiments are within one standard deviation 

(|Z| < 1.0). For one time point, the difference between GLUT4 translocation the in silico 

model and the in vitro experiment was greater than one standard deviation (|Z| = 1.41).
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Figure 4. 
Modeling Insulin pathway alterations. A: The effects of phosphoinositide 3-kinase inhibitor, 

wortmannin, on GLUT4 translocation. This figure illustrates the effects of reducing the 

PI3K substrate concentration, PI, from its steady state level (300 nM) to lower levels (3 and 

1 nM), which is comparable to the GLUT4-translocation inhibition by the fungal metabolite, 

wortmannin, as a PI3K inhibitor. B: The effect of GAP activity on GLUT4 translocation. By 

varying effective concentrations of GAP available compared to the initial concentration 

(100%), the model demonstrates acceleration or delay in the translocation of GLUT4 to the 

cell surface. C: The effects of PTEN concentration on GLUT4 translocation. Previous 

observations demonstrate that PTEN levels significantly effect GLUT4 translocation, even 

by small changes in PTEN concentration. Modeled results confirm that PTEN effective 

concentration changes (increasing from 30 nM, nominally the physiological level) 

negatively impact GLUT4 translocation. 10 Biotechnology
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Figure 5. 
Utilizing various cell numbers in the computational model. To evaluate the effects of 

stochastic-based modeling on averages calculated per cell, 50, 100 (used in all other 

figures), and 500 cells were plotted using standard physiological induction concentrations. 

Virtually no differences were detected between the models utilizing different cell numbers 

over time.
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Table I

Glossary of terms, including definitions for symbols and abbreviations.

I = insulin

IR = insulin receptor

IR-I = single bound insulin to insulin receptor

pIR-I = phosphorylated single bound insulin to insulin receptor

|pIR-I| = internalized phosphorylated single bound insulin to insulin receptor

pIR-II = double bound insulin to insulin receptor

|pIR-II| = internalized phosphorylated double bound insulin to insulin receptor

IRS1/3 = insulin receptor substrates 1 through 3

pIRS1/3 = phosphorylated insulin receptor substrates 1 through 3

PI3K = phosphatidylinositol 3-kinase

pIRS1/3-PI3K = phosphorylated insulin receptor substrates 1 through 3, phosphatidylinositol 3-kinase, complex

PI3K* = activated phosphatidylinositol 3-kinase

pIRS1/3-PI3K* = phosphorylated insulin receptor substrates 1 through 3, activated phosphatidylinositol 3-kinase, complex

PI = phosphatidylinositol

PI3K*-PI = activated phosphatidylinositol 3-kinase, phosphatidylinositol, complex

PIP3 = phosphatidylinositol (3,4,5)-triphosphate

PI3K*-PIP3 = activated phosphatidylinositol 3-kinase, phosphatidylinositol (3,4,5)-triphosphate, complex

PTEN = phosphatase and tensin homolog

PTEN-PI = phosphatase and tensin homolog, phosphatidylinositol, complex

PTEN-PIP3 = phosphatase and tensin homolog, phosphatidylinositol (3,4,5)-triphosphate, complex

pPTEN = phosphorylated phosphatase and tensin homolog

PTEN-PTEN = phosphatase and tensin homolog, phosphatase and tensin homolog, complex

pPTEN-PTEN = phosphorylated phosphatase and tensin homolog, phosphatase and tensin homolog, complex

Akt = protein kinase B

Akt-PIP3 = protein kinase B, phosphatidylinositol (3,4,5)-triphosphate, complex

pAkt-PIP3 = phosphorylated protein kinase B, phosphatidylinositol (3,4,5)-triphosphate, complex

PDK = phosphoinositide dependent protein kinase

ppAkt-PIP3 = double phosphorylated protein kinase B, phosphatidylinositol (3,4,5)-triphosphate, complex

PP2A = protein phosphatase 2

PP2A-Akt-PIP3 = protein phosphatase 2, protein kinase B, phosphatidylinositol (3,4,5)-triphosphate, complex

PP2A-pAkt-PIP3 = protein phosphatase 2, phosphorylated protein kinase B, phosphatidylinositol (3,4,5)-triphosphate, complex

PP2A-ppAkt-PIP3 = protein phosphatase 2, double phosphorylated protein kinase B, phosphatidylinositol (3,4,5)-triphosphate, complex

ppAkt = double phosphorylated protein kinase B

PP2A-Akt = protein phosphatase 2, protein kinase B, complex

PP2A-pAkt = protein phosphatase 2, phosphorylated protein kinase B, complex

PP2A-ppAkt protein phosphatase 2, double phosphorylated protein kinase B, complex

As160 = Akt substrate of 160 kDa

pAs160 = phosphorylated Akt substrate of 160 kDa

PP2A-pAs160 = protein phosphatase 2, phosphorylated Akt substrate of 160 kDa, complex

PP2A-As160 = protein phosphatase 2, Akt substrate of 160 kDa, complex
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RabGTP = Rab G-protein in active guanosine triphosphate bound form

RabGTP-As160 = Rab G-protein in active guanosine triphosphate bound form, Akt substrate of 160 kDa, complex

RabGDP = Rab G-protein in inactive guanosine diphosphate bound form

GEF = guanine exchange factor

RabGDP-GEF = Rab G-protein in inactive guanosine diphosphate bound form, guanine exchange factor, complex

GLUT4 = glucose transporter type 4

GAP = GTPase activating protein
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Table II

Kinetic constants and reaction equations used within the simulation.

Reaction equation Kinetic constants ± Source

V0 = k0*[I]*[IR] – k – 0*[IR-I] k 0 0.06 a

k – 0 0.2

V1 = k1*[IR-I] k 1 2,500 a

V2 = k2*[pIR-I] k 2 0.2 a

V3 = k3*[pIR-I] – k – 3*[|pIR-I|] k 3 0.0021 a

k – 3 0.00021

V4 = k4*[I]*[pIR-I] – k – 4*[pIR-II] k 4 0.06 a

k – 4 20

V5 = k5*[pIR-II] – k – 5*[|pIR-II|] k 5 0.0021 a

k – 5 0.00021

V6 = k6*{[IRS1/3]([pIR-I] + [pIR-II])}/[IR] – k – 7*[pIRS1/3] k 6 4.16 a

k – 6 1.4

V7 = k7*([pIRS1/3]*[PI3K] - kd,7*[pIRS1/3 – PI3K]) k 7 3 1 a,b

k d,7 1

V8 = k8*[pIRS1/3-PI3K] – k – 8*[pIRS1/3-PI3K*] k 8 300 30 a,b

k – 8 0

V9 = k9*[pIRS1/3-PI3K*] - k – 9*[pIRS1/3*PI3K*] k 9 13,500 b,c

k – 9 0

V10 = k10*[PI3K*] V 10 900 130 b,c

V11 = k11*([PI]*[PI3K*] – kd,11*[PI3K*-PI]) k 11 0.03 0.006 b,c

k d,11 140

V12 = k12*[PI3K*-PI] k 12 30 b,c

V13 = k13*[PI3K*-PIP3] k 13 30 c

V14 = k14*([PIP3]*[PTEN] – kd,14*[PTEN-PIP3]) k 14 8,000 b,c

k d,14 0.01 0.004

V15 = k15*[PTEN-PIP3] k 15 15 5 c

V16 = k16*[PTEN-PI] k 16 3.6 1 c

V17 = Vmax,17*[PTEN]/(km,17 + [PTEN]) V max,17 150 50 c

k m,17 2

V18 = k18*([PTEN]*[pPTEN] – kd,18*[pPTEN-PTEN]) k 18 1 0.4 c

k d,18 2.2

V19 = kcat,19*[pPTEN-PTEN] k cat,19 150 c
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Reaction equation Kinetic constants ± Source

V20 = k20*[PTEN-PTEN] k 20 150 c

V21 = k21*([PIP3]*[Akt] – kd,21*[Akt-PIP3]) k 21 15,000 b,c

k d,21 20 6

V22 = Vmax,22*[Akt-PIP3]/(km,22 + [Akt-PIP3]) V max,22 15,000 5,000 b,c

k m,22 0.1 0.035

V23 = Vmax,23*[pAkt-PIP3]/(km,23 + [pAkt-PIP3]) V max,23 15,000 5,000

k m,23 0.1 0.035 b,c

V24 = k24*([ppAkt-PIP3]*[PP2A] – kd,24*[PP2A-ppAkt-PIP3]) k 24 3 c

k d,24 0.1

V25 = kcat,25*[PP2A-ppAkt-PIP3] k 25 45 20 c

V26 = k26*[pAkt-PIP3 ]*[PP2A] k 26 3 c

V27 = k27*[PP2A-pAkt-PIP3] k 27 0.3 c

V28 = kcat,28*[PP2A-pAkt-PIP3] k 28 45 20 c

V29 = k29*[PP2A-Akt-PIP3] k 29 30 c

V30 = k30*[ppAkt-PIP3] k 30 30 d

V31 = k31*([ppAkt]*[PP2A] – kd,31*[PP2A-ppAkt]) k 31 3 d

k d,31 0.1

V32 = kcat,32*[PP2A-ppAkt] k 32 45 20 d

V33 = kcat,33*[PP2A-pAkt] k 33 45 20 d

V34 = k34*[PP2A-Akt] k 34 30 d

V35 = Vmax,35*[As160]/(km,35 + [As160]) V max,35 0.00003288 e

k m,35 24,810

V36 = k36*([pAs160]*[PP2A] – kd,36*[PP2A-pAs160]) k 36 3 d

k d,36 0.1

V37 = kcat,25*[PP2A-pAs160] k 37 45 20 d

V38 = k29*[PP2A-As160] k 38 30 d

V39 = (koff,As160 + kcat,As160)/(kM,As160/D)*[RabGTP]*[As160] k off,As160 600 f

k cat,As160 324

k M,As160 230 3

D 250

V40 = koff,GEF*[RabGTP-As160] k off,GEF 600 f

V41 = kcat,GEF*[RabGTP-As160] k cat,GEF 234 f

V42 = (koff,GEF + kcat,GEF)/(kM,GEF/D)*[RabGDP]*[GEF] k off,GEF 600 f

k cat,GEF 234
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Reaction equation Kinetic constants ± Source

k M,GEF 3,860 3

D 250

V43 = koff,GEF*[RabGDP-GEF] k off,GEF 600 f

V44 = kcat,GEF*[RabGDP-GEF] k cat,GEF 234 f

V45 = k45*RabGTP k 45 0.0059 d,g

V46 = k46*Glut4_Membrane*As160 k 46 1.30E–07 d,g

ki = nM–1 min–1; kd,i, km,I, kM,As160, and kM,GEF = nM; V = nM/min; koff,As160, kcat,As160, koff,GEF, and kcat,GEF = min–1; D = no 

units.

a
Sedaghat et al. (2002).

b
Hatakeyama et al. (2003).

c
Faratian et al. (2009).

d
Estimated from data in footnote c.

e
Shin et al. (2005).

f
Stephan et al. (2009).

g
Kozka et al. (1995).
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Table III

A description of the initial concentration, units, and the equations forming the basis of the modeling.

Label Initial conc. “ ± ” Units Differential equations d[pathway component]/dt

I 1,200 — nM –V0 – V4

IR 0.0009 — nM V2 – V0

IR-I — — — V0 – V1

pIR-I — — — V1 – V2 – V3 – V4

|pIR-I| — — — V 3

pIR-II — — — V4 – V5 – V6

|pIR-II| — — — V 5

IRS1/3 60 40 nM V9 – V6

pIRS1/3 — — — V6 – V7

PI3K 200 70 nM V10 – V7

pIRS1/3-PI3K — — — V7 – V8

pIRS1/3-PI3K* — — — V8 – V9

PI3K* — — — V9 + V13 – V10 – V11

PI3K*-PI — — — V11 – V12

PI3K*-PIP3 — — — V12 – V13

PIP3 — — — V13 + V30 – V14 – V21

PI 300 30 nM V16 – V11

PTEN-PIP3 — — — V14 – V15

PTEN-PI — — — V15 – V16

PTEN 50 5 nM V16 + V20 + V20 – V14 – V17 – V18

pPTEN-PTEN — — — V18 – V19

PTEN-PTEN — — — V19 – V20

pPTEN — — — V17 – V18

Akt 100 3 nM V34 – V21

Akt-PIP3 — — — V21 + V29 – V22

pAkt-PIP3 — — — V22 + V27 – V23 – V26

PP2A-Akt-PIP3 — — — V28 – V29

PP2A-pAkt-PIP3 — — — V26 – V27 – V28

PP2A-ppAkt-PIP3 — — — V24 – V25

PP2A 10 2.5 nM V27 + V29 + V34 + V38 – V24 – V26 – V31 – V36

PP2A-Akt — — — V33 – V34

PP2A-pAkt — — — V32 – V33

PP2A-ppAkt — — — V31 – V32

ppAkt — — — V30 + V35 – V31 – V35

ppAkt-PIP3 — — — V23 – V24 – V30

PDK — — —
— 

a
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Label Initial conc. “ ± ” Units Differential equations d[pathway component]/dt

As160 108 — nM V38 + V40 + V41 – V35 – V39

pAs160 12 — nM V35 – V36

PP2A-pAs160 — — — V36 – V37

PP2A-As160 — — — V37 – V38

RabGTP 0.0965 — nM V40 + V44 – V39

RabGDP 0.8685 — nM V41 + V43 – V42

RabGTP-As160 — — — V39 – V40 – V41

GEF 0.51 — nM V43 + V44 – V42

RabGDP-GEF — — — V42 – V43 – V44

a
The molecular interactions required for GLUT4 translocation are independent of PDK concentrations.
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