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Clinically Available Medicines Demonstrating Anti-Toxoplasma
Activity

Andrew J. Neville,a Sydney J. Zach,a Xiaofang Wang,b Joshua J. Larson,a Abigail K. Judge,a Lisa A. Davis,c,d,e

Jonathan L. Vennerstrom,b Paul H. Davisa

Department of Biology, University of Nebraska at Omaha, Omaha, Nebraska, USAa; College of Pharmacy, University of Nebraska Medical Center, Omaha, Nebraska, USAb;
Rheumatology, Denver Health Medical Center, Denver, Colorado, USAc; University of Colorado School of Medicine, Aurora, Colorado, USAd; Department of Internal
Medicine, Denver Veterans Affairs Medical Center (VAMC), Denver, Colorado, USAe

Toxoplasma gondii is an apicomplexan parasite of humans and other mammals, including livestock and companion animals.
While chemotherapeutic regimens, including pyrimethamine and sulfadiazine regimens, ameliorate acute or recrudescent dis-
ease such as toxoplasmic encephalitis or ocular toxoplasmosis, these drugs are often toxic to the host. Moreover, no approved
options are available to treat infected women who are pregnant. Lastly, no drug regimen has shown the ability to eradicate the
chronic stage of infection, which is characterized by chemoresistant intracellular cysts that persist for the life of the host. In an
effort to promote additional chemotherapeutic options, we now evaluate clinically available drugs that have shown efficacy in
disease models but which lack clinical case reports. Ideally, less-toxic treatments for the acute disease can be identified and devel-
oped, with an additional goal of cyst clearance from human and animal hosts.

Known for more than 100 years, the apicomplexan parasite
Toxoplasma gondii is distributed throughout the world in a

great variety of mammalian hosts, including humans (1). Initial
exposure to the parasite leads to lifelong chronic infection that is
established within cells of the central nervous system (CNS) and
that, until recently, has been considered largely asymptomatic in
otherwise healthy human populations (2). Recent data from stud-
ies in humans and in model organisms now suggest that chronic
infection by T. gondii may be capable of inducing behavioral
changes, such as impaired response times (3) or impaired learning
(4), and is associated with psychiatric disorders such as schizo-
phrenia (5). More classically, Toxoplasma infection is known as a
leading cause of birth defects, brought about when the woman
receives a primary infection during pregnancy. These trans-utero
infections often cause life-threatening encephalitis and/or other
lifelong neurological or ocular illnesses in congenitally infected
newborns (6). In addition, people with weakened immune sys-
tems, such as AIDS patients or organ transplant recipients who
undergo lifelong immunosuppression, are at significant risk of
developing life-threatening toxoplasmic encephalitis from pri-
mary or recrudescent infection.

It is estimated that approximately 30% to 50% of adults world-
wide are infected with T. gondii, which is acquired most frequently
from eating infected, undercooked meats or via exposure to in-
fected cat fecal matter. Studies report that toxoplasmosis causes
the highest disease burden of food-borne pathogens in developed
countries and, ultimately, is the second leading cause of death due
to food-borne illness (7, 8). Other than fully cooking meats and
changing cat litter frequently, there are few interventions that can
impede human infection: the only available vaccine is not licensed
in North America and is approved solely for sheep (9). Indeed, the
vaccine’s primary effect is to reduce spontaneous fetal abortion in
agricultural mammals, a common outcome of Toxoplasma infec-
tion in some livestock species. It is estimated that the associated
disease has an annual economic impact of $7.7 billion in the
United States alone (10). Similarly, feline companion animals can

be tested for Toxoplasma infection, but treatment to eliminate
feline cyst-shedding ability is unavailable.

Despite the well-established maladies resulting from infection
by this parasite and the recent associations of chronic infection
with altered host behavior, only nonideal treatment options exist
(11). For example, in the United States, there are no approved
therapies for maternal and fetal infections. Moreover, common
medications used synergistically for the treatment of acute toxo-
plasmosis (i.e., toxoplasmic encephalitis) have well-known side
effects: pyrimethamine induces bone marrow toxicity, and many
patients are hypersensitive to sulfadiazine (12). The relatively
well-tolerated drug atovaquone is increasingly used in acute infec-
tions, but only as an adjunctive therapy. Finally, no therapeutic
agent or regimen evaluated to date is capable of clearing the
chronic infection in humans or in livestock animals.

In an effort to spur the development of treatment regimens
with reduced toxicity and/or the capacity to clear chronic infec-
tion in human or animal populations, the purpose of this review is
to comprehensively profile clinically available drugs that have
shown promising activity against T. gondii in vivo and in vitro but
that lack clinical case reports. Such medications may be repur-
posed for effective use against Toxoplasma infections (13). Histor-
ically, the chronic infection was not associated with frank disease
in otherwise healthy human patients, so therapeutic attempts at
clearance were not undertaken. However, there is growing aware-
ness of the value in eradicating chronic infection: in addition to
interrupting the infectious route (if regimens were to be applied to
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companion and/or livestock animals), it would reduce the risk of
reactivation in immunocompromised patients, and the possibility
exists that clearing infection from the brain might reverse any
parasite-induced behavioral phenotypes. Despite its known side
effects, no treatment has been as effective against the acute stage as
the synergistic combination of pyrimethamine and sulfadiazine,
which target the folate synthesis pathway of the parasite. As an
addition to or a replacement of the clinical use of pyrimethamine
and sulfadiazine against acute infection, the following are com-
monly employed: clindamycin, doxycycline, dapsone, and an
erythromycin derivative (e.g., clarithromycin or azithromycin)
(14). These are summarized briefly in Table 1.

The characteristics of an ideal anti-Toxoplasma drug or com-
bination would be severalfold. First, treatment should be effective
against both stages of parasite growth in all mammals: the fast-
growing tachyzoite stage associated with acute disease and rapid
cell invasion and division (and easily cultivated in vitro) and the
chronic bradyzoite stage associated with parasite formation of an
intracellular chemoresistant cyst wall within infected brain and
muscle cells. Often, measurements in model organisms to evaluate
tachyzoite susceptibility to the drug treatment do so by quantify-
ing parasite counts (“parasite burden”) of internal organs (heart,
liver, and/or spleen) typically 3 to 10 days following the initial
infection (notably, where the degree of parasite clearance is posi-
tively correlated with the length of treatment) or by providing a
lethal challenge and counting mice spared due to drug treatment.
In contrast, bradyzoite cyst reduction resulting from drug treat-
ment is typically evaluated by quantifying cysts that form in the
brain by at least 30 days postinfection. Although not uncommon,
trials evaluating cyst levels when the drug is administered early in

the infective process (�30 days after infection) do not accurately
measure the effect on the cyst stage but instead measure the reduc-
tion of the count of parasites entering the brain—a process that is
known to take several days, depending on the parasite and host
species/strain. Second, the ideal treatment would be parasiticidal
against these two stages, but parasitostatic capability against the
tachyzoite stage, which has greater difficulty resisting the host
adaptive immune response, may be sufficient. Mice are used al-
most universally in these evaluations, which is quite appropriate
and natural for this parasite: carnivorism of infected mice is likely
the most common infection route for cats, the definitive host of
Toxoplasma gondii. For compounds to effectively eliminate para-
sitic brain cysts, they would likely need to penetrate the blood-
brain barrier. Lastly, an ideal treatment would show high efficacy
and low toxicity across a range of hosts, including humans but also
livestock and companion animals.

CLINICALLY AVAILABLE MEDICATIONS WITH ANTI-
TOXOPLASMA ACTIVITY

Table 2 represents a comprehensive review of the literature ac-
cessed from PubMed using a search with the keywords “toxo-
plasm* AND (drug* OR treatment*).” Reviewed publication
dates were limited to 1 January 1980 to 4 July 2015. A total of 5,222
items were filtered for primary literature evaluating the in vitro or
in vivo efficacy of clinically available compounds, excluding pub-
lications evaluating any drug with a 50% inhibitory concentration
(IC50) that was �10 �M or that was determined solely by the less
reliable enzyme-linked immunosorbent assay (ELISA) method
(81) and those already listed in Table 1. Treatments for ocular
infection were not included, as these have been recently reviewed

TABLE 1 A list of drugs commonly used against toxoplasmosisa

Drug(s) References Mechanism of action In vitro IC50

Murine lethal challenge(s) and outcome
(reference[s])

Pyrimethamine 15–20 Antifolate 0.4 �M 10 mg/kg/day, 20–90% survival,
depending on parasite strain (18)

Dapsone, sulfadiazine, sulfadoxine,
sulfamethoxazole

17, 19, 21–27 Antifolate Dapsone, 1.2 �M; sulfadiazine,
1.6 �M; sulfamethoxazole,
395 �M

Dapsone, 100 mg/kg/day, 100% survival
(24); sulfadiazine, 375 mg/kg/day,
100% survival (17);
sulfamethoxazole, 600 mg/kg/day,
100% survival (26)

Clindamycin 17, 27–30 Protein synthesis
inhibitor

0.005 �M 300 mg/kg/day, increased survival by 11
days (17)

Trimethoprim (typically combined
with sulfamethoxazole)

21, 25, 26, 31 Antifolate 17.2 �M 70 mg/kg/day, 20% survival (26)

Atovaquone 27, 32, 33 Mitochondrial electron
transfer chain inhibitor

0.82 �M 5 mg/kg/day, 20% survival (19)

Doxycycline, minocycline 34, 35 Apicoplast division
inhibitor

Doxycycline, 14.4 �M Doxycycline, 300 mg/kg/day, 100%
survival (34)

Acetylspiramycin, azithromycin,
clarithromycin, dirithromycin,
erythromycin, roxithromycin,
spiramycin, telithromycin,
tylosin

18, 29, 36–41 Protein synthesis
inhibitor

Azithromycin, 11.5 �M;
clarithromycin, 401 �M;
erythromycin, 19.6 �M;
roxithromycin, 32.3 �M;
spiramycin, 17.8 �M;
telithromycin, 0.20 �M

Azithromycin, 200 mg/kg/day,
40–100% survival, depending on
parasite strain (38); clarithromycin,
200 mg/kg/day, 80% survival (40);
clarithromycin, 300 mg/kg/day, 100%
survival (18); roxithromycin, 10 mg/
day, 80–100% survival (36, 37);
spiramycin, 400 mg/kg/day, no
survival (38)

a The lowest observed IC50 values are reported in cases in which multiple values were found in the literature. Moreover, wide variations exist in the method of murine lethal
challenge between studies: differences include infectious dose, parasite strain, drug delivery route, time postinfection before treatment initiation, treatment length, and time of
observed survival.
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elsewhere (84). Articles not available in English were also ex-
cluded. The following includes a brief discussion on the demon-
strated activity of these drugs against Toxoplasma.

ANTIMICROBIAL AGENTS

A number of relatively distinct compounds used clinically against
an array of predominantly eukaryotic pathogens have shown
some efficacy against T. gondii. Miltefosine is an analog of the
ubiquitous compound phosphatidyl choline found in eukaryotic
cell membranes and was initially developed to treat tumors. Sub-
sequently, it was discovered to display potent efficacy against non-
apicomplexan Leishmania protozoans, and it is now used clini-
cally for treatment of Leishmania infections. Results of additional
in vitro studies, including a recent study investigating Toxoplasma
sensitivity, suggest that it may have much broader antimicrobial
properties (42). The study showed that miltefosine had little effi-
cacy in controlling acute infection after 5 days of treatment; how-
ever, a 15-day treatment against the established chronic stage led
to a 78% reduction of the level of cysts in the brain. Moreover, the
remaining cysts were noticeably smaller upon microscopic exam-
ination, suggesting that the drug effectively penetrates the blood-
brain barrier and that extension of treatment time may produce
greater effects. In an effort to provide functional options for treat-
ment of infections by the unrelated parasite Naegleria fowleri, ex-
panded investigational access to miltefosine for use against this
uncommon but deadly infection has been granted by the United
States Centers for Disease Control and Prevention. While the
mechanism of action is not established in these antimicrobial
roles, an appealing feature of miltefosine is an extended half-life of
approximately 7 days in humans.

Niclosamide is a salicylanilide which is approved for treatment
of parasitic worm infection, where it appears to decouple oxida-
tive phosphorylation. Noting that niclosamide inhibits T. gondii
growth in vitro at approximately 250 nM, Fomovska et al. de-
signed a number of niclosamide derivatives and evaluated them
against T. gondii (43). These showed efficacy against in vitro par-
asite growth; the most potent of these had an IC50 of 8 nM but was
found to be parasitostatic, not parasiticidal. Efficacy against the
cyst stage of Toxoplasma has not been studied.

Triclosan is a broad-spectrum agent used topically to inhibit
fatty acid synthesis in susceptible organisms. Several reports indi-
cate that triclosan (IC50, 0.02 �M) decreases in vitro parasite
growth of not only Toxoplasma (see Table 2) but also Plasmodium
(44) and Babesia (85). Investigators reported that the drug targets
enoyl reductase, an enzyme not found in mammals. However,
parasite survival studies are either lacking or disappointing; tri-
closan did not extend mouse survival during a lethal challenge.
This hydrophobic drug may hold greater promise if it can be more
effectively delivered to the target enzyme (which resides in the
parasite’s quadruple-membraned organelle, the apicoplast): proof-
of-concept approaches investigated triclosan conjugated to octa-
arginine or encased in liposomal nanoparticles, the latter confer-
ring greater reductions of parasite counts in peritoneal fluid than
triclosan alone (45, 46).

ANTIPROTOZOAL AGENTS

A number of antiprotozoal agents (typically folate synthesis inhib-
itors) approved for human use have already been leveraged for
clinical use against the acute stage. It is notable, though, that an
extensive pool of drug-like compounds screened against Plasmo-

dium falciparum followed by secondary screening against addi-
tional parasites (T. gondii, Leishmania major, and Trypanosoma
brucei) showed that T. gondii was the least responsive of that group
to this compound subset, suggesting that it may be more difficult to
target chemotherapeutically than other tested human parasites (86).

Several structurally unrelated veterinary agents used on live-
stock (poultry, cattle, sheep, etc.) and companion animals have
shown in vitro efficacy against T. gondii, although those agents are
not commonly used for treatment of acute toxoplasmosis in these
animals (87). Rather, they are used to treat or prevent a number of
coccidian infections caused by organisms from the genera Eime-
ria, Neospora, Hammondia, Sarcocystis, and others. The following
agents (along with their anticoccidial mechanism of action, if
known) demonstrated in vitro IC50 values below 1 �M but were
not evaluated further for in vivo effectiveness: the mitochondrial
inhibitors decoquinate and robenidine; the ionophores monensin
and salinomycin; and the protein synthesis inhibitor halofugi-
none (see Table 2). Arprinocid (IC50, 7 �M; unknown mechanism
of action) and the mitochondrial inhibitors ponazuril and dicla-
zuril (IC50, 6 nM), after administration at doses of 10 mg/kg of
body weight/day or lower, each showed 100% survival of mice
groups challenged with T. gondii acute lethal infection. Separately,
in vivo testing of the mitochondrial inhibitor toltrazuril (IC50, 0.94
�M) in sheep showed reductions in levels of microscopically
counted tissue and brain cysts.

Isolated from the plant Artemisia annua, artemisinin and its
semisynthetic derivatives have become part of a mainstay combi-
nation therapy for malaria infections. Although the mechanism of
action of these compounds is not completely clear, their activity is
hemoglobin digestion dependent (88). A recent study identified
the malaria parasite’s phosphatidylinositol-3-kinase as another
possible target (89). While Toxoplasma is sensitive to artemisinin,
with an IC50 value of 0.64 �M, this is more than 100-fold higher
than the corresponding IC50 against Plasmodium falciparum (68).
Additionally, treatment with artemisinin during mouse lethal
challenges increased survival by only 20%, whereas treatment with
artemisone, a synthetic derivative with reduced side effects that is
undergoing clinical trials, permitted 50% mouse survival in the
same study (49). Studies evaluating the effect of these compounds
on the bradyzoite stage are lacking.

ANTIBACTERIAL AGENTS

T. gondii is a single-cell eukaryote, which obviously limits the
likely efficacy of many prokaryotic-specific drugs. However, a
number of antibacterial agents have shown in vitro efficacy against
T. gondii. Almost all antibacterials used in the clinic to treat acute
or recrudescent Toxoplasma patients are macrolides; clarithromy-
cin and azithromycin are among the macrolides often used (see
Table 1). Clindamycin, a lincosamide antibiotic, has also been
used for this purpose. While the mechanism of action against
Toxoplasma is not established for these agents, they are known to
inhibit the ribosome in target organisms. Fusidic acid, a bacterio-
static compound used outside the United States to treat skin,
bone, and joint infections by inhibiting microbial protein synthe-
sis, shows relatively weak activity in vitro (IC50, 7 �M) and no
efficacy against Toxoplasma in vivo. Administration of the potent
combination drug quinupristin-dalfopristin (Synercid) used to
treat antibiotic-resistant Enterococcus infections via protein syn-
thesis inhibition resulted in 100% survival in the acute infection
model. Notably, when administered alone, each drug was much

Minireview

7164 aac.asm.org December 2015 Volume 59 Number 12Antimicrobial Agents and Chemotherapy

http://aac.asm.org


less effective, thus mimicking observations in bacteria where treat-
ment using the combination is thought to be bactericidal but
treatment using each of the individual drugs is thought to be bac-
teriostatic. However, no cyst reduction studies were conducted
using quinupristin-dalfopristin or its components.

Another group of potent antibiotics are the fluoroquinolones,
which function by inhibiting prokaryotic topoisomerase II, lead-
ing to DNA fragmentation. Several newer fluoroquinolone deriv-
atives have shown efficacy against experimental fungal infections
(90); however, their routine clinical use in toxoplasmosis cases is
uncommon. A number of fluoroquinolone derivatives showed in
vitro and in vivo efficacy: trovafloxacin permitted 100% survival of
infected mice in an acute infection model.

The drugs in the rifamycin group of antibiotics work against
prokaryotic organisms by inhibiting DNA-depending RNA syn-
thesis, and rifamycin derivatives are particularly effective against
Mycobacterium infections. Moreover, rifamycins typically operate
as bactericidal agents and show some ability to penetrate the
blood-brain barrier (91). Although the classic drug rifampin
showed no efficacy against Toxoplasma in vitro (92), a number of
derivatives demonstrated growth inhibition. At relatively high
(300 mg/kg) doses in mice, rifabutin protected 100% of mice dur-
ing a lethal challenge with the hypervirulent RH strain; notably,
lower (50 to 100 mg/kg) doses used in combination with known
anti-Toxoplasma drugs such as pyrimethamine, sulfadiazine, and,
especially, clindamycin showed potential synergistic effects (63).
Another rifamycin derivative, rifapentine, is known for its long
half-life in mice and humans and, evaluated against T. gondii acute
lethal challenge in a mouse model, was 90 and 100% effective at
doses of 100 and 200 mg/kg, respectively. Due to its half-life, rifa-
pentine would be an exciting drug to evaluate against the cyst
stage; however, such studies evaluating any of the drugs in the
rifamycin group are lacking. Why rifampin is ineffective com-
pared to other rifamycin derivatives is unknown, suggesting that
this group of antibiotics may be affecting one or more novel tar-
gets in the parasite.

ANTIFUNGAL AGENTS

Antifungal agents effectively target a broad range of eukaryotic
fungal pathogens of humans; chief among these agents are the
azoles, which were first used clinically in the 1980s (93). Keto-
conazole, fluconazole, and itraconazole work by inhibiting ergos-
terol synthesis, a key component of the fungal cell membrane.
Though fluconazole and itraconazole have IC50 values of 3 and 0.5
�M, respectively, the mechanism responsible for their effect
against Toxoplasma is unknown. While both antifungals, at doses
of up to 20 mg/kg/day, increased survival only marginally (�40%)
in an acute mouse infection model, they significantly reduced cyst
levels, albeit the effect was seen when administration began 5 days
following the initial infection.

ANTRETROVIRAL AGENTS

Beyond the classic association of Toxoplasma with fetal infections
via primary infection of the mother, Toxoplasma infections have
become a leading cause of mortality among HIV-positive individ-
uals with AIDS. Symptomatic infection can occur in immuno-
compromised individuals via primary infection or by reactivation
of a latent, chronic infection. To prevent this, patients are often
prescribed the trimethoprim-sulfadiazine combination prophy-
lactically. Surprisingly, even patients who have been on this pro-

phylactic antiparasitic regimen for more than a decade still retain
viable parasite tissue cysts, which typically reassert, often pro-
foundly, when prophylactic therapy is removed. Frequently, coin-
cident with T. gondii prophylaxis is antiretroviral therapy against
HIV, thus ameliorating a primary concern of Toxoplasma symp-
tomatic disease. However, observant researchers hypothesized
that some antiretroviral therapies were more directly affecting the
Toxoplasma gondii parasite. Indeed, studies show that multiple-
antiretroviral therapies (using both protease inhibitors and nu-
cleic acid analogues) appear to inhibit parasite growth in vitro
through mechanisms that are not established. Single 100 mg/kg
oral doses of didanosine (a reverse transcriptase inhibitor) re-
duced levels of chronic brain cysts by approximately 65%; nota-
bly, a single clinical review showed a reduction in reactivation of
disease in HIV patients treated with didanosine, suggesting that it
may reduce cyst levels in the human brain (94). No in vivo studies
have been conducted using antiretroviral protease inhibitors,
which may target parasite proteases or may modulate host pro-
teases required for parasite egress (95).

ANTICANCER AGENTS

Fluorouracil (5-FU) is a pyrimidine antimetabolite analog used to
treat ranges of malignancies. 5-FU undergoes conversion to
5-fluorodeoxyuridylate and interacts covalently with thymidylate
synthetase and N5,N10-methylene tetrahydrofolate, thus forming
a block for DNA synthesis (75). 5-FU is effective against T. gondii
in vivo at doses as low as 0.08 �M. Preliminary work by Harris et
al. indicated that 5-FU may be effective against T. gondii in doses
10-fold lower than those used for malignancies. It is assumed that
5-FU has the capacity to transit the blood-brain barrier, as it as-
sociated with CNS toxicity (96).

Crizotinib is a kinase inhibitor targeting multiple receptor ty-
rosine kinases, including anaplastic lymphoma kinase (ALK),
which interferes with tumor cell proliferation and survival. It is
approved for use in cases of ALK-positive, metastatic, non-small-
cell lung cancer. Crizotinib inhibited T. gondii at 4.0 �M; how-
ever, the host HeLa cells detached from the plate, indicating host
toxicity. Lower doses of crizotinib (0.4 �M) had no effect on the
parasite. Gefitinib, another kinase inhibitor, is postulated to in-
hibit the intracellular tyrosine kinase domain of epidermal growth
factor receptor (EGRF), resulting in cell cycle arrest and inhibition
of angiogenesis. By inhibiting EGRF, downstream kinases such as
AKT, extracellular signal-regulated kinase (ERK), Jun N-terminal
protein kinase (JNK), and mitogen-activated protein kinase
(MAPK) p38 are also inhibited. Whether one or more of the par-
asite-specific kinases are targeted is unknown (97), but this is a
distinct possibility. Gefitinib at 20 �M inhibits T. gondii com-
pletely, without detachment of the host HeLa cells from the plate
(76). However, gefitinib concentrations of �5 �M had little effect
on the parasite. Neither kinase inhibitor was further evaluated in
an in vivo model.

IMMUNOSUPPRESSANTS AND IMMUNOMODULATORS

Methotrexate (MTX) is an immunosuppressant folate antimetab-
olite analog and shows polyglutamation in the host cell, where it
inhibits dihydrofolate reductase (DHFR) (98). MTX is used in
various malignancy treatment protocols and is used in rheuma-
tology as a disease-modifying antirheumatic drug (DMARD).
While parasite DHFR is an essential enzyme in purine and thymi-
dylate metabolism, mammalian cells can use leucovorin (folinic
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acid), a reduced folate, to perform MTX “rescue.” Enzymatically,
piritrexim (a lipid-soluble analog of MTX) is at least 10-fold more
potent against the parasite than MTX and at concentrations of 0.1
to 1.0 �M was shown to inhibit replication of T. gondii in a mouse
peritoneal macrophage. Folinic acid rescue did not diminish the
efficacy of piritrexim in inhibition of T. gondii replication (15, 99).

Cyclosporine (CsA) is an immunosuppressive and DMARD
that inhibits T lymphocytes. It is principally used in organ trans-
plant rejection prophylaxis but may also be used to treat rheuma-
toid arthritis (RA) or recalcitrant plaque psoriasis. Three bio-
chemical processes have been associated with CsA: (i) complexes
form between CsA and cyclosporine-binding proteins (cyclophi-
lins) which interfere with calcineurin and inhibit signal transduc-
tion; (ii) CsA inhibits the chaperone function of specific proteins;
and (iii) CsA has been shown to inhibit P-glycoprotein, a mem-
brane pump that confers multidrug resistance to cancer cells and
parasitic protozoa (100). CsA variably affected parasite loads, de-
pending on the time frame being investigated (77). Not surpris-
ingly, mice undergoing an acute lethal challenge experiment per-
ished rapidly when given CsA (78).

T. gondii lacks the ability to synthesize purines de novo and thus
utilizes adenosine kinase (AK)-mediated phosphorylation of
adenosine salvaged from the host to acquire purines (79). Bio-
chemical assays showed that adenine arabinoside (ara-A) effec-
tively inhibits parasite-derived AK, with an IC50 value of 1.5 �M.
When azathioprine, another purine derivative, was used to treat
mice in an acute lethal infection model, 100% survival was ob-
served (77). Evaluated against the cyst stage, however, azathio-
prine (the only anticancer or immunosuppressant agent to be
evaluated against this stage) showed no significant difference
compared to control results.

Auranofin is a gold-containing DMARD previously used for
treatment of rheumatoid arthritis (RA). Due to its toxicity, aura-
nofin has largely been supplanted by other DMARDS and biologic
medications for the treatment of RA, but it is still commercially
available. The mechanism of action of auranofin against parasites
is thought to be dissociation of the gold, which then targets thi-
oredoxin reductase. Auranofin has an IC50 value of 0.28 �M
against T. gondii and is effective at 1 mg/kg in vivo in a chicken
embryo model injected with tachyzoites.

PSYCHIATRIC AGENTS

CNS-acting medications, particularly antischizophrenic or anti-
psychotic agents, are often prescribed to Toxoplasma-positive in-
dividuals due to the relatively high coincidence of these mental
disorders with parasite infection (101, 102). Similarly to the hy-
pothesis that HIV-positive individuals directly reduce parasite
disease potential by taking antiretrovirals, some studies have in-
vestigated whether psychoactive drugs affect T. gondii growth. As
a group, these drugs function against unrelated targets, but many
appear to inhibit cultured Toxoplasma parasites. The most potent,
fluphenazine (IC50, 1.7 �M), is a dopamine receptor antagonist
with multiple side effects; it has also shown activity against the
Leishmania parasite (103). However, there are no animal experi-
ments analyzing the ability of these agents to reduce acute disease
spread or morbidity or to reduce activity against the cyst stage.

CONCLUSION

Among the compounds listed in Table 2, none presently possess
all of the attributes of a highly promising future drug against Tox-

oplasma gondii. Largely, this is due to missing information regard-
ing their efficacy against the bradyzoite stage. From the character-
istics compiled, the compelling efficacy of didanosine warrants
further investigation; however, this drug, a nucleoside analog of
adenosine, is associated with negative and common side effects,
including peripheral neuropathy. Methotrexate and related deriv-
atives are also provocative due to their low IC50 values in vitro,
warranting further in vivo work. However, these drugs, too, are
associated with dose-dependent negative side effects. Similarly,
the veterinary anticoccidial halofuginone demonstrated excep-
tional potency in vitro, warranting its further evaluation as a treat-
ment for Toxoplasma infection in animals.

In summary, the need for more-effective and less-toxic anti-
Toxoplasma drug regimens is becoming increasingly urgent with
the globally growing ranks of immunocompromised patients and
the continued difficulties with ensuring safe livestock food sup-
plies. More-potent regimens may also contribute to reductions in
psychiatric disorders, if Toxoplasma is indeed a causal factor. Cur-
rent research on developing a human or animal Toxoplasma vac-
cine has been an ongoing but incredibly challenging effort (104).
Recent advances in immunotherapeutics designed to boost the
host response to the parasite or to parasite antigens may aid effec-
tive multispecies vaccine development, ideally resulting in disease
prevention or reduction and interruption of transmission (105).
Immunomodulators in combination with anti-Toxoplasma com-
pounds are another area of future promise (106). While there are
dozens of small molecules that have shown promise against T.
gondii in vitro or in vivo, these are beyond the scope of this review,
which addresses clinically available but uncommonly used op-
tions. Additionally, as reviewed elsewhere (107), a number of
novel natural products have shown activity against the parasite.
The potential exists for other apicomplexan organisms (Plasmo-
dium, Babesia, Eimeria, and Cryptosporidium) known to cause hu-
man or livestock diseases to be similarly sensitive to the agents
described in this review; thus, future studies evaluating the afore-
mentioned drugs against a broader range of parasites may be war-
ranted. Synergistic combinations of the anti-Toxoplasma drugs
reviewed here may yet produce “the right mix” to completely clear
Toxoplasma chronic infections from humans and human-raised
animal species.
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