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a b s t r a c t 

The pathogenesis of hypertension has been linked to excessive levels of reactive oxygen species (ROS), particu- 
larly superoxide (O 2 

•− ), in multiple tissues and organ systems. Overexpression of superoxide dismutase (SOD) to 
scavenge O 2 

•− has been shown to decrease blood pressure in hypertensive animals. We have previously shown 
that MnTnBuOE-2-PyP 5 + (BuOE), a manganese porphyrin SOD mimic currently in clinical trials as a normal tissue 
protector for cancer patients undergoing radiation therapy, can scavenge O 2 

•− and acutely decrease normotensive 
blood pressures. Herein, we hypothesized that BuOE decreases hypertensive blood pressures. Using angiotensin 
II (AngII)-hypertensive mice, we demonstrate that BuOE administered both intraperitoneally and intravenously 
(IV) acutely decreases elevated blood pressure. Further investigation using renal sympathetic nerve recordings 
in spontaneously hypertensive rats (SHRs) reveals that immediately following IV injection of BuOE, blood pres- 
sure and renal sympathetic nerve activity (RSNA) decrease. BuOE also induces dose-dependent vasodilation of 
femoral arteries from AngII-hypertensive mice, a response that is mediated, at least in part, by nitric oxide, as 
demonstrated by ex vivo video myography. We confirmed this vasodilation in vivo using doppler imaging of the 
superior mesenteric artery in AngII-hypertensive mice. Together, these data demonstrate that BuOE acutely de- 
creases RSNA and induces vasodilation, which likely contribute to its ability to rapidly decrease hypertensive 
blood pressure. 

Introduction 

Hypertension affects approximately 45% of American adults and 
only about 25% of affected individuals have their blood pressure un- 
der control [1] . Additionally, hypertension is a leading risk factor for a 
variety of cardiovascular-related diseases including myocardial infarc- 
tion, stroke, heart failure, and kidney disease [ 1 , 2 ]. Thus, novel anti- 
hypertensive therapeutics are needed to help patients with uncontrolled 
hypertension lower their blood pressure and minimize their risk of de- 
veloping other cardiovascular morbidities. 

Over the past two decades, the connection between hypertension 
and reactive oxygen species (ROS), particularly superoxide (O 2 

•− ) has 
become well established [ 3 5 ]. Angiotensin II (AngII), the primary ef- 
fector peptide of the renin-angiotensin system, increases O 2 

•− levels in 
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multiple organs, including the brain, kidney, and the vasculature. The 
resulting sympathoexcitation [ 6 , 7 ], renal dysfunction [8] , and vasocon- 
striction [9] are known to contribute to the pathogenesis of hypertension 
[10] . Endogenously, O 2 

•- is specifically scavenged by a family of three 
enzymes known as superoxide 

Dismutase (SOD). Previous work in our laboratory and others has 
shown that scavenging O 2 

•- in vivo via overexpression of SOD or ad- 
ministration of SOD mimics decreases blood pressure in hypertensive 
animals [ 11 14 ]. Unfortunately, the transition of these potentially ther- 
apeutic anti-hypertensive strategies to the clinical setting has been de- 
layed for various reasons. 

One particular SOD mimic that has advanced into multiple clini- 
cal trials is MnTnBuOE-2-PyP 5 + (BuOE). This redox-active manganese 
porphyrin is being clinically evaluated (ClinicalTrials.gov Identifiers: 
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NCT02655601, NCT02990468, NCT03386500, NCT03608020) for its 
ability to act as a radioprotector of normal tissue while suppressing tu- 
mor growth in cancer patients receiving radiation therapy [15] . The 
enhanced lipophilicity and reduced toxicity of BuOE relative to other 
manganese porphyrins such as MnTE-2-PyP (T2E) has contributed to 
its clinical advancement and also prompted the study of BuOE in other 
disease models [ 16 18 ]. Recent work from our lab showed that BuOE 
decreases normotensive blood pressures in mice [19] . This work is in 
agreement with non-clinical safety and toxicity studies showing that 
BuOE significantly decreases blood pressure in dogs [20] . Furthermore, 
BuOE has also been investigated in aortic valve stenosis [21] , a clinical 
manifestation that is associated with hypertension. However, the effect 
of BuOE on hypertensive blood pressures remains unknown. 

Considering the extensive knowledge of the role of O 2 
•− in hyper- 

tension [ 3 10 ], previous work demonstrating BuOE’s ability to scavenge 
O 2 

•− [ 16 , 18 , 19 ] and decrease normotensive blood pressures [19] , we 
tested the hypothesis that BuOE decreases hypertensive blood pressures 
in AngII-hypertensive mice, as well as spontaneously hypertensive rats 
(SHRs), and further sought to examine the mechanism(s) behind the 
BuOE-induced hypotensive response. Herein, we report that BuOE in- 
duces an immediate and transient decrease in blood pressure in AngII- 
hypertensive mice and SHRs mediated, at least in part, by sympathoin- 
hibition and vasodilation. 

Materials and methods 

Animals 

Ten-week-old male C57Bl/6 mice (23–27 g, Jackson Laboratories, 
Bar Harbor, ME) were housed in the animal facility at the University 
of Nebraska Medical Center (UNMC) with access to standard chow and 
water ad libitum on a 12-h light-dark cycle. Blood pressure, myography, 
and doppler imaging experiments were conducted following a one-week 
acclimatation period at the UNMC animal facility. 

Eighteen-week-old male Wistar Kyoto (WKY) rats and aged-matched 
Spontaneously Hypertensive Rats (SHRs) (315 360 g, Charles River Lab- 
oratories, Wilmington, MA) were used to record normotensive (control) 
and hypertensive renal sympathetic nerve recordings, respectively. Rats 
were group-housed in the animal facility with access to standard chow 

and water ad libitum on a 12-h light-dark cycle. Upon arrival, rats were 
allowed to age to eighteen weeks old and acclimate to the UNMC facil- 
ity. 

All procedures were performed in accordance with institutional 
guidelines for animal research reviewed and approved by the University 
of Nebraska Medical Center Institutional Animal Care and Use Commit- 
tee. 

BuOE preparation 

BuOE (a generous gift from Dr. James Crapo from National Jewish 
Health, Denver, CO) powder was kept under a vacuum seal at room 

temperature away from moisture and light. The drug was weighed out, 
reconstituted with PBS, and sterilized with a 0.2 μM PES syringe filter 
(Basix, Thermo Fisher Scientific, Hampton, NH). The molarity of the 
solution was determined by spectrophotometer prior to sterilization. 

Blood pressure measurements 

Mice were implanted with radiotelemeters (PhysioTel PA-C10, Data 
Sciences International, St. Paul, MN), as previously described [ 13 , 19 , 
22 ], to record blood pressure. Briefly, mice were anesthetized with 
isoflurane inhalation (2.5%) and kept under anesthesia by isoflurane in- 
halation (1 2%) for the duration of the procedure. Once the left carotid 
artery was isolated, the catheter of the telemeter was inserted into the 
carotid artery and secured with 7–0 braided silk sutures (Teleflex Med- 
ical, Coventry, CT). The body of the telemeter was placed in a subcu- 

taneous pouch on the right side of the mouse. The incision was closed 
with 6.0 Prolene suture (Ethicon, Cincinnati, OH) and treated with bupi- 
vacaine (1 mg/kg, subcutaneous) immediately following the procedure. 
Mean arterial pressure (MAP), systolic blood pressure (SBP), and dias- 
tolic blood pressure (DBP) were recorded daily in single-housed, con- 
scious, unrestrained mice. 

Once a consistent normotensive baseline blood pressure was 
achieved for three consecutive days, mice were implanted subcuta- 
neously with osmotic minipumps (Alzet #1002, Durect Corporation, Cu- 
pertino, CA) delivering AngII (Sigma #A9525, St. Louis, MO) to induce 
hypertension [ 13 , 22 , 23 ]. Pumps infused 400 ng/kg/min AngII for ap- 
proximately 3 weeks until the pumps emptied. 

When mice became hypertensive (around Day 10 of AngII infu- 
sion), they were intraperitoneally (IP) or intravenously (IV) injected 
with 100 μL of vehicle (saline) or BuOE (IP: 1.0, 5.0 mg/kg; IV: 0.1, 
0.5, 1.0 mg/kg). Upon completion of the studies, mice were euthanized 
with an overdose of pentobarbital (150 mg/kg, IP). 

Renal nerve recordings 

Renal sympathetic nerve recordings were performed as previous 
described [ 19 , 24 , 25 ]. On the day of the recording, rats were anes- 
thetized with an IP injection of urethane (0.75 g/kg) and 𝛼-chloralose 
(70 mg/kg). The right femoral artery was cannulated with PE-50 
polyethylene tubing connected to a pressure transducer (PowerLab 
Data-Acquistion System, ADInstruments, Colorado Springs, CO) to mea- 
sure MAP and heart rate (HR), while the right femoral vein was cannu- 
lated to administer the drugs IV. A tracheal intubation was performed 
to allow for independent breathing. The left kidney was exposed via a 
retroperitoneal flank incision and the renal artery and vein were iden- 
tified. After a branch of the renal nerve was isolated and placed on a 
bipolar electrode, the nerve/electrode junction was surrounded with 
WACKER SilGel mixture (604 & 601). This isolation of the junction re- 
duced the noise to signal ratio and prolonged the duration of a good 
signal. The electrical signal was amplified via a Grass amplifier with 
high- and low-frequency cutoffs of 1000 Hz and 100 Hz, respectively. 
The rectified output (resister capacitor) filtered time constant (0.5 s) was 
then recorded and integrated using PowerLab (8si, ADInstruments, Syd- 
ney, NSW, Australia). Following approximately 30 min of stable baseline 
recording, BuOE (0.5 mg/kg, IV) was administered and changes in MAP, 
HR, and RSNA were monitored. Following the completion of this pro- 
tocol, hexamethonium (120 mg/mL, IV) was administered to determine 
the amount of background noise in the signal. Basal nerve activity was 
determined at the beginning of the experiment, and background noise 
was determined by nerve activity recorded at the end of the experiment. 
To calculate the RSNA during the experiment, the background noise was 
subtracted from the recorded value. The RSNA response to drugs was 
expressed as a percentage change from the basal value. 

Electron paramagnetic resonance (EPR) spectroscopy 

EPR spectroscopy and the cell permeable superoxide-sensitive spin 
probe, 1 ‑hydroxy-3-methoxycarbonyl-2,2,5,5-tetramethylpyrrolidine 
(CMH), were used to measure O 2 

•− levels in femoral arteries collected 
from normotensive or AngII hypertensive mice. Immediately upon 
harvesting the femoral artery from the mouse hind limb, the tissue was 
placed in warm (37 °C) Krebs-HEPES buffer containing deferoxamine 
methanesulfonate salt (DF, 25 𝜇M) and diethyldithiocarbamic acid 
sodium salt (DETC, 5 𝜇M). CMH (200 μM) was added, and samples 
were incubated at 37 °C for 1 h. Then, samples were frozen in liquid 
nitrogen, placed into a liquid nitrogen finger dewar, and inserted into 
the resonator cavity of a Bruker eScan EPR spectrometer. Directly 
proportional to the level of free radicals (i.e., O 2 

•− ) in the sample, 
the EPR spectra amplitude in arbitrary units was normalized to tissue 
weight. 
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Video myography 

Video myography was performed as previously described [ 26 , 27 ]. 
Briefly, the femoral artery at the femoral to popliteal artery junction 
was isolated from the hind limb of normotensive and AngII-hypertensive 
mice. Adipose and connective tissues surrounding the arteries were re- 
moved under a microscope (SZX10; Olympus, Center Valley, PA) in 4 °C 

physiological saline solution (PSS) [containing (in mM) 138.0 NaCl, 4.0 
KCl, 1.2 MgSO 4 anhydrous, 1.6 CaCl 2 ×2H 2 O, 1.2 KH 2 PO 4 , 0.026 EDTA, 
6 Glucose, 10 HEPES acid]. Arteries were cannulated at both ends onto 
micropipette tips (0.125 mm; DMT Systems, Aarhus, Denmark) in the 
chamber of a pressure myography system (110p; DMT Systems, Aarhus, 
Denmark). Following preincubation in 37 °C PSS for 1 hour, the outer 
vessel diameter was recorded using an inverted microscope with a video 
camera (TS100; Nikon Eclipse, Melville, NY), with data streamed in real 
time to edge detection software (DMT VAS version 0.2.0). Arteries were 
assessed for leakage and only those that did not leak were used to assess 
vasodilatory function. After pre-constriction with phenylephrine (PE, 
10 − 9 to 10 − 3 M; Sigma, St. Louis, MO) to ∼ 50 - 65% of the maximum 

PE response, the vasodilatory response to BuOE was assessed. Increasing 
doses of BuOE were added to the chamber to achieve final concentra- 
tions from 0.5 to 20 μM. Subsets of arteries were pretreated with an en- 
dothelial nitric oxide ( •NO) synthase (NOS) inhibitor NG-nitro- l -arginine 

methyl ester (L-NAME, Sigma, St. Louis, MO; 0.1 M, 10 min) prior to the 
BuOE dose response. 

Changes in vessel diameter are represented as percentage vasodila- 
tion from baseline and calculated using the following equation: (D Dose - 
D P /D I -D P ) × 100, where D Dose is the recorded diameter as consequence 
of a given treatment (i.e., drug dose), D P is the diameter recorded af- 
ter the addition of the vasoconstrictor (i.e., PE), and D I is the diameter 
recorded immediately before the addition of the vasoconstrictor (initial 
diameter). 

Doppler imaging 

To allow for clear imaging of the abdominal region, hair was re- 
moved from the mice using Nair one day prior to imaging, taking care 
not to burn the skin by using excess Nair or by leaving the Nair on too 
long. On the day of imaging, normotensive and AngII-hypertensive mice 
were anesthetized by isoflurane inhalation (1 2.5%) before being placed 
on a heated stage in a supine position. Mice were kept under anesthesia 
by isoflurane inhalation (1 2%) for the duration of the procedure. 

The superior mesenteric artery (SMA) was selected for imaging due 
to its anatomical location which is routinely identifiable and allows for 
clear analysis of blood flow. Ultrasound gel was applied to the abdomi- 
nal region and the SMA was located using a combination of B-mode and 
color Doppler on the high frequency Vevo 3100 [FujiFilm VisualSon- 
ics Inc ultrasound machine and a MX550D transducer (center frequency 
40 MHz, axial resolution 100 μm) Toronto, Canada]. Blood velocity, re- 
ported as velocity time integral (VTI), was measured using pulse-wave 
Doppler with the doppler gate placed at the site of maximum velocity. 

After obtaining baseline VTI of the SMA, BuOE (1 mg/kg, 100 μL) 
was administered IP and VTI measurements of the SMA were taken every 
5 min for 30 min. VisualSonics VevoLab software (Toronto, Canada) was 
used for post-imaging analysis and measurements. 

Statistical analysis 

All data are expressed as mean ± standard error of the mean (SEM). 
Two-way ANOVA followed by Bonferroni Post-Hoc test were used to 
analyze the blood pressure measurements. Treatment indicates a differ- 
ence between various treatment groups (vehicle and BuOE). Time in- 
dicates a difference over time. Interaction indicates whether the effect 
of treatment depends on the effect of time. For the renal sympathetic 
nerve recordings, data were analyzed by two-way ANOVA followed by 

Bonferroni Post-Hoc test. EPR spectroscopy data were analyzed via Stu- 
dent’s t -test. The myography data were analyzed via two-way ANOVA 

followed by Bonferroni Post-Hoc test. For the doppler imaging measure- 
ments, the data were analyzed via one-way ANOVA followed by Bonfer- 
roni Post-Hoc test. A p-value less than 0.05 was considered to be statis- 
tically significant. All statistical analyses were completed using Prism 8 
(GraphPad Software Inc, San Diego, CA). 

Results 

BuOE acutely decreases hypertensive blood pressure in mice 

The average baseline, normotensive SBP, DBP, and MAP, as indi- 
cated by the dashed line in Figs. 1 2 , in all mice was 111 ± 1.2 mmHg, 
81 ± 1.7 mmHg, and 97 ± 1.4 mmHg, respectively. To determine if 
BuOE decreases hypertensive blood pressure in AngII-induced hyperten- 
sive mice, blood pressure was monitored for two hours post-IP injection 
of BuOE (1 & 5 mg/kg) or vehicle (100 μL) into mice with established 
hypertensive blood pressures (MAP ∼140 mmHg). Both 1 and 5 mg/kg 
BuOE significantly decreased SBP ( Fig. 1 A), DBP ( Fig. 1 B), and MAP 
( Fig. 1 C) immediately following the IP injection. While both concentra- 
tions induced a significant hypotensive response and the blood pressures 
gradually return back to the hypertensive baseline, 5 mg/kg BuOE had 
a much longer hypotensive response ( > 2 h) compared to 1 mg/kg BuOE 
( < 2 h). 

Expanding upon these IP injections, systolic, diastolic and mean 
blood pressures were also monitored following IV injections of BuOE 
(0.1 1 mg/kg) or vehicle into AngII-hypertensive mice. BuOE induced 
a significant dose-dependent decrease in SBP ( Fig. 2 A), DBP ( Fig. 2 B), 
and MAP ( Fig. 2 C) immediately following the IV injection. Notably, 
0.1 mg/kg BuOE induced a transient hypotensive response that lasted 
less than 30 min, while the higher concentrations of BuOE (0.5 & 

1 mg/kg) had prolonged hypotensive responses lasting longer than 
2 h before returning to hypertensive baseline values. Further, the IV- 
induced hypotensive response was more robust than observed after IP 
administration ( Fig. 1 ). 

Of note, vehicle-treated mice exhibit a slight increase in blood pres- 
sure immediately following the IP or IV injection ( Figs. 1 & 2 , respec- 
tively). This was due to handling the mice to perform the injection. Upon 
returning the animals to their home cage post-injection, the blood pres- 
sure returns to the hypertensive baseline values. Taken together, these 
data suggest that BuOE immediately and transiently decreases blood 
pressure in AngII-hypertensive mice. 

BuOE transiently decreases RSNA and MAP followed by an increase in HR 

in WKY rats & SHRs 

To begin examining the mechanism(s) by which BuOE induces its 
hypotensive response, we investigated the effect of BuOE on the sym- 
pathetic nervous system, which is known to play a key role in blood 
pressure regulation [28] . Specifically, changes in RSNA, BP, and HR in 
anesthetized, normotensive WKY rats ( Fig. 3 A) and SHRs ( Fig. 3 B) were 
measured following injections (IV) of 0.05 mg/kg BuOE. As shown in 
Fig. 3 C, BuOE significantly decreased RSNA in both WKYs and SHRs 
within ten seconds (immediate time point) before increasing above base- 
line. While RSNA in the WKYs dropped below baseline during subse- 
quent time points, RSNA in SHRs remained above baseline. The imme- 
diate drop in RSNA was accompanied by a concomitant and significant 
decrease in MAP that gradually returned to baseline by 30 min post- 
injection for both WKY rats and SHRs ( Fig. 3 D). Following the immedi- 
ate decreases in RSNA and MAP, HR increased for both WKY rats and 
SHRs ( Fig. 3 E). The increase in HR was mostly likely a reflex response to 
a drop in arterial pressure. Of note, RSNA, MAP and HR were not altered 
from baseline following IV injection vehicle (saline) (unpublished ob- 
servations). Collectively, these results suggest that BuOE-induced sym- 
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Fig. 1. BuOE administered intraperitoneally (IP) immediately and acutely decreases 

blood pressure in AngII-hypertensive mice. A: Systolic blood pressure (SBP), B: Di- 
astolic blood pressure (DBP), and C: Mean arterial pressure (MAP) of mice given 
BuOE (1 or 5 mg/kg) or vehicle (saline) IP. Dashed line indicates pre-AngII base- 
line blood pressure. Data are displayed as means ± SEM. ∗ p < 0.05 vs 1 mg/kg 
BuOE, ∗ ∗ p < 0.05 vs 5 mg/kg BuOE (two-way ANOVA with Bonferroni post hoc 
test). n = 10 (1 mg/kg BuOE); 8 (5 mg/kg BuOE); 12 (Vehicle). 

Fig. 2. BuOE administered intravenously (IV) immediately and acutely decreases 

blood pressure in AngII-hypertensive mice. A: Systolic blood pressure (SBP), B: Di- 
astolic blood pressure (DBP), and C: Mean arterial pressure (MAP) of mice given 
BuOE (0.1 - 1 mg/kg) or vehicle (saline) IV. Dashed line indicates pre-AngII base- 
line blood pressure. Data are displayed as means ± SEM. ∗ p < 0.05 vs 0.1 mg/kg 
BuOE, ∗ ∗ p < 0.05 vs 0.5 mg/kg BuOE, ∗ ∗ ∗ p < 0.05 vs 1 mg/kg BuOE (two-way 
ANOVA with Bonferroni post hoc test). n = 4 (0.1 mg/kg BuOE); 5 (0.5 mg/kg 
BuOE); 3 (1 mg/kg BuOE); 14 (Vehicle). 

4 
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Fig. 3. BuOE transiently decreases renal sympathetic nerve activity (RSNA) and mean arterial pressure (MAP) in WKY and SHR rats. Representative tracings of heart rate 
(HR), MAP, integrated (Int) RSNA and raw RSNA in WKY (A) and SHR rats (B) injected with BuOE (0.05 mg/kg, IV) at baseline, 10 s, 1 min, 5 min, 30 min, and 
60 min. C: Summary data showing change in RSNA as a percent of baseline. D: Summary data showing change in MAP from baseline. E: Summary data showing 
change in HR from baseline. Data are displayed as means ± SEM. ∗ p < 0.05 vs baseline (two-way ANOVA with Bonferroni post hoc test). n = 7 (WKY); 7 (SHR). 

5 
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Fig. 4. BuOE induces vasodilation in a nitric oxide ( 
•

NO)-dependent manner. 

A) Representative CMH-EPR spectra obtained from femoral arteries isolated 
from normotensive (NTN) or AngII-hypertensive (HTN) mice. Inset: Summary 
EPR spectroscopy data showing O 2 

•− levels in NTN and HTN femoral arteries, 
a.u. = arbitrary units. ∗ p < 0.05 vs NTN (Student’s t -test). n = 6 (NTN); 7 (HTN). 
B) Isolated femoral arteries pre-constricted with phenylephrine were directly 
treated with BuOE and subjected to video myography. Subsets of arteries were 
pre-treated with l -NAME (0.1 M) prior to BuOE treatment. Data are displayed 
as means ± SEM. ∗ p < 0.05 vs NTN BuOE, & p < 0.05 vs HTN BuOE (two-way 
ANOVA with Bonferroni post hoc test). n = 10 (NTN BuOE); 5 (NTN BuOE + l - 
NAME); 5 (HTN BuOE); 5 (HTN BuOE + l -NAME). 

pathoinhibition contributes, at least in part, to BuOE’s hypotensive re- 
sponse in normotensive and hypertensive rats. 

BuOE induces vasodilation of normotensive and AngII-hypertensive mice 

vasculature 

To determine the impact of BuOE on vascular reactivity, we first con- 
firmed that O 2 

•− levels are elevated in the vasculature from hyperten- 
sive mice compared to normotensive mice. Femoral arteries from nor- 
motensive and AngII-hypertensive mice were harvested, incubated with 
the O 2 

•− -sensitive spin probe, CMH, and subject to EPR spectroscopy 
to detect O 2 

•− . The EPR spectra amplitudes ( Fig. 4 A) obtained from 

femoral vessels collected from AngII hypertensive mice were signifi- 
cantly greater than those obtained from normotensive mice, indicating 

Fig. 5. BuOE decreases velocity time interval (VTI), indicative of vasodilation, in 

normotensive and AngII-hypertensive mice. Summary VTI collected from doppler 
imaging of the superior mesenteric artery (SMA) of A: normotensive and B: 

AngII-hypertensive mice given BuOE (1 mg/kg, IP). Data are displayed as means 
± SEM. ∗ p < 0.05 vs baseline (one-way ANOVA with Bonferroni post hoc test). 
n = 5 (normotensive); 5 (hypertensive). 

an increase in O 2 
•− in hypertensive vasculature, as previously reported 

by others [ 9 , 29 ]. 
Next, we directly assessed reactivity of femoral arteries collected 

from AngII-hypertensive or normotensive mice using video myography. 
BuOE (0.5 20 μM) induced a significant dose-dependent increase in va- 
sodilation of arteries from both normotensive and AngII-hypertensive 
mice ( Fig. 4 B). To investigate the role of •NO in mediating BuOE- 
induced vasodilation, a subset of isolated arteries from normotensive 
and hypertensive mice were pre-treated with NOS inhibitor l -NAME 
(0.1 M). Inhibiting •NO production via pretreatment with l -NAME sig- 
nificantly attenuated BuOE-induced vasodilation ( Fig. 4 ). These data 
suggest that •NO is mediating, at least in part, BuOE’s vasodilatory re- 
sponse. 

To expand upon the ex vivo myography data, doppler imaging was 
used to determine the impact of BuOE on vascular reactivity in vivo . 
The SMA of normotensive and AngII-hypertensive mice were imaged 
for 30 min following BuOE (1 mg/kg, IP) injection. Blood velocity, re- 
ported as velocity time integral (VTI), decreased over time ( Fig. 5 ) with 
a significant decrease at 15 min post-injection. Since velocity is inversely 
related to cross sectional area of the vessel, a decrease in velocity is rep- 
resentative of vasodilation. Thus, taken together with the myography 
data, we conclude that BuOE induces vasodilation in normotensive and 
AngII-hypertensive mice. 

Discussion 

Extensive research over the last few decades has illuminated a vast 
amount of knowledge on the role of ROS, particularly O 2 

•− , in cardio- 
vascular diseases such as heart failure and hypertension. In the pursuit 
of restoring physiological redox balance, numerous labs have investi- 
gated the role of exogenous SOD protein or SOD mimics as novel anti- 
hypertensive therapeutics. The present work focused on a manganese 
porphyrin SOD mimic, BuOE, and its effect on blood pressure in two 
different rodent models of hypertension, AngII-hypertensive mice and 
SHRs. After confirming our hypothesis that BuOE decreases hyperten- 
sive blood pressures, we attempted to elucidate the mechanism(s) by 
which this hypotensive response occurs. We demonstrate that BuOE 
transiently inhibits sympathetic nerve activity and induces vasodilation, 
with the latter being attenuated by NOS inhibition. Taken together, our 
results indicate that sympathoinhibition and vasodilation contribute, at 
least in part, to the acute decrease in hypertensive blood pressure in- 
duced by the SOD mimic, BuOE. 

Manganese porphyrins have been shown to be some of the most ef- 
ficacious SOD mimics [ 18 , 30 ] and have become a viable option for 
the treatment of various diseases with perturbed redox environments. 
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The positive charges on the manganese metal center as well as the con- 
stituents surrounding the porphyrin ring help attract O 2 

•- [31] . The first 
of the porphyrin-based SOD mimics, T2E has been studied in numerous 
cancers as a radioprotector [ 32 , 33 ]. However, it is limited by its hy- 
drophilicity and does not cross the blood brain barrier (BBB). As a result, 
the constituting alkyl chains were lengthened resulting in MnTnHex-2- 
PyP 5 + (MnHEX) [ 18 , 30 ]. However, MnHEX was limited by its toxicity 
[34] . The insertion of oxygen into the alkyl chains decreased toxicity, 
while maintaining the enhanced lipophilicity and resulted in the gener- 
ation of BuOE [16] . BuOE’s ability to scavenge superoxide and induce 
cellular responses via oxidation/S-glutathionylation of proteins in the 
NF-kB and Nrf2 signaling pathways [ 35 , 36 ] has led to BuOE being clin- 
ically evaluated in numerous cancers [15] . The success of BuOE in can- 
cer clinical trials has promoted the study of BuOE in other experimental 
disease models including diabetes, obesity, and cardiovascular diseases 
[18] . Anselmo et al. (2018) studied BuOE in AngII-induced mouse aor- 
tic valve remodeling and found that BuOE prevented thickening of the 
AV value by preventing accumulation of extracellular matrix compo- 
nents [21] . Previous work in our lab has shown that BuOE decreases 
normotensive blood pressure via sympathoinhibition [19] . 

The present work builds upon our previous studies by demonstrat- 
ing that BuOE decreases hypertensive blood pressures when adminis- 
tered either IP or IV. When given IP ( Fig. 1 ), 5 mg/kg BuOE induced 
a greater hypotensive response ( ∼ − 100 mmHg) than 1 mg/kg BuOE 
( ∼ − 60 mmHg). Additionally, the higher 5 mg/kg BuOE response was 
maintained for a longer period of time (beyond two hours), whereas 
1 mg/kg BuOE returned to baseline levels by the end of the two-hour 
recording. BuOE (1 mg/kg) given IV ( Fig. 2 ) had a similar response to 
5 mg/kg BuOE given IP with a decrease in blood pressure of approx- 
imately 100 mmHg and a prolonged response that remained signifi- 
cantly decreased for at least two hours. A similar response was seen with 
0.5 mg/kg BuOE given IV. However, the lowest concentrations of BuOE 
(0.1 mg/kg) given IV had the most transient decrease in blood pressure 
( ∼ − 40 mmHg), lasting only approximately 30 min. These data indicate 
that BuOE’s blood pressure effect is concentration dependent. The loca- 
tion of BuOE also appears to alter its blood pressure effects, as having 
a large bolus amount in the vasculature (i.e., IV administration) results 
in more robust changes in blood pressure. In comparison to our previ- 
ous work in normotensive mice, BuOE also induced a more robust de- 
crease in hypertensive mice. For example, 1 mg/kg BuOE (IP) decreased 
MAP by approximately 30 mmHg [19] in normotensive mice, whereas 
the same concentration and route of administration of BuOE in hyper- 
tensive animals decrease MAP by approximately 60 mmHg ( Fig. 1 ). In 
fact, for all of the various concentrations and routes of administration 
tested in this work, BuOE induced a more robust decrease in MAP in 
AngII-hypertensive mice than in normotensive mice. This work matches 
hemodynamic work in anesthetized rats treated with T2E (IV) [37] , the 
BuOE-induced hypotensive response seen in dogs [20] , as well as the 
side effects of the highest dose of BuOE given as a radioprotector to 
cancer patients in clinical trials (unpublished data). 

While much lower doses of BuOE appear to be efficacious in pre- 
venting radiation damage in cancer patients receiving radiation ther- 
apy [15] , determining the mechanism(s) by which BuOE induces its 
hypotensive response may provide new insights that allow for further 
enhancement of BuOE’s safety profile in clinical trials as well as the 
potential for a novel anti-hypertensive therapeutic. As such, we inves- 
tigated BuOE’s effect on the sympathetic nervous system and the vas- 
culature, two key components of physiological and pathophysiological 
blood pressure regulation. 

Numerous studies have shown the contribution of O 2 
•− to the en- 

hanced sympathoexcitation contributing to cardiovascular diseases such 
as heart failure and hypertension [ 7 , 38 40 ]. Specifically, elevated 
O 2 

•- in specific brain nuclei, such as the rostral ventral lateral medulla 
(RVLM) which are known to regulate sympathetic drive and influence 
blood pressure regulation, contribute to hypertensive blood pressures 
[ 7 , 38 ]. Scavenging O 2 

•- in these brain regions attenuates hypertension 

[ 7 , 14 , 41 , 42 ]. Thus, using anesthetized SHRs and their normotensive 
control WKY rats, we recorded RSNA to evaluate the contribution of the 
sympathetic nervous system to BuOE’s hypotensive response ( Fig. 3 ). 
For both WKY rats and SHRs, RSNA significantly decreased immediately 
(within 10 secs) after BuOE (0.05 mg/kg, IV) injection. We suspect that 
BuOE is crossing the BBB, where it scavenges O 2 

•- in cardiovascular con- 
trol brain nuclei, like the RVLM, resulting in this sympathoinhibition. 
Notably, biodistribution studies have shown that BuOE can cross the 
BBB and accumulate in various areas of the brain including the cortex, 
thalamus, and brainstem [ 17 , 43 , 44 ]. Importantly, the brainstem con- 
tains critical cardiovascular control nuclei, such as the RVLM. However, 
to date, pharmacokinetics and biodistribution studies of BuOE have not 
investigated acute timepoints (i.e., seconds to minutes). Therefore, it 
remains unknown if the immediate decrease in RSNA observed in our 
study is due to BuOE crossing the BBB and impacting neuronal activity in 
the RVLM. An alternative interpretation of our RSNA data is that BuOE 
attenuates afferent nerve activity from the kidney to the brain leading 
to the observed sympathoinhibition. In our RSN recording preparation, 
we measure both efferent and afferent nerve activity together. Further 
investigation is required to elucidate BuOE’s impact on efferent versus 
afferent RSNA. 

Following the immediate decrease in RSNA, there was a return to 
baseline (1 min) before dropping below baseline for the rest of the 
recording in normotensive WKY rats. This return to baseline was con- 
comitant with MAP returning to baseline levels. In contrast, in SHRs, 
RSNA returned to baseline and remained above baseline for the dura- 
tion of the recording. We postulate that the prolonged increase in RSNA 

in SHRs is the result of overcompensation for the decrease in blood pres- 
sure and overactivation of the baroreflex. The increase in HR in the SHRs 
at 1 min and beyond post-BuOE injection is consistent with an enhanced 
overall sympathoexcitation and is in agreement with increased RSNA at 
those timepoints. Furthermore, this increase in HR is congruent with the 
non-clinical safety and toxicity studies that showed an increase in HR in 
non-human primates following BuOE administration [20] . Additionally, 
the immediate decrease in RSNA and BP as well as an increase in HR are 
consistent with our previous work using normotensive Sprague Dawley 
rats [19] . 

Another key component of blood pressure regulation is the vascu- 
lature. Increased O 2 

•- levels in the vasculature ( Fig. 4 A) have been re- 
ported in hypertensive animal models [ 9 , 29 ] and linked to endothelial 
dysfunction as well as impaired vascular reactivity [9] . Moreover, O 2 

•- 

reacts with •NO, a key vasodilator, at a diffusion-limited rate resulting 
in reduced bioavailability of •NO and vasoconstriction. We investigated 
the effects of BuOE on vascular reactivity ex vivo via myography and in 
vivo via doppler imaging. Our myography study shows that BuOE signif- 
icantly vasodilates isolated skeletal muscle arteries collected from both 
normotensive and AngII-hypertensive mice in a dose-dependent manner 
( Fig. 4 B). We postulate that BuOE is scavenging O 2 

•- in the vasculature, 
increasing •NO bioavailability, which results in vasodilation. The •NO- 
dependent vasodilation is supported by the fact that pretreatment with 
l -NAME, an eNOS inhibitor, significantly attenuates BuOE-induced va- 
sodilation. Of note, the impact of •NO may extend beyond the vascu- 
lature. •NO in cardiovascular control brain nuclei is known to induce 
sympathoinhibition [ 45 , 46 ]. We speculate that BuOE’s scavenging of 
O 2 

•- in the brain increases •NO bioavailability, thereby leading to the 
sympathoinhibition we observed ( Fig. 3 ). Future studies are needed to 
investigate this potential mechanism. 

Interestingly, inhibition of •NO via l -NAME did not completely abol- 
ish the BuOE-induced vasodilation ( Fig. 4 B), indicating an additional 
mechanism(s) may be playing a role in BuOE’s vasodilatory response. 
Another ROS, hydrogen peroxide (H 2 O 2 ) has been linked to vasodila- 
tion [47] and is formed from the dismutation of O 2 

•− . As such, H 2 O 2 
could be responsible for BuOE’s •NO-independent vasodilation. Addi- 
tionally, calcium is known to play a role in the regulation of vascular 
tone [ 48 , 49 ] via increased O 2 

•− . In fact, another manganese porphyrin, 
MnTBAP has been shown to inhibit calcium ionophore A23187-induced 
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increase in ROS via both scavenging ROS and modulation of calcium 

channels [50–52] . Additionally, T2E has been shown to increase cal- 
cium transients and increase sarcoplasmic reticulum calcium load in a 
rat model of arrhythmias [53] . Thus, it is possible that •NO-independent 
BuOE-induced vasodilation could be the result of a calcium-dependent 
mechanism. Further, considering the importance of redox mechanisms 
and the flow of electrons through eNOS for its activity, it is possible the 
BuOE has direct effects on the activity the enzyme. Ongoing studies in 
our laboratory are currently testing these hypotheses. 

We sought to extend our myography data in vivo using doppler imag- 
ing of the SMA. BuOE (1 mg/kg, IP) decreased VTI in normotensive 
and AngII-hypertensive mice ( Fig. 5 ) over time. VTI is representative of 
blood velocity. Since velocity is in inversely related to cross sectional 
area of a vessel, a decrease in velocity is indicative of vasodilation, 
thereby confirming the ex vivo myography results. Furthermore, the 
significant vasodilation at 15–20 min post BuOE-injection is in agree- 
ment with the peak response of BuOE at the same dose and route of 
administration (1 mg/kg, IP) given to normotensive animals [19] and 
hypertensive animals ( Fig. 1 ). This is also in agreement with other work 
demonstrating that BuOE prevented acute vasoocculsion and reestab- 
lished blood flow in a mouse model of sickle cell disease [ 54 , 55 ]. 

In conclusion, we have demonstrated that BuOE acutely decreases 
blood pressure in hypertensive animal models via inhibition of the sym- 
pathetic nervous system and vasodilation. These results are crucial to 
not only enhancing the safety for patients in clinical trials receiving 
BuOE as a radioprotector but may provide a novel-anti-hypertensive 
therapeutic option for the many Americans who struggle to control their 
hypertension. Therefore, future chronic hypertensive studies are needed 
to investigate the long-term impact of BuOE on elevated blood pressure. 
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