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Broad activation of latent HIV-1 in vivo
Kirston Barton1, Bonnie Hiener1, Anni Winckelmann1,2, Thomas Aagaard Rasmussen2,3, Wei Shao4,5,

Karen Byth6,7, Robert Lanfear8, Ajantha Solomon3,9, James McMahon9, Sean Harrington10,11, Maria Buzon10,11,

Mathias Lichterfeld10,11, Paul W. Denton2,12,13, Rikke Olesen2, Lars Østergaard2,13, Martin Tolstrup2,13,

Sharon R. Lewin3,9, Ole Schmeltz Søgaard2,13 & Sarah Palmer1

The ‘shock and kill’ approach to cure human immunodeficiency virus (HIV) includes

transcriptional induction of latent HIV-1 proviruses using latency-reversing agents (LRAs)

with targeted immunotherapy to purge infected cells. The administration of LRAs

(panobinostat or vorinostat) to HIV-1-infected individuals on antiretroviral therapy induces a

significant increase in cell-associated unspliced (CA-US) HIV-1 RNA from CD4þ T cells.

However, it is important to discern whether the increases in CA-US HIV-1 RNA are due

to limited or broad activation of HIV-1 proviruses. Here we use single-genome sequencing to

find that the RNA transcripts observed following LRA administration are genetically diverse,

indicating activation of transcription from an extensive range of proviruses. Defective

sequences are more frequently found in CA HIV-1 RNA than in HIV-1 DNA, which has

implications for developing an accurate measure of HIV-1 reservoir size. Our findings provide

insights into the effects of panobinostat and vorinostat as LRAs for latent HIV-1.
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L
atent but replication-competent HIV-1 is known to be
present in all lineages of circulating T cells1–4 in the
peripheral blood and anatomical compartments5–9.

Although there appears to be preferential persistence of
latently infected cells with distinct integration sites, HIV
generally integrates randomly in the host genome10,11. To
eliminate latently infected cells through activation of
transcription, an ideal latency-reversing agent (LRA) must be
active within multiple cell types in many tissues, and activate
transcription from proviruses integrated into a multiplicity of
sites throughout the genome. To date, several independent studies
have demonstrated that LRAs activate latent HIV-1 in vivo
through observations of increased cell-associated unspliced
(CA-US) RNA following administration of disulfiram,
vorinostat, panobinostat and romidepsin in HIV-1-infected
individuals on long-term suppressive antiretroviral therapy
(ART)12–20. The mechanisms that contribute to HIV latency
are diverse and include transcriptional repression due to
removal of histone acetylation or methylation, availability of
transcription factors, the integration site of the provirus and
the availability of the LRA to the infected tissues and cells21.
Thus, it is conceivable that the use of an LRA that targets a
specific mechanism such as histone acetylation may reverse
latency in a subset of viruses. Before this study, it was unknown
whether the previously observed increases in CA-US RNA
were due to activation of a subset of proviruses or to global
non-selective activation of a broad spectrum of latent proviruses.
Here we show that panobinostat and vorinostat broadly activate
HIV proviruses, that a panobinostat-activated virus is genetically
similar to that observed during an analytical treatment
interruption (ATI) and that the cell-associated RNA contains a
large percentage of defective viral sequences.

Results
Clinical samples. To determine whether the histone deacetylase
inhibitors (HDACi) panobinostat and vorinostat broadly
activate transcription from HIV-1 proviruses in vivo, we utilized
single-genome/proviral sequencing (SGS/SPS) and phylogenetic
analysis with the molecular evolutionary genetics analysis
(MEGA) software22 to compare the genetic composition and
diversity of CA RNA and DNA following administration of these
compounds during two clinical trials. The vorinostat trial
included 20 participants, 15 of whom are included here, who
received 400mg of vorinostat orally once daily for 14 days
(Table 1, see original publications for further details14,23,24).
Significant CA-US RNA increases were observed 8 h after the
initial dose of vorinostat and remained elevated at all time points
sampled up to 70 days after the last dose of vorinostat14. The
panobinostat trial included 15 participants who received 20mg
of panobinostat orally three times a week every other week for
8 weeks (Table 1, see original publications for further

details)14,23,24. Panobinostat induced significant increases in
CA-US RNA at all time points compared with the baseline and
increased the detection rate of plasma HIV-1 RNA23. Upon
completion of panobinostat, nine participants elected to undergo
an ATI, during which plasma samples were collected twice weekly
to detect rebound virus14,23,24. In this study, a total of 2,843
sequences (309 defective and 2,534 intact) from 15 panobinostat
trial participants and a total of 1,654 sequences (249 defective and
1,405 intact) from 15 vorinostat trial participants were analysed
(Table 1 and Supplementary Tables 1 and 2). Phylogenetic
analysis of the sequences from all 30 subjects formed individual
clades with no intraparticipant mixing except for sequences from
panobinostat participants 1 and 2 who are a known transmission
pair (Supplementary Fig. 1). In total, these trials included 26
participants that initiated ART during chronic infection and four
participants that initiated ART during acute infection (Table 2).
The sequences from the participants who were treated during
acute infection had very low diversity between sequences as
expected based on previous studies. As a result, the acutely treated
participants were excluded from the comparison of CA RNA and
DNA sequences here because the sequence diversity is insufficient
to detect differences between populations8,9. The sequences from
the participants who were treated during chronic infection
displayed higher levels of diversity as expected because of the
prolonged period of viral replication.

Panobinostat and vorinostat induce broad HIV-1 transcripts.
Peripheral blood samples were collected immediately before,
twice during and once following LRA administration. The
proviral sequences were obtained to establish a baseline level of
diversity to which the induced CA RNA sequences could be
compared. To explore the relationship between the proviral
DNA and CA RNA sequences obtained during LRA therapy, we
first constructed phylogenetic trees for each individual study
participant (Figs 1a, 2 and Supplementary Figs 2–28). For the
majority of participants, the CA RNA sequences intermingled
throughout the phylogenetic tree with the corresponding DNA
sequences. Likewise, the genetic diversity, as measured by the
mean of the average pairwise distances, of the DNA and CA RNA
sequences collected during HDACi dosing was not significantly
different between participants (panobinostat 2.5% versus 2.5%,
P40.99; vorinostat 2.9% versus 4.1%, P¼ 0.25; Wilcoxon
signed-rank test), indicating that the observed CA RNA arose
from a genetically diverse range of proviruses following vorinostat
or panobinostat exposure (Figs 1b, 2 and Supplementary
Figs 2–28). No difference was observed in the average pairwise
distance between the baseline DNA and that collected
during panobinostat administration, demonstrating the
consistency of the proviral population between these two time
points. Furthermore, longitudinal analysis using a linear
mixed-effects model of DNA and CA RNA sequences revealed
that there was no statistically significant within-participant
difference between the baseline and on HDACi DNA sequences
(panobinostat mean change 0.02%, s.e. 0.08%, P¼ 0.741;
vorinostat mean change 0.13%, s.e. 0.12%, P¼ 0.298; linear
mixed-effects model) and no statistically significant within-
participant difference between the on HDACi DNA and CA RNA
sequences (panobinostat mean difference 0.11%, s.e. 0.33%,
P¼ 0.748; vorinostat mean difference 0.35%, s.e. 0.23%,
P¼ 0.154; linear mixed-effects model; Supplementary Fig. 29).

In participant 17 from the panobinostat trial, 19 of the 22 RNA
sequences from the on-panobinostat time points were found in
one clonal expansion that corresponded to a clonal DNA
expansion that was detected at all four panobinostat trial time
points (Fig. 2). This large clonal expansion was associated with a

Table 1 | Baseline characteristics of study participants.

Panobinostat Vorinostat

No. of male participants 15 14
No. of female participants 0 1
Age (years)* 47 (28–53) 48 (40–56)
Virological suppression (years)* 3.6 (2.5–16.0) 5.0 (2.7–11.0)
Baseline CD4 (cells per ml)* 935 (615–1,990) 717 (479–1,136)
No. treated during acute infection 3 1
No. of sequences analysed 2,843 1,654

CD4, CD4þ T cell.
*Values represent median (range).
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low average pairwise distance of 0.4%, which is 6.5-fold lower
than that of DNA sequences from samples collected during
panobinostat administration. This one participant may be a select
case in which a single sequence was disproportionally activated by
panobinostat, indicating that in some rare cases selective
activation does occur. However, because this sequence corre-
sponds to a clonal expansion of DNA sequences, it is not possible
to determine whether several cells or a single cell was responsible
for the RNA production. In addition, following an HDACi, we
observed clonal expansions of identical CA RNA sequences in
one of the three vorinostat trial participants and four of the eight
panobinostat trial participants who initiated ART during chronic
infection and had five or more sequences available for analysis
(Supplementary Figs 2–28), which may have occurred because of
activation of transcription from identical proviruses in many cells
or because of strong activation of a single provirus25,26.
Importantly, each tree that contained a cluster of identical
sequences also contained several unique CA RNA sequences
that were evenly distributed throughout the DNA sequences,
further confirming that vorinostat and panobinostat activate
transcription from a broad range of proviruses.

A large fraction of cell-associated HIV-1 RNA is defective.
HIV-1 sequences have up to 8% genetic diversity within a single
infected individual27. This is largely due to the low-replication
fidelity of reverse transcriptase and to hypermutation by
APOBEC3G (refs 28, 29). We quantified the percentage of
defective sequences (that is, containing stop codons or
deleterious hypermutation) in both the DNA and CA RNA from
the two samples during HDACi dosing. We found that the CA
RNA had a significantly higher percentage of defective
sequences than the DNA in CD4þ T cells from participants
who received panobinostat and vorinostat (panobinostat 29.11%
RNA versus 10.2% DNA, P¼ 0.008; vorinostat 45.5% RNA versus
11.36% DNA, P¼ 0.03; Wilcoxon signed-rank test; Fig. 3).
This same relationship was observed in samples collected before
and following LRA administration, indicating that vorinostat and
panobinostat do not selectively activate transcription from
hypermutated sequences but rather uniformly increase
transcription from all proviruses. Furthermore, longitudinal
analyses using a linear mixed-effects model also revealed that,
after adjusting for time, a significantly higher percentage of CA

RNA sequences were defective compared with DNA sequences for
participants receiving panobinostat and vorinostat (panobinostat
3.6-fold: 95% confidence interval (CI) 2.0–6.3, Po0.001; vorinostat
2.8-fold: 95% CI 1.3–5.9, P¼ 0.019; linear mixed-effects model;
Supplementary Fig. 30 and Supplementary Tables 3 and 4). In
comparison, only 5 of the 246 pre-ART plasma RNA sequences
and 8 of 183 post-ATI RNA plasma samples were found to be
defective in the panobinostat trial. These findings indicate that, as
expected, defective virus does not significantly contribute to plasma
RNA before initiation of ART or following ART discontinuation.

ATI viraemia is seeded by the peripheral blood and intestine.
Next, we compared DNA sequences collected during panobinostat
administration to sequences from the plasma HIV-1 RNA that
emerged during the ATI. We obtained a total of 183 plasma ATI
sequences from the nine ATI participants. In contrast to the diverse
pattern of CA RNA sequences, each of the nine phylogenetic trees
contained from one to nine clusters of identical sequences from the
ATI (Fig. 2). Furthermore, the average pairwise distance of the
plasma HIV-1 RNA sequences during ATI was significantly less
than that of the DNA sequences from samples collected while
receiving panobinostat (Fig. 1b, 1.5% ATI to 2.5% DNA, P¼ 0.031;
Wilcoxon signed-rank test). Longitudinal analyses that were per-
formed using a linear mixed-effects model also revealed a statisti-
cally significant within participant decrease in genetic diversity of
the RNA sequences that were collected during the ATI compared
to the DNA sequences collected while the participants were on
panobinostat (mean change � 0.72%, s.e. 0.55%, P¼ 0.043; linear
mixed-effects model). This reduction in viral diversity supports the
observation from the phylogenetic trees that the initial rebound
virus emerged from a small subset of existing proviral sequences as
observed previously30–35.

In total, we identified HIV-1 DNA that was identical to plasma
RNA from the ATI in eight out of the nine total participants. In
addition, when we compare those treated during chronic infection
who elected to undergo the ATI and from whom we recovered
more than five sequences, in four out of seven participants, we
identified DNA sequences from samples collected while taking
panobinostat that were identical to expansions of HIV-1 RNA
detected in plasma during the ATI (Fig. 2; Pan09, Pan10, Pan17
and Pan18). Notably, three participants had ATI sequences that
were similar to CA RNA sequences collected while the participant

Table 2 | Samples collected and similarity analysis summary for each participant.

Participant Chronic/acute Pre-ART ATI Cell subsets LPMCs CD4 DNA||ATI CD4 RNA||ATI Cell subsets||ATI LPMC||ATI

Pan01 C Y Y Y Y Y Y N N
Pan02 C Y Y Y N Y Y Y —
Pan04 A Y Y Y N Y* N Y* —
Pan05 A N N N Y — — — —
Pan06 C Y N N N — — — —
Pan07 C Y N N Y — — — —
Pan08 C N Y Y N N N N —
Pan09 C N Y Y Y Y N N Y
Pan10 C Y Y Y Y Y N N N
Pan12 C Y Y Y N Y N Y —
Pan14 A Y N N Y — — — —
Pan15 C Y N N Y — — — —
Pan17 C N Y Y Y Y N N Y
Pan18 C Y Y N Y Y Y — Y
Pan19 C N N N N — — — —

12/15 10 9 8 9 8/9 3/9 3/8 3/5

A, acute; ART, antiretroviral therapy; ATI, analytical treatment interruption; C, chronic; CD4, CD4þ T cell; LPMC, lamina propria mononuclear cell; N, no, Y, yes.
—, sample not available.
*Acutely treated participant with average pairwise distance less than 0.005.
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Figure 1 | Panobinostat and vorinostat non-selectively activate transcription from latent HIV-1 proviruses. (a) Representative phylogenetic trees of

HIV-1 sequences from HIV-infected participants on suppressive ART who received panobinostat (Pan18) or vorinostat (Vor16) showing the genetic

relationship of sequences from each time point. For participant Pan18, the plasma samples were collected B1 year and 6 months before initiation of

antiretroviral therapy and 14 days following the analytical treatment interruption. Peripheral blood samples were collected at baseline, 2 h after the first

dose of panobinostat (TP1), 32 days after the first dose of panobinostat (TP2) and 38 days after the final panobinostat dose. Intestinal lamina propria

mononuclear cells were collected at baseline (1 week before the first panobinostat dose) and during week 4 of the panobinostat trial. For participant Vor16,

peripheral blood samples were collected at baseline, 7 days after the first dose of vorinostat (TP1), 14 days after the first dose of vorinostat (TP2) and

7 days after the final vorinostat dose. (b) Average pairwise distance of cell-associated DNA (Pan n¼ 12, Vor n¼ 12) before and DNA (Pan n¼ 12,

Vor n¼ 14) and cell-associated RNA (Pan n¼ 8, Vor n¼ 3) during vorinostat and panobinostat administration, as well as the plasma HIV-1 RNA following

an ATI for the panobinostat trial (n¼ 7). Each data point represents the group mean±s.e.m. The Wilcoxon signed rank test was used to generate the

P values. *Pr0.05.
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was receiving panobinostat on ART (Fig. 2; Pan01, Pan02 and
Pan18; 499% similarity), indicating that oral panobinostat
effectively targeted proviruses that have the ability to contribute
to plasma viraemia during treatment interruption (Table 2).

Five individuals who participated in the ATI also provided
intestinal lamina propria mononuclear cells (LPMCs) at
baseline and during the final week of panobinostat dosing. In
one participant (Pan17), a DNA sequence from the LPMCs
was identical to plasma ATI sequences and in three participants
(Pan09, Pan17 and Pan18) DNA from the LPMCs was highly
similar to plasma ATI sequences (499% similarity). In addition,
in one participant we observed CA RNA that had 499%
sequence similarity to sequences identified in plasma during
the ATI (Pan18). These results indicate that reservoir virus in
LPMCs in the intestine is capable of contributing to viraemia
following ATI and is the first in vivo observation of a
tissue-derived cell that carried provirus-matching rebound
plasma virus.

Virus able to rebound persists in clonally expanded cells.
Previous studies have proposed that clonally expanded cells only
contain defective proviruses10. Therefore, we examined the
sequences in this study to determine whether this hypothesis
was universally true. In participant 17, we observed sequences
from plasma HIV-1 RNA during ATI that were identical to an
expanded population of DNA sequences. In agreement with
Kearney et al.36, this observation indicates that proviruses in cells
that have undergone clonal expansion are able to contribute to
rebound following ATI. While uncommon, this example
demonstrates that HIV-1 proviruses that are able to contribute
to viraemia can persist in proliferating cells. These findings are in
contrast to those of Chun et al.31, who found that HIV-1 in the

plasma following treatment interruption was distinct from that
detected in the latent reservoir in resting CD4þ T cells10.

Central memory cells contribute to rebound viraemia. We also
sorted CD4þ memory T-cell subsets including Naive, stem
cell (TSCM), central memory (TCM), effector memory (TEM) and
terminally differentiated (TTD) cells from eight participants.
These samples were collected 38 days after the final dose of
panobinostat. In total, 251 HIV-1 DNA sequences were obtained
from the various subsets from eight participants (35 Naive, 20
TSCM, 77 TCM, 102 TEM and 17 TTD). The percentage of defective
sequences available from each subset was similar to that observed
for the overall CA DNA discussed above (2.9% Naive, 5% TSCM,
7.8% TCM, 10.4% TEM and 5.9% TTD). All eight participants from
whom we had cell subsets also participated in the ATI. In two
participants treated during chronic infection, we identified
TCM sequences that were closely related to sequences from the
treatment interruption (Table 2; Pan02 and Pan12; similarity
499.8%). However, none of the other subsets contained
sequences that were closely related. These data do not definitively
indicate that the treatment interruption viraemia does not come
from these subsets, but rather is likely a result of the limited
sample size available for analysis.

SGS/SPS has some limitations in this context. While we were
able to detect defective viruses, it is possible that the intact
sequences are part of a larger defective sequence. Our PBMC
samples were collected from the upper extremity, which may lead
to some sampling bias. However, the sequences collected from
each time point and sample intermingled throughout the
phylogenetic tree indicating that the sampling bias was minimal.
As with all limiting dilution assays, some minor viral variants
may not be detectable at the lower dilutions. We limited our
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analyses of the average pairwise distance to samples from which
we obtained more than five intact sequences to reduce bias. We
performed a simulation in which we used the cell-associated RNA
and DNA sequences that were collected at baseline, during
HDACi administration or during follow-up as a model
population (n¼ 219, average pairwise distance¼ 3.33%). The
model population was subsampled for 2–50 sequences, with 1,000
replicate subsamples at each sequence number. Five sequences
were determined to be the lowest number of sequences with an
acceptable level of confidence in the calculated average pairwise
distance (95% CI 3.281–3.410, Supplementary Fig. 31).

Discussion
In conclusion, we detected HIV-1 DNA from peripheral
blood CD4þ T cells that was identical to plasma HIV-1 RNA
that emerged during an ATI. These data demonstrate that the
proviruses that contribute to plasma viraemia following ART
cessation can be identified in CD4þ T cells. Importantly,
panobinostat activated transcription from proviruses in CD4þ

T cells and LPMCs that were genetically similar to those observed
in the plasma during an ATI, indicating that it activated
transcription from virus that contributed to viral rebound
following ART discontinuation. Specifically, central memory cells
were demonstrated to contain HIV DNA that was similar to
rebound viraemia, which highlights the important role of this
subset in persistence of latent HIV-1. Furthermore, we
demonstrated that a significant percentage of the detected
CA RNA sequences contained stop codons and/or were
hypermutated, making them defective. The high percentage of
hypermutated CA RNA that was detected emphasizes the
importance of developing cost-effective sensitive assays that
measure replication-competent virus when assessing the activity
of LRAs. Finally, our study demonstrates that panobinostat and
vorinostat broadly activated transcription from genetically diverse
HIV-1 proviruses in vivo, which is promising for the development
of future HDACi-based therapies that aim to activate latent
HIV-1 proviruses as part of an eradication strategy.

Methods
Nucleic acid extraction and cDNA synthesis. For the vorinostat trial, we
obtained half of the DNA and RNA extracted from one million CD4þ T cells from
each participant before the initial vorinostat dose, at the two time points with the
highest CA-US RNA measurement during vorinostat dosing (varied from 2 h to 14
days post-initial vorinostat dose) and 7 days after the final dose of vorinostat. For
the panobinostat trial, we obtained one million CD4þ T cells before the first dose
of panobinostat, at the two time points with the highest CA-US RNA measurement
(which varied from 2 h to 46 days after panobinostat administration for each
participant) and 38 days after the final panobinostat dose. An additional on-HDAC
therapy sample was analysed for panobinostat participant 2 time point 2 on day 42

post-panobinostat administration because of the low number of sequences
obtained from the initial time point 2 sample.

For the samples from the vorinostat trial, CD4þ T cells were isolated from 10
million PBMCs using the CD4þ T-cell isolation kit from Miltenyi Biotec
(Cat. no. 130-096-533). At least one million CD4þ T cells were obtained for each
participant. For the panobinostat trial, one million CD4þ T cells were used to
extract the RNA and DNA, and we received half of the total product for each. The
cells were lysed using QIAshredder (Qiagen, Cat. no. 79565), and then, CA RNA
and DNA were extracted from the cell lysate with the AllPrep DNA/RNA Mini Kit
(Qiagen, Cat. no. 80204) according to the manufacturer’s instructions. For the
panobinostat trial, nucleic acids were isolated from the LPMCs using the Allprep
Isolation Kit (Qiagen #80204)24.

Plasma was collected before the initiation of antiretroviral therapy and
following an ATI. Plasma was ultracentrifuged and extracted using a guanidinium-
based method37,38.

Plasma HIV-1 RNA and CA RNA were reverse-transcribed to cDNA using the
Superscript III (Life Technologies, Cat. No. 11752250) cDNA Synthesis Kit and a
gene-specific primer (E115 Reverse: 50-AGAAAAATTCCCCTCCACAATTAA-30)
according to the manufacturer’s instructions.

Single-genome sequencing. To characterize the HIV-1 genetic populations
before the initiation of antiretroviral therapy, before, during and after HDAC
therapy, and after an ATI, we performed SGS/SPS8,9,27,37,39. cDNA and/or the
HIV-1 DNA extracted from cells were serially diluted to a single copy. The V1–V3
region of HIV-1 env was amplified from the DNA or cDNA by two rounds of
nested PCR amplification. The following primers were used for amplification:
Round 1 forward (E20) 50-GGGCCACACATGCCTGTGTACCCACAG-30 and
reverse (E115) 50-AGAAAAATTCCCCTCCACAATTAA-30 ; round 2, forward
(E30) 50-GTGTACCCACAGACCCCAGCCCACAAG-30 and reverse (E125)
50-CAATTTCTGGGTCCCCTCCTGAGG-30 . For round 1 of PCR, the following
thermocycler parameters were used: 94 �C for 2min, 94 �C for 30 s, 52 �C for 30 s,
72 �C for 1min, 44 cycles of steps 2–4 and 72 �C for 3min. For round 2 of PCR, the
following thermocycler parameters were used: 94 �C for 30 s, 55 �C for 30 s, 72 �C
for 1min, 41 cycles of steps 1–3 and 72 �C for 3min. The PCR products
representing single HIV-1 sequences were sequenced using Sanger sequencing
(Australian Genome Research Facility, Sydney, Australia).

Phylogenetic analysis. Contigs were generated from the raw sequencing data
using an in-house computer programme written in Perl scripting language
(available upon request). Vigorous automated and manual quality-control
parameters were used to eliminate low-quality sequences before and following the
generation of the contigs. Multiple alignment files were created for each participant
using MUSCLE40. Defective virus was characterized using the Los Alamos HIV
Database Hypermut tool (http://www.hiv.lanl.gov) to screen for HIV-1 DNA and
RNA sequences containing G-A hypermutations and by visually screening the
amino-acid sequences for premature stop codons. Defective viruses were excluded,
and the remaining sequences were used to construct maximum likelihood
phylogenetic trees using MEGA-CC22. An appropriate model for nucleotide
substitution was determined for each phylogenetic tree using MEGA-CC model
finder. The models used to generate the phylogenetic trees in this study included
the following: generalized time-reversible model, Tamura 3-parameter model,
Hasegawa-Kishino-Yano model and Tamura Nei model incorporating
gamma-distributed (gamma category 4) and/or invariant sites where appropriate.
Our heuristic tree search strategy used the nearest neighbour interchanges
branch-swapping algorithm. Branch support was inferred using 1,000 bootstrap
replicates. Measurements of genetic HIV-1 diversity (average pairwise distance) of
HIV-1 DNA or RNA sequences were calculated using the p-distance
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Figure 3 | A significant proportion of cell-associated HIV-1 RNA is defective. The percentage of defective virus detected in CD4þ Tcells collected from

HIV-infected participants on ART before, during and following administration of panobinostat (baseline DNA n¼ 14, RNA n¼ 7; on HDACi DNA n¼ 15,
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was used to generate the P values.
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model in MEGA-CC. Branches with less than one bootstrap support were
removed using TreeCollapseCL4 (Emma Hodcroft, http://emmahodcroft.com/Tree
CollapseCL.html). Bootstrap values greater than 75 are included on the
phylogenetic trees. Tree images were generated with ggtree (https://bioconductor.
org/packages/release/bioc/html/ggtree.html). Participants treated during acute
infection with an average pairwise distance of less than 0.005 were excluded from
the comparison of CA RNA with DNA because the diversity in the sample was
insufficient to detect differences between the populations (Vorinostat
participant Vor02 and Panobinostat participants Pan04, Pan05 and Pan14).
Samples with fewer than five sequences were excluded from analyses because of
insufficient data. The phylogenetic trees for all participants can be found in
Supplementary Figs 2–28.

Statistical analyses. Statistical analysis for the interparticipant analysis using the
Wilcoxon test was performed with Prism 6 for Mac OS X. All values in the graphs
are expressed as the mean±s.e.m. Participants who initiated ART during acute
infection were excluded from the interpatient analyses of the average pairwise
distance. Only samples with five or more intact sequences were included in the
comparisons of the average pairwise distance and samples with five or more total
sequences were included in the hypermutation analyses. A Gaussian distribution
could not be established for all groups because of sample size. Therefore, statistical
comparisons were made using Wilcoxon test, which does not assume Gaussian
distribution. A paired t-test was also performed for each comparison, and the
significance results for the Wilcoxon and paired t-test were the same for each.
The P values reported are from the more conservative Wilcoxon test. No
differences in the variance between the compared groups were detected. A P value
less than 0.05 was considered significant.

For the additional linear mixed-effect model statistics shown in the
Supplementary Information, the statistical software S-PLUS 8.2 was used to analyse
the data. Two-tailed tests with a significance level of 5% were used throughout.
Patient identifier was considered as a random effect and the sample type factor as
both a fixed effect and as a random effect with a general positive definite covariance
structure. The percentage of dead-end virus was log-transformed to approximate
normality and to stabilize the variance before analysis. Linear mixed-effects models
were used to investigate the joint effects of time (treated as a three-level factor) and
type (DNA or RNA) on log (percentage of dead-end virus) within each drug trial.
Patient identifier, time and type were considered as random effects with a general
positive definite covariance structure, and time, type and their two-way interaction
as fixed effects. Parameter estimates and their 95% CIs for the log (percentage of
dead-end virus) analyses were back-transformed to present results using the
original scale of measurement. Diagnostic plots were used to assess the adequacy of
the fitted models. For each fitted model, these included scatterplots of standardized
residuals by fitted values and observed versus fitted values. Normal quantile plots
(Q–Q plots) of residuals and of estimated random effects were used to check the
assumption of normality for the within-patient errors and for the random effects.

Simulation of sampling. The cell-associated DNA and RNA sequences from the
HDAC trial time points were used to generate a matrix of average pairwise
distances (average pairwise distance 3.33 from 219 sequences). To calculate the bias
and variance associated with estimating the average pairwise distance from smaller
numbers of sequences, the matrix was subsampled for 2–50 sequences 1,000 times
each, and the resulting pairwise distance estimates were examined graphically
(Supplementary Fig. 31). The packages ggplot and plyr in R language and
environment were used to perform the simulation and plot the resulting data41.

Code availability. The in-house computer programme used to generate contigs of
sequences from the raw sequencing data is available from the corresponding author
on request with no restrictions.

Data availability. All sequences from the study have been deposited in the
GenBank Nucleotide database with the accession codes KU563159 to KU563207,
KU609626 to KU612115 and KU660076 to KU661479. The rest of the data that
support the conclusions of this study are available from the corresponding authors
upon request.

Ethics approval. Informed consent was obtained from all study participants. The
vorinostat trial was approved by the Alfred Human Research Ethics Committee,
and the study is registered at ClinicalTrials.gov (NCT01365065). The panobinostat
trial was approved by the Danish scientific ethical committee for the central Jutland
region in accordance with the principles of the Declaration of Helsinki.
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