5-2021

The Effect of Mentoring for Undergraduate Mentors: A Systematic Review of the Literature

Andrew Leavitt
aleavitt@unomaha.edu

Follow this and additional works at: https://digitalcommons.unomaha.edu/university_honors_program

Part of the Science and Mathematics Education Commons

Recommended Citation
https://digitalcommons.unomaha.edu/university_honors_program/145
The Effect of Mentoring for Undergraduate Mentors:
A Systematic Review of the Literature

University Honors Program Thesis/Capstone/Creative Project

University of Nebraska at Omaha

Submitted by

Andrew Leavitt

05/21

Christine E. Cutucache
Table of Contents:

Abstract 2

Introduction 3-5

Methods 5-9

Results/Discussion 9-15

Conclusion 15-16

Acknowledgements 16

References 16-32

Table 1 33-39

Table 2 40-53

Table 4 54-56
Abstract

Multiple meta-analyses and systematic reviews have been conducted to evaluate methodological rigor in research on the effect that mentoring has on the mentee. However, a dearth of information exists regarding the effect of mentoring on the mentor. As such, I conducted a systematic review of the literature focused on such an effect (if any) within the fields of science, technology, engineering, and mathematics (STEM), aiming to bolster the literature surrounding this affect. In the case of this work, my focus is on undergraduate or post-secondary students as mentors for near-peers and/or youth. This review functions to identify commonalities of affective outcomes and benefits or challenges for undergraduate mentors, and further to promote methodological rigor on the subject by providing a more consistent description of the metrics utilized across studies. Herein articles from 2013-2021 are analyzed to determine characteristics of UG mentor programs, the functionality of mentors within the programs, and the methodological rigor of research applied. Overall, the following best practice suggestions are made for future research on the effect of mentoring on mentors; the employment of longitudinal and exploratory mixed methods designs utilizing sequential collection of qualitative then quantitative measurements, and experimental descriptions nested within a theoretical framework.

Keywords: STEM education, UG mentoring, rigor, methods, theoretical/conceptual framework, systematic review
Introduction

Programs focusing on undergraduates (UGs) providing mentoring are widespread within and outside of science, technology, engineering, and mathematics (STEM) disciplines. The effects of these programs are not beyond empirical analysis, with much of the existing research on mentoring focusing only on the impact of mentoring on mentees, objective data (e.g., exam scores, course grades, grade point average, etc.), or quantitative data (Crisp & Cruz, 2009; Gershenfeld, 2014), which ultimately limits the scope of understanding and application. The present study is a systematic review to determine methodological rigor of research measuring outcomes for UG mentors (i.e., the individuals doing the mentoring, as opposed to those benefiting from the mentoring, as is commonly reported in the literature). I reviewed studies between 2013 and 2020, since 2014 (Gershenfeld) was the last publication in the area and would not have included articles in press (i.e., during 2012 and published in 2013) at time of its writing. In all, I identified 80 studies containing quantitative and/or qualitative insight from UG mentors.

Jacobi’s (1991) review of a decade (1980-1990) of mentoring research on mentor and mentee perspectives proposed a need for improved methodology and reasoned for the importance of situating mentoring programs and research within a theoretical base. Consequently, Jacobi (1991) put forward four major theoretical frameworks of mentoring programs: 1) Involvement with learning, 2) Academic and social integration, 3), Social support, and 4) Developmental support. Hannafin et al. (1997) indirectly extended, and expounded upon this, reasoning for use of grounded theory design: Namely, that alignment of methods, theoretical or conceptual framework, and research are essential in understanding learning environments.
Nora and Crisp’s (2007) report on a survey of UG mentor perspectives and a corresponding literature review detailed the functional roles of mentors, and prompted their assertion that mentoring programs and research continued to lack theoretical/conceptual bases. Nora and Crisp (2007) identified four major components that mentoring programs can utilize to provide a strong conceptual base: Namely, 1) Education/career goal establishment and evaluation, 2) Emotional and psychological support, 3) Academic content knowledge support, and 4) Presence of a role model. Two years later, Crisp and Cruz’s (2009) update of Jacobi’s (1991) review discussed a continued lack of methodological rigor in a wider body of mentoring research between 1990 and 2007.

The last major review prior to this was conducted by Gershenfeld (2014) with the intention of extending the analysis of mentoring research to include published works between 2008 and 2012. Gershenfeld (2014) ultimately reported some improvement in the application of theoretical or conceptual frameworks, but similarly outlined persistent methodological shortcomings. Of particular note, Gershenfeld (2014) identified some of what is termed “key mentoring program components” (Table 1 and Table 2) and innovatively applied the Levels of Evidence-Based Intervention Effectiveness (LEBIE; shown in Table 3; Jackson, 2009) scale to evaluate methodological rigor.

However, Gershenfeld (2014) identified a skew in article rankings by the LEBIE scale, assigning only 3’s, 4’s, and 5’s (low scores, as 5 = concerning). They attributed this skew to the scale’s rankings tending toward typical quantitative studies, in which the presence of equivalent controls and randomization are more common. In isolation, this issue would be significant, but Gershenfeld (2014) employed other forms of evaluation to ensure appropriate analysis of qualitative and mixed-method study designs; a strategy which the present study adopts as well.
As a consequence of the prior literature reviews completed to-date, namely those preceding 2014, I included in this study a date range that included any articles published while the Gershenfeld paper would have been under review (i.e., 2013) and through the final full year prior to submission (i.e., 2020). Therefore, this systematic review includes studies from 2013-2020, covering the entire ERIC database and multiple databases within EBSCO, and yielding 1,231 positive hits. The aim of this study is to extend the analysis of research on the effect of mentoring on mentors, from the last review of such literature (i.e., the period covering 2013-2020). I aimed to address two key research questions:

1) Does the application of the LEBIE scale (Jackson, 2009) to evaluate mentoring research that contains mentor perspectives published between 2013 and 2020 mirror that shared by Gershenfeld (2014)? Or, did the field respond with more expansive mentoring evaluation practices after that publication?

2) Identify “key mentoring program components” (Gershenfeld, 2014), theoretical or conceptual frameworks (if provided), methods, and general findings. I sought to determine what these components are, based upon the frameworks of Jacobi (1991), Hannafin et al. (1997), Nora and Crisp (2007), Crisp and Cruz (2009), and Gershenfeld (2014).

Ultimately, these results will allow for recommendations for future researchers to improve upon methodological rigor in research that studies the effectiveness of mentoring on mentors.

Methods

The methods employed for this systematic review are consistent with the practices within the literature, namely of Cronbach and Shapiro (1982) and Moher et al. (2009), using the
following Cronbach’s Units, Treatments, Outcomes, and Study Designs (UTOS) framework. The population of interest (Units) is UG mentors within STEM and peripheral fields. I have focused on the provision of mentoring by UGs (Treatments) as an intervention, including but not limited to mentoring within peer-mentoring, service-learning, course related, internship, and research programs. The Outcomes of interest are those reported openly by or requiring insight from UG mentors on what effect the experience had on them. Due to the exploratory nature of this study and the widely variable outcomes measured, this parameter is not further constricted. However, I did also identify and report on other subjective components (e.g., demographics, compensation, support, frequency, etc.). As one of the major goals of the present study is to identify methods employed, all Study Designs are eligible for review herein so long as outcomes are reported and are in line with the above parameter.

I completed a literature search within the Education Resources Information Center’s database (ERIC) and multiple databases within ESBCO (namely: Academic Search Complete, Education Source, E-Journals, PsycARTICLES, PsychINFO, Psychology and Behavioral Sciences Collection, and Teacher Reference Center) using the respective search terms “mentor and undergraduate” in ERIC and “mentor and UG” in EBSCO. One set of search terms could not be used exclusively within both databases due to an issue with ERIC producing only two search results with the latter and EBSCO producing thousands of unrelated results with the former. Other search criteria included scholarly articles, written in English, peer reviewed, and published between 2013 and 2020 (see Figure 1 below for stepwise exclusion). After the removal of duplicates, the article titles and abstracts were screened for any indication of findings related UG mentors (e.g., title and/or abstract explicitly contain the words undergraduate/UG mentors and suggest or explicitly state something about mentor perspectives/insight) which would fulfill the
Figure 1. Prisma Flow Diagram (Moher et al., 2009) for record identification, inclusion, and exclusion. *Databases included within EBSCO search: Academic Search Complete, Education Source, E-Journals, PsycARTICLES, PsycINFO, Psychology and Behavioral Sciences Collection, and Teacher Reference Center.
Units parameter. Those included through this initial screening were reviewed in full for eligibility if the focus was on the provision of mentoring by UGs, findings were reported, and insight from the mentors’ perspective were provided (i.e., explicit statements and data were provided to demonstrate each), therefore fulfilling the Outcomes and Treatment parameters. Articles or programs pertaining to service-learning were included only if the service-learning involved provision of mentoring by UGs, and any articles or programs concerning traditional pre-service teaching internship programs (e.g., co-teaching within a classroom setting under the supervision of a certified teacher) were excluded, as such positions do not revolve around the adoption of a mentor role. While mentors may certainly serve as teachers and teachers may certainly serve as mentors, they are generally observed and/or measured as separate roles albeit closely related (Crisp & Cruz, 2009; Gershenfeld, 2014; Jacobi, 1991; Nelson & Cutucache, 2017; Nora & Crisp, 2007), prompting my decision to exclude pre-service programs in order to maintain focus on mentoring in alignment with the Treatment parameter.

In total, there were 1,231 positive hits through the database query after duplicate removal. Of these, n = 80 met all of the inclusion criteria and were analyzed by the following evaluative tools. I used the LEBIE scale (Jackson, 2009) to examine methodological rigor (see results Table 3) in terms of study design (e.g., presence of equivalent vs non-equivalent vs no control group) and evidence of effectiveness (e.g., evidence that intervention results in some positive change over time or is better than or comparable to a control/placebo). To examine program and research functionality and qualities I used Nora and Crisp’s (2007) conceptualization of core functional roles (e.g., assist with a course, provide peer-mentoring, service-learning, etc.) and Gershenfeld’s (2014) key mentoring program and research components (namely: mentor and mentee demographics, compensation, frequency of mentoring, support, N = number of mentors,
quantitative vs qualitative vs mixed methods, how data are collected, and major findings). In line with prior researchers from Jacobi (1991) and Hannafin et al. (1997) to Nora and Crisp (2007) and Gershenfeld (2014), I also identified theoretical/conceptual frameworks (if stated by authors).

Finally, for relevant studies I examined characteristics deemed essential within the literature to mixed methods designs (Table 4), including an explicit statement that mixed methods research is being utilized, rationale for using mixed methods research, integration of quantitative and qualitative data (merging, connecting or building), analytic logic (independent or dependent), sequencing/timing (concurrent or sequential), and/or priority (quantitative, qualitative or both; Creswell, 2013; Creswell & Plano Clark, 2017; Harrison et al., 2020; O’Cathain et al., 2008; Plano Clark & Ivankova, 2016). The former three were taken from eligible studies (i.e., stated or not, and what was stated), while the latter three are interpreted for all but one. Ultimately, my results will consist of LEBIE scale ratings, compiled qualitative data on program and research qualities, and reporting of relative proportions of qualities where possible. Of note, where I discuss proportions/percentages, the sample size (n) may not equal the total number of eligible studies (n = 80) due to some qualities not being reported or present in certain studies (e.g., mixed methods design), and percentages may add up to be greater than 100% due to certain studies reporting multiple elements within a given quality (e.g., different types of compensation given to different participants).

Results and Discussion

Consistent with prior research, I have included many components of the articles I reviewed and the mentoring programs they analyzed (contained within tables 1 through 4). It is
and always was my intention to compile this large amount of data in order to provide easy access to overviews of these studies for other mentoring researchers (I have grouped similar data together for this reason). However, my primary goal is to identify trends within mentoring program and research functionality and to analyze methodological rigor in studies on the subject in order to provide suggestions for improvement of future research. To this end, the results and discussion will be focused on my research questions to determine rigor (i.e., Table 3, Table 1’s function column, Table 2’s theoretical/conceptual framework, and some discussion on general component description) and methodology (i.e., Table 2’s methods and N and data collection columns, and mixed methods criteria in Table 4) of this article sample.

Rigor in Experimental Design for Mentoring Articles

As within Gershenfeld’s (2014) review, I am analyzing rigor by the LEBIE scale and components deemed essential to mentoring and mentoring research within the literature (Crisp and Cruz; 2009; Hannafin et al., 1997; Jacobi, 1991; Nora and Crisp, 2007). My rankings by use of the LEBIE scale (see Table 3 below) were consistent with Gershenfeld’s (2014) review (only Level 5’s, 4’s, and 3’s are given), but with considerable regression onto Level 4 (Gershenfeld assigned eleven Level 5’s, four Level 4’s, and three Level 3’s). Of note, I only ranked one article as efficacious (Level 3) and one other as concerning (Level 5). For all remaining articles (78 of n = 80) included in this review I assigned the rank of emerging (Level 4), with 11 containing some form of pre- and post-intervention measurement. While reviewing articles for theoretical/conceptual frameworks (see Table 2; placed at the end of the document for readability) I recorded any that were explicitly stated (61.25%, n = 49) and also identified those that relate to at least one of one of the four major theoretical frameworks of mentoring programs put forward by Jacobi (1991; 45%, n = 36).
Table 3. Levels of evidence-based institutional effectiveness scale (LEBIE).

<table>
<thead>
<tr>
<th>Evidence-based intervention Level</th>
<th>Study Design</th>
<th>Evidence of Effectiveness</th>
<th>*Articles Meeting Criteria</th>
</tr>
</thead>
<tbody>
<tr>
<td>Level 1: Superior</td>
<td>ED: Randomization with equivalent control & comparison group</td>
<td>Intervention is superior to an appropriate comparison program. Sustained effect reported at follow-up</td>
<td>0</td>
</tr>
<tr>
<td>Level 2: Effective</td>
<td>ED: Randomization with equivalent control & comparison group</td>
<td>Intervention is proven to be significantly better than a placebo control group, or evidence supporting that the intervention is better than an appropriate comparison intervention</td>
<td>0</td>
</tr>
<tr>
<td>Level 3: Efficacious</td>
<td>QED: non-equivalent control group/non-randomization</td>
<td>Intervention efficacy over the placebo control group, or evidence supporting that the intervention is comparable to or better than an appropriate comparison intervention</td>
<td>1</td>
</tr>
<tr>
<td>Level 4: Emerging</td>
<td>NED: single group (may include pre-/post-test)</td>
<td>Intervention demonstrates some degree of positive change over time</td>
<td>78</td>
</tr>
<tr>
<td>Level 5: Concerning</td>
<td>Any</td>
<td>No evidence of change or change in the opposite direction, putting participants at risk</td>
<td>1</td>
</tr>
</tbody>
</table>

For program functionality (see Table 1; placed at the end of the document for readability) my concern was with the type of mentoring (i.e., peer, near-peer, and youth), whether the authors considered other core functions (i.e., internship and service-learning), and which of Nora and Crisp’s (2007) four major components were present. I found that 65% (n = 52) of articles contained programs for peer mentoring, 22.5% (n = 18) for near-peer mentoring, 32.5% (n = 26) for youth mentoring, 22.5% (n = 18) for service-learning, and 2.5% (n = 2) for internships. Concerning Nora and Crisp’s (2007) four major components, my analysis found 45% (n = 36) of programs to be solely or primarily focused on academic content and knowledge support, 8.75% (n = 7) to include discussion and focus on all four components, and the remainder to be focused on other single components or combinations of at least two of the four.
In general, I was able to discern other functional components (Table 1) of mentoring programs, but many details were not overtly shared (e.g., mentioned in passing through mentor or facilitator commentary) or were internally inconsistent. There were a number of studies that made no mention of compensation and a fair portion detailed or mentioned multiple different forms, combinations, or lack of compensation to different participants. Support available for mentors and frequency of mentor meetings with mentees each varied considerably (Table 1) and were not always specifically discussed. Mentees were either some pool of K-12 students (e.g., middle school, high school, grades 4-6, etc.), other UGs (e.g., underclassmen or near-peers), or a combination of these groups, and most articles provided little or no separation of data by this component. Finally, while UG mentors (Table 1) were the focus the present study, some articles included graduate student mentors, PhD candidate mentors, and faculty mentors, but did not always separate data by this component either.

Methodology

The majority (70%, n = 56; methods; Table 2) of articles I reviewed employed qualitative methodology and a small minority employed quantitative methodology (6.25%, n = 5) or were systematic reviews (3.75%, n = 3). My inspection shows that the number of mentors or sample sizes (N; Table 2) within the included studies are considerably variable, ranging from 1 to 1,972. Additionally, some articles did not report N at all or reported it vaguely (e.g., greater than 150). I found that a large portion of studies collected data (data collection; Table 2) through self-report surveys (38.75%, n = 31) and of these many were Likert scale based (18.75%, n = 15). Twelve articles (15%) used priorly developed tools for quantitative measurements and remaining data collection methods were made up by a spread and/or variable combinations of interviews, document analysis, focus groups, observation, demographic information, general
feedback or commentary, and questionnaires. While 9 studies (methods; Table 2) did explicitly state use of mixed methods design, I analyzed another 7 that contained both quantitative and qualitative data collection as employing mixed methods design (20%, n = 16 employed mixed methods design).

Qualities of Mixed Methods Research in Relevant Articles

All of the articles I identify as utilizing mixed methods designs explicitly state a use of qualitative and quantitative measures and just over half of these (56.25%, n = 9; see Table 4; placed at the end of the document for readability) also explicitly state the utilization of mixed methods design. Less than half of these (37.5%, n = 6) articles state a mode of integration (all but one report integration by triangulation) and seven (43.75%) studies provide no evidence of combining quantitative and qualitative data sets. The outlier (Hastings & Sunderman, 2019) reports integration by using qualitative data to build on and support quantitative data, and is the only article to include explicit details on analytic logic (dependent), sequencing/timing (quantitative prior to qualitative), and priority (quantitative, the only article with this priority). For the remaining articles I interpreted 68.75% (n = 11) to have even priority between quantitative and qualitative data, 25% (n = 4) to prioritize qualitative data, and all but one study (87.5%, n = 14) to have independent analytic logic and concurrent sequencing/timing (McIntosh, 2019; could not be interpreted due to a lack of methodological description). Of the studies that did not explicitly state integration (62.5%, n = 10), one provided some discussion of using qualitative and quantitative data to build on each other (Pica & Fripp, 2020), and two discussed looking for common patterns in each (Bonner et al., 2019; Köse & Johnson, 2016).
Present State of Research According to This Review

My LEBIE scale rankings are consistent with but do not directly mirror that shared by Gershenfeld (2014), suggesting that mentoring research between 2013 and 2020 has in general responded with at least some more expansive mentoring evaluation practices after its publication. However, the proportion of articles explicitly stating adoption of a theoretical or conceptual framework in this systematic review is smaller than previously reported and the most common and predominating function from Nora and Crisp’s (2007) four major components remains academic content and knowledge support (Gershenfeld, 2014). Considering best practice in mentoring programs and research (Crisp and Cruz; 2009; Hannafin et al., 1997; Jacobi, 1991; Nora and Crisp, 2007), I reason that a decrease in theoretical bases and lack of change in functional grounding suggests a general decrease in methodological rigor that is not measured by the LEBIE scale.

My analysis of article methodology is meant to augment these findings, as LEBIE scale rankings and functional component identification, while important do not evaluate the full spectrum of methodological designs within the field. The vast majority of studies identified through this systematic review employ qualitative only designs over singular and relatively short time period, and most utilize self-report surveys (Likert scale or otherwise) developed for the sole purpose of evaluating the program of interest. Additionally, I examined that qualitative or quantitative measurements generally were not taken pre-/mid- and post-intervention.

In programs that have employed mixed methods research, I found that evidence of quantitative and qualitative data integration was lacking and that methodological description was often limited or not present. Curiously, the article (Hastings & Sunderman, 2019) I identified as providing the most detailed methodological description employed an exploratory mixed methods
design, but used quantitative measurement for exploration and qualitative data for support. This is in opposition to recommendations in the literature for exploratory mixed methods studies (Creswell & Plano Clark, 2017, Harrison et al., 2020), in which qualitative then quantitative data are sequentially collected, and the latter depends on the former. This systematic review suggests that there remains a lack of valid and reliable tools for quantitative measurement of the effect of mentoring on UG mentors, and leading exploration with qualitative measurements is more likely to provide progress toward development of such tools (Creswell & Plano Clark, 2017, Harrison et al., 2020).

Conclusion

Ultimately, my analyses of UG mentor program components and function (Table 1 and Table 2) demonstrates even more variability than priorly identified (Gershenfeld, 2014). Alongside the invariability of LEBIE scale (Table 3) rankings presently and previously (Gershenfeld, 2014), this reinforces the need for methodological rigor and evaluation appropriate to such a complex subject. Accordingly, my suggestions for future researchers on the effect of mentoring on UG mentors are that there is a need for studies of longitudinal design (Plano Clark et al., 2015), of an exploratory nature (Gershenfeld, 2014), and utilizing sequential collection of qualitative and then quantitative data (Creswell & Plano Clark, 2017, Harrison et al., 2020). I recognize that research completed to analyze mentoring programs is often constricted by the variable nature of its components and participant characteristics. None of these suggestions should necessitate the application of all others, as employment of even a single one would be beneficial to methodological rigor (e.g., well-established qualitative exploration to understand where quantitative measurements are most beneficial and appropriate).
Collecting data over longer and multiple periods of time should provide more information on whether and/or what long term effects of mentoring can realistically be expected (Nelson & Cutucache, 2017; Plano Clark et al., 2015), while quantitative data collection and analysis would provide studies more generalizability (Kruger, 2003) and increased objectivity (Linn et al., 2015; Owen, 2017). Moreover, by employing exploratory and longitudinal mixed-method designs, methodological rigor can be improved (Creswell & Plano Clark, 2017, Harrison et al., 2020) and progress can be made toward development of tools for valid and reliable quantitative measurement, hopefully creating a cycle of reciprocity.

I further assert that it is vital for studies on this topic to provide exceptional description and explicit statements of their methodology, program, and participants. Many of the studies I have identified within this systematic review did not overtly share important details, requiring interpretation and a lot of time to properly analyze them. Providing information explicitly not only improves the ease of access for future researchers, but is also valuable to methodological rigor by encouraging the adoption of theoretical/conceptual frameworks (Gershenfeld, 2014; Jacobi, 1991) and fleshing out mentor and program functionality (Gershenfeld, 2014; Nora & Crisp, 2007).

Acknowledgement
Thanks to the Department of Biology, Department of Neuroscience, the University Honors Program, and the University of Nebraska at Omaha for providing the resources and educational foundation for this project. Special thanks to Kari Nelson, who graciously permitted me to use her dissertation (Nelson, 2018) as a basis for this systemic review. I am ever grateful for the direction and support provided by my advisor/mentor Christine E. Cutucache; thank you so much for your guidance, patience, and willingness to work with me during such a hectic year!
References

Najmr, S., Chae, J., Greenberg, M., Bowman, C., Harkavy, I., & Maeyer, J. (2018). A Service-Learning Chemistry Course as a Model to Improve Undergraduate Scientific

144. https://doi.org/10.1109/TE.2012.2220775

S10. https://doi.org/10.3928/01484834-20140211-01
Table 1. Key mentoring components* in mentoring programs.

<table>
<thead>
<tr>
<th>Author & year</th>
<th>Mentors</th>
<th>Mentees</th>
<th>**Function</th>
<th>Compensation</th>
<th>Frequency</th>
<th>Support</th>
</tr>
</thead>
<tbody>
<tr>
<td>Douglass et al., 2013</td>
<td>UGs</td>
<td>UGs</td>
<td>Peer mentoring: AKS</td>
<td>S</td>
<td>10 h/wk for duration of course</td>
<td>Faculty and GTA</td>
</tr>
<tr>
<td>Yilmaz et al., 2013</td>
<td>Senior level UGs</td>
<td>K - 12 youths</td>
<td>Service-learning: AKS</td>
<td>S, C</td>
<td>6 mtgs, 1-3 hrs each</td>
<td>Faculty & K - 12 team coaches</td>
</tr>
<tr>
<td>Burton et al., 2013</td>
<td>Exp UGs 3rd year</td>
<td>1st year UGs</td>
<td>Near-peer mentoring: AKS</td>
<td>C</td>
<td>N.S.</td>
<td>N.S.</td>
</tr>
<tr>
<td>Cushing & Love, 2013</td>
<td>UGs</td>
<td>Highschool youth (predominantly Latin/x)</td>
<td>Service-learning: AKS</td>
<td>C</td>
<td>1 semester, not further specified</td>
<td>Faculty</td>
</tr>
<tr>
<td>Karp & Maloney, 2013</td>
<td>UGs (predominantly freshman)</td>
<td>K - 8 youths</td>
<td>Service-learning: AKS</td>
<td>S (1st yr then C)</td>
<td>15 h/semester</td>
<td>Faculty & K - 8 teachers</td>
</tr>
<tr>
<td>Hryciw et al., 2013</td>
<td>UGs 1st & 2nd year</td>
<td>1st year UGs</td>
<td>Peer mentoring: AKS</td>
<td>-</td>
<td>1 hr/wk for 10 wks</td>
<td>Faculty</td>
</tr>
<tr>
<td>Afghani et al., 2013</td>
<td>UGs</td>
<td>Highschool youth</td>
<td>Near-peer mentoring: GEE, AKS</td>
<td>S</td>
<td>1 or more 2 wk sessions</td>
<td>Faculty & medical students</td>
</tr>
<tr>
<td>Karlin et al., 2013</td>
<td>Exp UGs</td>
<td>UGs</td>
<td>Service-learning: AKS</td>
<td>N.S.</td>
<td>2 mtgs/quarter, more as needed</td>
<td>Faculty & GTAs</td>
</tr>
<tr>
<td>Haddock et al., 2013</td>
<td>UGs</td>
<td>At-risk youth age 10-18</td>
<td>Service-learning, youth mentoring: GEE, EPS, AKS, PRM</td>
<td>C</td>
<td>6 hr mtg/wk for 12 wks</td>
<td>Faculty, clinical therapists, & peers</td>
</tr>
<tr>
<td>Ward et al., 2014</td>
<td>UGs</td>
<td>UGs</td>
<td>Peer mentoring: GEE</td>
<td>-</td>
<td>1.5hr/wk for 14 wks</td>
<td>Faculty & peers</td>
</tr>
<tr>
<td>Packard et al., 2014</td>
<td>UGs junior & senior</td>
<td>Sophomore UGs</td>
<td>Peer mentoring: AKS</td>
<td>-</td>
<td>N.S.</td>
<td>Faculty</td>
</tr>
<tr>
<td>Author et al., 2014</td>
<td>Group Type</td>
<td>Grade Level</td>
<td>Program Description</td>
<td>Frequency</td>
<td>Duration</td>
<td>Mentor Type</td>
</tr>
<tr>
<td>---------------------</td>
<td>------------</td>
<td>-------------</td>
<td>---------------------</td>
<td>-----------</td>
<td>----------</td>
<td>-------------</td>
</tr>
<tr>
<td>James, 2014</td>
<td>UGs 2nd & 3rd year</td>
<td>Highschool seniors</td>
<td>Near-peer mentoring: GEE & 3rd year</td>
<td>C</td>
<td>7 mtgs/semester</td>
<td>Faculty & high school teachers</td>
</tr>
<tr>
<td>Washburn & Zevallos, 2014</td>
<td>Exp UGs</td>
<td>1st year UGs</td>
<td>Near-peer mentoring: GEE, AKS</td>
<td>N.S.</td>
<td>Summer orientation, fall readiness course, spring workshop series, not further specified</td>
<td>Faculty</td>
</tr>
<tr>
<td>Lamb & Aldous, 2014</td>
<td>UGs 2nd year</td>
<td>Grades 8-10 youth</td>
<td>Youth mentoring: EPS, AKS, PRM</td>
<td>-</td>
<td>Wkly emails</td>
<td>Faculty & peers</td>
</tr>
<tr>
<td>Monk et al., 2014</td>
<td>Upper level UGs</td>
<td>Grades 7-12 youth</td>
<td>Youth mentoring: AKS</td>
<td>- or C</td>
<td>1 mtg/wk for 1 yr</td>
<td>Faculty & peers</td>
</tr>
<tr>
<td>Schuetze et al., 2014</td>
<td>UGs</td>
<td>Grades 3-8 youth</td>
<td>Youth mentoring: AKS</td>
<td>-</td>
<td>1-2 hrs per wk for 8 months</td>
<td>LEGO Robotics personnel and grade 3-8 teachers</td>
</tr>
<tr>
<td>Tenenbaum et al., 2014</td>
<td>UGs</td>
<td>Grades 5-12 youth</td>
<td>Near-peer mentoring, youth mentoring: AKS</td>
<td>S</td>
<td>12 wk summer program, no further specification</td>
<td>Program management, volunteer scientists, & peers</td>
</tr>
<tr>
<td>Wasburn-Moses et al., 2014</td>
<td>UGs</td>
<td>Grades 9 & 10 youth</td>
<td>Service-learning, youth mentoring: EPS</td>
<td>C</td>
<td>1 x 45–60-minute mtg/wk</td>
<td>Faculty</td>
</tr>
<tr>
<td>Thalluri et al., 2014</td>
<td>UGs 1st year</td>
<td>1st year UGS</td>
<td>Peer mentoring: AKS</td>
<td>-</td>
<td>1 x 2 hr mtg/wk for 8 wks</td>
<td>Faculty</td>
</tr>
<tr>
<td>Zentz et al., 2014</td>
<td>Exp Senior UGs</td>
<td>Sophomore UGs</td>
<td>Near-peer mentoring: AKS, PRM</td>
<td>C</td>
<td>Assist with 2 sessions (1 virtual, 1 clinical)</td>
<td>Faculty & peers</td>
</tr>
<tr>
<td>Ross & Bertucci, 2014</td>
<td>UGs</td>
<td>Highschool youth</td>
<td>Near-peer mentoring: AKS</td>
<td>N.S.</td>
<td>1 hr/wk for 10 wks</td>
<td>Faculty</td>
</tr>
<tr>
<td>Anderson et al., 2015</td>
<td>UGs</td>
<td>Grades 9-12 youth</td>
<td>Internship, near-peer mentoring: AKS</td>
<td>S</td>
<td>Summer internship, not further specified</td>
<td>On-site subject matter experts, licensed teachers</td>
</tr>
<tr>
<td>Lian et al., 2015</td>
<td>UGs 2nd year or higher</td>
<td>UGs</td>
<td>Peer mentoring: GEE, AKS, PRM</td>
<td>N.S.</td>
<td>1 mtg/month or 1 mtg/block, for 2 hrs or less</td>
<td>N.S.</td>
</tr>
<tr>
<td>Study</td>
<td>Group 1</td>
<td>Group 2</td>
<td>Mentorship Model</td>
<td>Frequency</td>
<td>Duration</td>
<td>Mentorship Provider</td>
</tr>
<tr>
<td>------------------------------</td>
<td>---------</td>
<td>---------</td>
<td>------------------</td>
<td>-----------</td>
<td>----------------</td>
<td>---------------------</td>
</tr>
<tr>
<td>Aderibigbe et al., 2015</td>
<td>UGs</td>
<td>UGs</td>
<td>Peer mentoring: AKS</td>
<td>-</td>
<td>N.S.</td>
<td>Faculty & guidance staff</td>
</tr>
<tr>
<td>de Oliveira et al., 2015</td>
<td>UGs</td>
<td>UGs</td>
<td>Peer mentoring: AKS</td>
<td>- or S</td>
<td>12 hrs/wk</td>
<td>Faculty</td>
</tr>
<tr>
<td>Walsh et al., 2015</td>
<td>UGs</td>
<td>Grades 9-10 high school youth</td>
<td>Service-learning, youth mentoring: GEE, EPS, AKS, PRM</td>
<td>C</td>
<td>2 x 75-minute mtgs/wk for 10-12 wks</td>
<td>N.S.</td>
</tr>
<tr>
<td>Nelson & Youngbull, 2015</td>
<td>UGs</td>
<td>Highschool and middle school youth</td>
<td>Service-learning, youth mentoring: AKS</td>
<td>C</td>
<td>1-3 hrs/semester</td>
<td>Faculty & peers</td>
</tr>
<tr>
<td>Hemmerich et al., 2015</td>
<td>UGs 3rd & 4th year</td>
<td>UGs</td>
<td>Internship, peer mentoring: AKS</td>
<td>N.S.</td>
<td>1 semester, not further specified</td>
<td>Faculty & peers</td>
</tr>
<tr>
<td>Everhard, 2015</td>
<td>Exp UGs 3rd & 4th year</td>
<td>UGs 1st year</td>
<td>Near-peer mentoring: GEE, AKS</td>
<td>C</td>
<td>7-8 mtgs/semester</td>
<td>Faculty</td>
</tr>
<tr>
<td>Grant et al., 2015</td>
<td>UGs</td>
<td>Grades 5-12 youth</td>
<td>Community based, youth mentoring: AKS</td>
<td>- or C</td>
<td>Typically, 1-2 mtgs/wk</td>
<td>Faculty & middle/high school teachers</td>
</tr>
<tr>
<td>Santiago et al., 2016</td>
<td>UGs</td>
<td>Disabled K-8 youth</td>
<td>Service-learning, youth mentoring: GEE, EPS, AKS</td>
<td>C</td>
<td>1 mtg/wk for 6 wks</td>
<td>Faculty & teacher</td>
</tr>
<tr>
<td>Menard & Rosen, 2016</td>
<td>UGs</td>
<td>Grades 4-5 youth</td>
<td>Service-learning, youth mentoring: AKS</td>
<td>-</td>
<td>12 x 2 hr mtgs over 4 wks</td>
<td>Faculty, peers, & general music teachers</td>
</tr>
<tr>
<td>Philipp et al., 2016</td>
<td>UGTAs</td>
<td>UGs</td>
<td>Peer mentoring: AKS</td>
<td>S, C</td>
<td>Variable: Included wkly mtgs, 15-minute mtgs/course session, mtgs every lab session, and pre-scheduled private mtgs</td>
<td>Faculty</td>
</tr>
<tr>
<td>Keup, 2016</td>
<td>UGs</td>
<td>UGs</td>
<td>**Peer mentoring: GEE, EPS, AKS</td>
<td>-, S & C, S, or C</td>
<td>N.S.</td>
<td>N.S.</td>
</tr>
<tr>
<td>Cutright & Evans, 2016</td>
<td>Exp UG seniors</td>
<td>Freshman UGs</td>
<td>Near-peer mentoring: AKS, PRM</td>
<td>S, C</td>
<td>1 mtg/wk and as needed by email over 2 semesters</td>
<td>Faculty</td>
</tr>
<tr>
<td>Researcher</td>
<td>Year</td>
<td>Participants</td>
<td>Intervention Description</td>
<td>Time Commitment</td>
<td>Setting</td>
<td></td>
</tr>
<tr>
<td>---------------------</td>
<td>------------</td>
<td>--------------</td>
<td>--</td>
<td>-----------------</td>
<td>--------------------------</td>
<td></td>
</tr>
<tr>
<td>Roy & Brown, 2016</td>
<td>UGs 2nd & 3rd year</td>
<td>1st year UGs</td>
<td>Peer mentoring: GEE, PRM</td>
<td>1-3 hrs in total over multiple 20-30-minute mtgs, not further specified</td>
<td>Faculty</td>
<td></td>
</tr>
<tr>
<td>Wong et al., 2016</td>
<td>UGs</td>
<td>UGs</td>
<td>**Peer mentoring: GEE, EPS, AKS, PRM</td>
<td>1 mtg/wk, 2 mtgs/wk, or as needed over 1 semester</td>
<td>Faculty</td>
<td></td>
</tr>
<tr>
<td>Murphy, 2016</td>
<td>UGs</td>
<td>UGs</td>
<td>Peer mentoring: AKS</td>
<td>5 hrs/wk</td>
<td>Faculty, library staff, & peers</td>
<td></td>
</tr>
<tr>
<td>Köse & Johnson, 2016</td>
<td>UGs</td>
<td>Middle school youth</td>
<td>Youth mentoring: GEE, AKS, PRM</td>
<td>6 mtgs/semester</td>
<td>Faculty & peers</td>
<td></td>
</tr>
<tr>
<td>Fogg-Rogers et al., 2017</td>
<td>UGs 2nd year</td>
<td>Youth age 8-11, 2nd year UGs</td>
<td>Service-learning, peer mentoring: EPS, AKS</td>
<td>3 mtgs cumulating in 2.5 days</td>
<td>Faculty & peers</td>
<td></td>
</tr>
<tr>
<td>Lee et al., 2017</td>
<td>UGs</td>
<td>Middle school youth</td>
<td>Service-learning, youth mentoring: GEE, EPS, AKS, PRM</td>
<td>~20 hrs/semester</td>
<td>Faculty & peers</td>
<td></td>
</tr>
<tr>
<td>Bunting & Williams, 2017</td>
<td>UGs 2nd year or higher (some Exp)</td>
<td>1st year UGs</td>
<td>Peer/near-peer mentoring: AKS</td>
<td>15-20 hrs/wk over 1 semester</td>
<td>Faculty & staff</td>
<td></td>
</tr>
<tr>
<td>Wallin et al., 2017</td>
<td>Exp UGs 3rd & 4th year</td>
<td>1st & 2nd year UGs</td>
<td>Near-peer mentoring: AKS, PRM</td>
<td>Wkly over 1 academic yr</td>
<td>Faculty & peers</td>
<td></td>
</tr>
<tr>
<td>Ryan et al., 2017</td>
<td>UGs</td>
<td>UGs</td>
<td>Peer mentoring: EPS, AKS, PRM</td>
<td>7.5 hrs/wk for 30 wks/ yr</td>
<td>N.S.</td>
<td></td>
</tr>
<tr>
<td>Davis, 2017</td>
<td>UGs</td>
<td>UGs</td>
<td>Peer mentoring: AKS, PRM</td>
<td>N.S.</td>
<td>Faculty, GTAs, & peers</td>
<td></td>
</tr>
<tr>
<td>Masehela & Mabika, 2017</td>
<td>UGs</td>
<td>UGs</td>
<td>Peer mentoring: EPS, AKS, PRM</td>
<td>N.S.</td>
<td>N.S.</td>
<td></td>
</tr>
<tr>
<td>Gunn et al., 2017</td>
<td>Exp UGs 4th year</td>
<td>1st year UGs</td>
<td>Near-peer mentoring: GEE, EPS, AKS, PRM</td>
<td>5 x 50-minute mtgs over 1 semester</td>
<td>Faculty & peers</td>
<td></td>
</tr>
<tr>
<td>Finkel, 2017</td>
<td>UGs</td>
<td>Highschool youth</td>
<td>Youth mentoring: AKS</td>
<td>Wkly over 1 academic yr, unspecified frequency</td>
<td>Faculty researchers & post-doctoral students</td>
<td></td>
</tr>
<tr>
<td>Study</td>
<td>UG/TA Levels</td>
<td>UG/TA Levels</td>
<td>Mentorship Activities</td>
<td>Duration/Frequency</td>
<td>Mentor/Leadership</td>
<td></td>
</tr>
<tr>
<td>------------------------------</td>
<td>--------------</td>
<td>--------------</td>
<td>---</td>
<td>--------------------</td>
<td>-------------------</td>
<td></td>
</tr>
<tr>
<td>Rohatinsky et al., 2017</td>
<td>UGs</td>
<td>UGs</td>
<td>Peer mentoring: EPS, AKS, PRM - or S</td>
<td>Ranged from hrs to wks and 1 mtg to wkly mtgs</td>
<td>Faculty, nursing staff, & N.S.</td>
<td></td>
</tr>
<tr>
<td>Lim et al., 2017</td>
<td>UGs 2nd year or higher (some Exp)</td>
<td>1st year UGs</td>
<td>Peer/near-peer mentoring: EPS, AKS -</td>
<td>N.S.</td>
<td>Peers</td>
<td></td>
</tr>
<tr>
<td>Draves, 2017</td>
<td>UGs</td>
<td>UGs</td>
<td>Peer mentoring: EPS, AKS -</td>
<td>4 activities or mtgs over 1 semester</td>
<td>Peers</td>
<td></td>
</tr>
<tr>
<td>Abdolalizadeh et al., 2017</td>
<td>UGs 2nd year</td>
<td>1st year UGs</td>
<td>Peer mentoring: EPS, AKS, PRM -</td>
<td>1 phone call/wk to 1 phone call/3wks, other interactions not further specified</td>
<td>Faculty & peers</td>
<td></td>
</tr>
<tr>
<td>Won & Choi, 2017</td>
<td>UGs</td>
<td>UGs</td>
<td>Peer mentoring: AKS -</td>
<td>2hr/wk for 1 semester</td>
<td>N.S.</td>
<td></td>
</tr>
<tr>
<td>Goodrich et al., 2018</td>
<td>UGs</td>
<td>UGs</td>
<td>Peer mentoring: AKS -</td>
<td>1 semester, not further specified</td>
<td>Faculty & TA</td>
<td></td>
</tr>
<tr>
<td>Najmr et al., 2018</td>
<td>UGTAs 2nd year or higher</td>
<td>Grades 6-12 youth</td>
<td>Service-learning, youth mentoring: AKS</td>
<td>2 semesters, not further specified</td>
<td>Faculty & peers</td>
<td></td>
</tr>
<tr>
<td>Fried et al., 2018</td>
<td>UGs 3rd year or higher</td>
<td>1st year UGs</td>
<td>Peer mentoring: EPS -</td>
<td>At least 2 mtgs/wk over 1 yr</td>
<td>Faculty & peers</td>
<td></td>
</tr>
<tr>
<td>Sweeney, 2018</td>
<td>UGs 4th year</td>
<td>3rd year UGs</td>
<td>Peer mentoring: AKS -</td>
<td>At least 2 open lab sessions/month over 1 semester</td>
<td>Faculty</td>
<td></td>
</tr>
<tr>
<td>Kramer et al., 2018</td>
<td>Exp UGs 4th year</td>
<td>2nd and 3rd year UGs</td>
<td>Near peer mentoring: AKS, PRM - then S</td>
<td>2 mtgs/wk for 2 hrs/mentee</td>
<td>Faculty</td>
<td></td>
</tr>
<tr>
<td>James, 2019</td>
<td>UGs 2nd & 3rd year</td>
<td>A-level pupils</td>
<td>Peer mentoring: GEE, AKS -</td>
<td>~ 6 x 1hr mtgs over Spring term</td>
<td>Faculty & peers</td>
<td></td>
</tr>
<tr>
<td>Study</td>
<td>Participants</td>
<td>Peer mentoring</td>
<td>Frequency</td>
<td>Duration</td>
<td>Mentor</td>
<td>Description</td>
</tr>
<tr>
<td>------------------------------</td>
<td>--------------</td>
<td>----------------</td>
<td>-----------</td>
<td>----------</td>
<td>--------</td>
<td>-------------</td>
</tr>
<tr>
<td>Bonner et al., 2019</td>
<td>UGs</td>
<td>Peer mentoring: GEE</td>
<td>-</td>
<td>5 x 2hr workshops</td>
<td>Peers</td>
<td></td>
</tr>
<tr>
<td>Hastings & Sunderman, 2019</td>
<td>UGs</td>
<td>Youth mentoring: PRM</td>
<td>N.S.</td>
<td>N.S.</td>
<td>N.S.</td>
<td></td>
</tr>
<tr>
<td>Wheat et al., 2019</td>
<td>UGs</td>
<td>Service learning, youth mentoring: EPS</td>
<td>C</td>
<td>1 mtg/wk per mentee for 1 semester</td>
<td>Faculty & peers</td>
<td></td>
</tr>
<tr>
<td>McIntosh, 2019</td>
<td>UGs 2nd & 3rd year, 1st year UGs</td>
<td>Peer mentoring: AKS</td>
<td>N.S.</td>
<td>N.S.</td>
<td>Faculty, academic staff, & peers</td>
<td></td>
</tr>
<tr>
<td>Weiler et al., 2019</td>
<td>UGs</td>
<td>Service-learning, youth mentoring: GEE, EPS, PRM</td>
<td>C</td>
<td>4 hrs/wk for 12 wks</td>
<td>Faculty, family therapists, & graduate trainees</td>
<td></td>
</tr>
<tr>
<td>Diaz et al., 2019</td>
<td>UGs</td>
<td>Service-learning, youth mentoring: AKS</td>
<td>C</td>
<td>1 hr/wk for 6-7 wks</td>
<td>Faculty, grades 5 – 6 teachers, & peers</td>
<td></td>
</tr>
<tr>
<td>Moy et al., 2019</td>
<td>UGTAs</td>
<td>Youth mentoring: AKS</td>
<td>C</td>
<td>9 x 2 hr mtgs over 10 wks</td>
<td>Faculty & peers</td>
<td></td>
</tr>
<tr>
<td>Huvard et al., 2020</td>
<td>UGs</td>
<td>Peer/near-peer mentoring, youth mentoring: GEE, EPS, PRM</td>
<td>C</td>
<td>N.S.</td>
<td>Faculty, grades K - 12 teachers, & peers</td>
<td></td>
</tr>
<tr>
<td>Dunn & Moore, 2020</td>
<td>UGs 2nd year, 1st year UGs</td>
<td>Peer mentoring: AKS</td>
<td>N.S.</td>
<td>Wkly mtgs over 1 academic yr</td>
<td>Peers</td>
<td></td>
</tr>
<tr>
<td>Daley & Zeidan, 2020</td>
<td>UGs</td>
<td>Youth mentoring: Not further specified</td>
<td>N.S.</td>
<td>N.S.</td>
<td>N.S.</td>
<td></td>
</tr>
<tr>
<td>Cruz & Diaz, 2020</td>
<td>UGs</td>
<td>**Peer mentoring, youth mentoring: GEE, EPS</td>
<td>- or N.S.</td>
<td>Anywhere between 1-3 hrs/wk, lasting months to a year, not further specified</td>
<td>N.S.</td>
<td></td>
</tr>
<tr>
<td>Matheson et al., 2020</td>
<td>UGs</td>
<td>Service learning, youth mentoring: GEE, EPS, AKS</td>
<td>C</td>
<td>4 hr/wk for 16 wks</td>
<td>Faculty, mentor coaches, & peers</td>
<td></td>
</tr>
<tr>
<td>Spaulding et al., 2020b</td>
<td>UGs</td>
<td>1st year UGs</td>
<td>Peer mentoring: AKS</td>
<td>S & C</td>
<td>1 hr group session/wk and 2 x 1 hr mtgs/wk for 1 semester</td>
<td>Faculty & Office of Student Life staff</td>
</tr>
<tr>
<td>------------------------</td>
<td>-----</td>
<td>--------------</td>
<td>---------------------</td>
<td>------</td>
<td>---</td>
<td>-------------------------------------</td>
</tr>
<tr>
<td>Spaulding et al., 2020a</td>
<td>UGs</td>
<td>1st year UGs</td>
<td>Peer mentoring: AKS</td>
<td>S & C</td>
<td>1 hr group session/wk and 2 x 1 hr mtgs/wk for 1 semester</td>
<td>Faculty & Office of Student Life staff</td>
</tr>
<tr>
<td>Forrester et al., 2020</td>
<td>UGs</td>
<td>Grade 9 youth</td>
<td>Youth mentoring: EPS, PRM</td>
<td>-</td>
<td>1 academic yr, not further specified</td>
<td>ABCD facilitator, grade 9 teachers, & peers</td>
</tr>
<tr>
<td>Athamanah et al., 2020</td>
<td>UGs</td>
<td>High school youth with intellectual and developmental disabilities (IDD)</td>
<td>Near-peer mentoring: EPS</td>
<td>-</td>
<td>1 mtg for at least 30-minutes/wk and monthly social events for 1 yr</td>
<td>Faculty & peers</td>
</tr>
<tr>
<td>Baroudi & David, 2020</td>
<td>UGs</td>
<td>UGs</td>
<td>Peer mentoring: GEE, EPS, AKS, PRM</td>
<td>S</td>
<td>Multiple sessions/day depending on mentees needs, for at least 1 semester</td>
<td>Faculty & peers</td>
</tr>
<tr>
<td>Rompolski & Dallaire, 2020</td>
<td>UGTAs</td>
<td>UGs</td>
<td>Near-peer mentoring: AKS</td>
<td>C</td>
<td>10 hr/wk for 1 quarter</td>
<td>Faculty, GTAs, peers</td>
</tr>
<tr>
<td>Pica & Fripp, 2020</td>
<td>UGs</td>
<td>Juvenile offenders on diversion</td>
<td>Service-learning, youth mentoring: GEE, EPS, AKS</td>
<td>C</td>
<td>1 mtg/wk for 1 semester</td>
<td>Faculty & peers</td>
</tr>
<tr>
<td>Skjevik et al., 2020</td>
<td>UG medical students</td>
<td>Medical student UGs</td>
<td>Peer mentoring: GEE, EPS, AKS</td>
<td>- or N.S.</td>
<td>Anywhere between 2 mtgs/yr and 24 mtgs/yr, not further specified</td>
<td>Faculty & peers</td>
</tr>
<tr>
<td>Haqqee et al., 2020</td>
<td>UGs 3rd & 4th year</td>
<td>1st year UGs</td>
<td>**Peer mentoring: GEE, EPS, AKS, PRM</td>
<td>- or C</td>
<td>1 mtg/wk for 10 wks or 2-3 50-minute mtgs/wk for 1 semester</td>
<td>Faculty & peers</td>
</tr>
</tbody>
</table>

N.S., not specified; - indicates none provided; S, indicates stipend; C, indicates credit for class or toward graduation; GTA, graduate teaching assistant; UGTA, undergraduate teaching assistant; Exp, Experienced (to imply at least 1-prior year training and only junior or senior standing UGs); GEE, education/career goal establishment and evaluation; EPS, emotional and psychological support; AKS, academic content knowledge support; PRM, presence of a role model. Peer vs near-peer, near-peer = Exp UGs mentoring other UGs or UGs mentoring high school students transitioning into post-secondary education. *Adapted from Gershenfeld (2014). **Studies that encompass multiple programs (e.g., participant pools from multiple programs, systematic reviews, etc.).
<table>
<thead>
<tr>
<th>Author & year</th>
<th>Theoretical/conceptual framework</th>
<th>LEBIE</th>
<th>Methods and N</th>
<th>Data collection</th>
<th>Findings</th>
</tr>
</thead>
<tbody>
<tr>
<td>Douglass et al., 2013</td>
<td>Zone of Proximal Development (ZPD) (Vygotsky, 1978) and Relational-Cultural Theory (RCT; Miller & Stiver, 1997)</td>
<td>4</td>
<td>MM, quan: Ranking of mentor characteristics via UG Peer mentor Ranking Survey (UPMRS) qual: Open-ended perception questions via UG Peer Mentors Survey (UPMS) N=12 mentors</td>
<td>SR ranking and mentors’ perceptions</td>
<td>UG mentors ranked knowledge of writing process, good communication skills, and trustworthiness as the most important skills of mentors, and prior mentoring experience and mentor availability as least important. UG mentor perceptions of the experience were positive, citing influence on their instructional abilities, learning to become an educator, and a requirement that they "think like a teacher".</td>
</tr>
<tr>
<td>Yilmaz et al., 2013</td>
<td>Theoretical concepts of robotic design, nothing specific to mentoring</td>
<td>4</td>
<td>Qual only: Survey, N = 21 in first year 2 semester course, N=18 in second year 2 semester course</td>
<td>UGs enrolled in a robotics course in conjunction with mentoring completed a survey on the course which provided limited feedback related to mentoring</td>
<td>UG mentors expressed an increase in robotics understanding and interest as well as an increased interest in associated careers.</td>
</tr>
<tr>
<td>Burton et al., 2013</td>
<td>Student lifecycle framework in context of transition in-transition out (TiTo) model of peer mentoring (Lizzio, 2012)</td>
<td>4</td>
<td>Qual only: Likert SR survey, N=34</td>
<td>UGs enrolled in a capstone mentoring course completed Likert scale SR survey on the effectiveness and effects of the program</td>
<td>UG mentors reported increased sense of belonging, enjoyment of the program, and a positive learning experience. UG mentors displayed a significant increase in psychological literacy.</td>
</tr>
<tr>
<td>Cushing & Love, 2013</td>
<td>Participatory planning theory, cultural responsiveness, & critical consciousness (Freire, 1970)</td>
<td>4</td>
<td>Qual only: SR in focus group N=36</td>
<td>SR during semi-structured focus groups held by a researcher not involved in the course</td>
<td>UGs overall expressed increased cultural responsiveness and awareness, increased satisfaction with learning during the course, and improved interpersonal and communication skills.</td>
</tr>
<tr>
<td>Karp & Maloney, 2013</td>
<td>Principles of grounded theory (Glaser & Strauss 1967; Charmaz 2006) concerning data collection, nothing specific to mentoring</td>
<td>4</td>
<td>Qual only: Open-ended interview questions N=>150</td>
<td>UGs enrolled in the course/program were given open-ended questions by the faculty that instructed their course section</td>
<td>UGs reported enjoyment in the experience, enjoyment in applying skills learned at university, and/or solidification of higher-level concepts.</td>
</tr>
<tr>
<td>Hryciw et al., 2013</td>
<td>Collaborative learning, cooperative learning, PASS model (Topping & Winterhoff, 2001)</td>
<td>4</td>
<td>Qual only: Surveys, closed and open ended, N=4 1st year, N=4 2nd year</td>
<td>UG mentors given a survey consisting of 7 closed-ended questions using a 5-point Likert scale and another containing 10 open-ended questions at the end of each semester</td>
<td>UG mentors indicated the positive outcomes of the program to be helping first year students in coursework and improving their knowledge, development of leadership skills, increased comfort in teaching others, improved oral communication skills, understanding of bioscience, and general confidence.</td>
</tr>
<tr>
<td>Study</td>
<td>Framework/Model</td>
<td>Methodology</td>
<td>Findings</td>
<td></td>
<td></td>
</tr>
<tr>
<td>------------------------------</td>
<td>---</td>
<td>-------------</td>
<td>--</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Afghani et al., 2013</td>
<td>Peer-assisted mentorship (Topping, 1996; Ten Cate O, 2007), cascading model</td>
<td>MM, quan: Likert scale survey, qual: 2 open-ended questions N=34 includes UGs, medical students, and faculty, no further specification provided</td>
<td>UGs completed 2 open-ended questions on opinions about the program and a Likert scale survey on perceptions of professional development and changes in attitude. Qual findings suggested significant changes in the attitudes and abilities of the UGs, sense of empowerment and personal transformation. Quan findings show an increase in self-confidence, leadership, and abilities and an awareness of the importance of cultural diversity and serving the underserved population.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Karlin et al., 2013</td>
<td>Education for Sustainable Development (ESD; UNESCO, 2013, para. 1), relational, integrative thinking and/or systems theory (Barth & Tim, 2011; Cusick, 2008; Dale & Newman, 2005; Tilbury & Wortman, 2004),</td>
<td>MM, quan: Likert scale survey, qual: Open-ended questions N=7 includes UGs, GTAs, faculty, no further specification provided</td>
<td>UGs completed open-ended questions and a Likert scale survey on perceptions and perceived outcomes. Positive outlook on in-person interactions and helping students learn, and a reported development in leadership & communication skills. Challenges included organizational constraints, widely variable mentee research experience, and a lack of clarity on mentor authority.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Haddock et al., 2013</td>
<td>Family Systems Framework (Bowen, 1974)</td>
<td>Qual only: Semi-structured focus groups consisting of open-ended questions N=141</td>
<td>Mentor SR</td>
<td>Mentors reported personal growth and professional development, as well as positive influence on their civic attitudes and civic engagement.</td>
<td></td>
</tr>
<tr>
<td>Ward et al., 2014</td>
<td>None explicitly stated as a framework for the study, but authors report development of a new framework through the study: Theory of Multidimensional Responsiveness</td>
<td>Qual only: Grounded theory journal entries, retrospective assessment questions, project director’s observations N=26 mentors over 2 years</td>
<td>Mentor SR & project director’s report</td>
<td>Themes by which mentors report to have fostered development in mentees were identified by authors to be guidance, emotional supportiveness, companionship, integrity, insight, demanding of accountability, and a multidimensional responsiveness.</td>
<td></td>
</tr>
<tr>
<td>Packard et al., 2014</td>
<td>Legitimate peripheral participation (Lave & Wenger, 1991)</td>
<td>Qual only: Nested case studies with purposeful sampling for interviews N=4</td>
<td>Interviews with mentors, faculty, and mentees</td>
<td>Mentors establish credibility from prior lab experience and faculty-scaffolded authority. Mentors feel authority when supervision is delegated to them.</td>
<td></td>
</tr>
<tr>
<td>James, 2014</td>
<td>Not explicitly stated</td>
<td>MM, quan: Likert scale survey Psychological Literacy Scale (Chester et al., 2013), Likert scale survey Mentoring impact – mentors (Hryciw et al., 2013) qual: 1 open-ended question and pre and post focus groups N=8</td>
<td>SR ranking and mentors’ perceptions on improvement of skills and/or benefits, and focus groups to determine reasons for becoming a mentor, perceived value of training, perceived benefits, and challenges and rewards</td>
<td>Significant increases in valuing intellectual challenge required to use scientific thinking and being insightful and reflective pre- to post-mentoring. Verbally reported improvements in communication, confidence, and teamwork.</td>
<td></td>
</tr>
<tr>
<td>Author(s)</td>
<td>Type of Study</td>
<td>Details</td>
<td>N (Sample Size)</td>
<td>Data Collection Methods</td>
<td>Findings</td>
</tr>
<tr>
<td>---------------------------------</td>
<td>---------------</td>
<td>---------</td>
<td>-----------------</td>
<td>-------------------------</td>
<td>----------</td>
</tr>
<tr>
<td>Washburn & Zevallos, 2014</td>
<td>Qual only</td>
<td>Sharing Your Recipe for Academic Success (SYRAS) writing exercise with 4 open ended prompts N=15</td>
<td>4</td>
<td>UG mentors completed the SYRAS exercise once during their pre-program training</td>
<td>Mentors provided responses on chronic academic and social challenges, with some engaging in deeper reflection than others. Authors’ state that this exercise better prepared mentors for the program. No other data on mentor perspectives were collected, but authors’ do discuss a need for qualitative data collection throughout the program.</td>
</tr>
<tr>
<td>Lamb & Aldous, 2014</td>
<td>Qual only, “multi-method” and “qualitative case study approach” explicitly stated: Questionnaires, survey, focus group interviews, case study, discourse analysis of emails between mentors and mentees N=12</td>
<td>4</td>
<td>Mentor SR and faculty interpretation of emails</td>
<td>UG SR and faculty email analysis show a gain in experience with establishing guidelines for communicating and supporting mentees in managing their heavy academic and outside of school loads. Authors discuss limitations of electronic communication between mentors and mentees.</td>
<td></td>
</tr>
<tr>
<td>Monk et al., 2014</td>
<td>Qual only: Open-ended survey questions with written response (N=14 1st year, N=22 2nd year) and open-ended questions at focus groups N=8 1st year, program included UG, postgraduate, and faculty mentors, but no further specification was provided</td>
<td>4</td>
<td>SR to open-ended questions, with mentors providing written responses OR focus group responses during the first year, and only written responses during the second year</td>
<td>Mentors reported improvement of their scientific communication skills, enjoyment in sharing their knowledge with mentees, and the program to be rewarding overall.</td>
<td></td>
</tr>
<tr>
<td>Schuetze et al., 2014</td>
<td>Qual only “multi-method” stated: meeting notes, interviews, field notes, and focus groups N=37</td>
<td>4</td>
<td>See Methods and N: Authors provide no further description of data collection</td>
<td>Authors use UG quotes to support observations of self-efficacy development attenuated by their involvement in the program and affirmation towards STEM career goals.</td>
<td></td>
</tr>
<tr>
<td>Tenenbaum et al., 2014</td>
<td>Qual only: SR survey with 20 free-response questions N=7</td>
<td>4</td>
<td>Mentors completed a free-response survey electronically after completion of the program</td>
<td>Mentors expressed growth, maturation, career development, and increased confidence and/or ability in teaching.</td>
<td></td>
</tr>
<tr>
<td>Wasburn-Moses et al., 2014</td>
<td>MM, quan: Motivation to Volunteer Scale (MVS), qual: Diagnostic Learning Logs (DLLs) and focus groups N=20</td>
<td>4</td>
<td>UGs completed the MVS pre and post course, the DLLs four times throughout the semester, and attended a focus group at the end of the course</td>
<td>UG responses provided three major themes: Increased knowledge and awareness of the mentee population, a motivation to seek challenge through the program, and an improvement in communication skills.</td>
<td></td>
</tr>
<tr>
<td>Authors</td>
<td>Peer Coaching Method/Assisted Learning Model</td>
<td>Qualitative/Quantitative Data</td>
<td>Qualitative Data Details</td>
<td>Quantitative Data Details</td>
<td></td>
</tr>
<tr>
<td>------------------</td>
<td>---</td>
<td>-------------------------------</td>
<td>--</td>
<td>--</td>
<td></td>
</tr>
<tr>
<td>Thalluri et al., 2014</td>
<td>Peer coaching</td>
<td>Qual only: 4 open-ended questions N=Not stated (Quan and qual stated for mentees but only qual stated for mentors)</td>
<td>During the final meeting mentors completed 4 open ended questions. Mentor quotes that were provided indicated further consolidation of knowledge, maintenance of focus on the course, increased sense of responsibility, improved leadership skills, improved time management, perceived advantage of being in the same class as mentees, increased empathy for teachers, and some challenge in feeling rushed to understand concepts.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Zentz et al., 2014</td>
<td>Peer-assisted learning (PAL)</td>
<td>MM, quan: Likert scale survey, qual: 3 open-ended questions N=136</td>
<td>UGs answered 3 open-ended questions and completed a Likert scale survey about their experience as mentors. UG mentors reported that the program reinforced their own knowledge and promoted self-reflection. The majority of mentors perceived themselves as teachers during the course and indicated it was effective in demonstrating a lifelong learner role.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ross & Bertucci, 2014</td>
<td>Peer-assisted learning (PAL)</td>
<td>Qual only: Likert scale survey and 1 open ended question N=not stated</td>
<td>At the end of the program, UGs completed 5-point Likert scale survey and answered a free-text question to gather their perspectives. UGs enjoyed the program and found it to be beneficial. They indicated an improvement of interpersonal and communication skills, their academic skills and knowledge, and an increase in confidence.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Anderson et al., 2015</td>
<td>Career advancement and psychosocial support frameworks, medical residency model (Papay et al., 2012; Strawn & Livelybrooks, 2012), near-peer mentor (NPM) model (Singleton & Simmons-Worthen, 2014)</td>
<td>Qual only: Online surveys (authors claim mixed method study and qual only study, provided only qual data) N=42</td>
<td>SR pre and post survey responses were thematically analyzed. UGs reported gains in communication skills, professionalism, confidence, student management, pedagogy, and career education.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Lian et al., 2015</td>
<td>Not explicitly stated</td>
<td>Qual only: SR questionnaire with demographic, Likert scale, closed ended, and open-ended questions N=91</td>
<td>UGs completed pre-test validated SR questionnaires after becoming involved in the program, no further specification of timing provided. Majority of mentors reported academic gains to be the greatest benefit and many reported it to be more beneficial than other mentoring programs. Challenges reported by mentors included negative attitudes of mentees and poor time management of all involved parties.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Aderibigbe et al., 2015</td>
<td>Critical constructivist</td>
<td>MM, quan: Survey N=19 qual: Focus groups N=8</td>
<td>Surveys were administered and focus groups were held post program. Mentors overall stated the peer mentoring experience was positive; however, reasoning varied considerably.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>de Oliveira et al., 2015</td>
<td>Not explicitly stated, near peer teaching discussed</td>
<td>Qual only: Open-ended written reports N=16</td>
<td>UG mentors provided written reports at the end of the course that were qualitatively analyzed for frequently reported challenges and benefits. The most frequently reported benefits of the program included gaining a deeper knowledge of the subject matter and improved academic performance, professional skills, and organizational skills. Challenges included learning how to teach, high demand on time, and shy or over confident mentees.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Reference</td>
<td>Methodology</td>
<td>Data Sources</td>
<td>Findings</td>
<td></td>
<td></td>
</tr>
<tr>
<td>----------------------------</td>
<td>------------------------------------</td>
<td>--</td>
<td>--</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Walsh et al., 2015</td>
<td>Qual only: Case studies, observations, mentor reflections, and semi-structured interviews N=8</td>
<td>Authors pulled qualitative data from mentor observations, perceived impact of the program, session reflections, and one on one interviews conducted at the end of the program</td>
<td>Authors identified themes of self-discovery, leadership/professional skill development, gains in career/life perspectives, and a sense of community influence.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Nelson & Youngbull, 2015</td>
<td>Qual only: Cross-comparison of mentor testimony N=13</td>
<td>Collected and transcribed testimonials from mentors and cross-compared for content</td>
<td>Mentors reported tapping into their Indigenous knowledge, building relationships, being a positive influence on their tribal communities, and recognizing that learning is cyclical. They connected this experience and their role in society and as a whole to Native American students having the power to enact change.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Hemmerich et al., 2015</td>
<td>Qual only: Pre- and post-internship essays N =31</td>
<td>Mentors completed reflective essays and responses were coded to identify major themes</td>
<td>Following the program, a number of mentors expressed interest in pursuing a career in academia. Some endorsed increased comfort with teaching, increased empathy for challenges in teaching, improved understanding of content, and improved communication skills. Impressions of the program were overall positive.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Everhard, 2015</td>
<td>Qual only: Questionnaire and voluntary reports N=28</td>
<td>Mentoring questionnaire was given at the end of the semester, some participants provided voluntary reports on their specific experiences</td>
<td>Mentors mentioned enhanced ability to find and use resources and reported improved self-confidence, metacognition, and interpersonal skills.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Grant et al., 2015</td>
<td>MM, qual: Interviews N=13, observations, journal reflections, physical artifacts; quan: Surveys N=33</td>
<td>Journals, faculty observations, and physical artifacts were completed/collected throughout the program, interviews were conducted at end of year, and survey administration time was not stated, all data was triangulated for integration</td>
<td>Most UG mentors felt the program benefited their ability to work in a team, lead a team, lead group discussions, teach STEM concepts and methods, and generate interest in STEM activities and research. Another frequently reported positive was an opportunity to practice science communication skills. Nearly all mentors felt support from the instructor was necessary to carry out their role.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Santiago et al., 2016</td>
<td>Quan only: pre-, during- and post-administration of the “Attitudes Toward Disabled Persons Scale” N=51 experimental & N=31 control</td>
<td>SR by ATDP-Form A was provided 2 weeks before the start of the program, during the program, and two weeks after the program</td>
<td>No significant difference in attitudes toward individuals with disabilities between UG Kinesiology students who participated in service learning and those who did not.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Menard & Rosen, 2016</td>
<td>Qual only: Case studies and interviews N=10</td>
<td>Observations of UGs throughout the program and post program interviews with UGs were transcribed and coded to identify commonality between and within each data set</td>
<td>Common observations and interview responses indicated major benefits to be professional development, improved understanding of musical composition, and a strengthening of participant identity as composers. The major challenges identified</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
were limited time and a lack of confidence in their teaching ability.

<table>
<thead>
<tr>
<th>Study</th>
<th>Methodology</th>
<th>N</th>
<th>Results</th>
</tr>
</thead>
<tbody>
<tr>
<td>Philipp et al., 2016</td>
<td>Qual only: Likert scale SR survey adapted from the Efficacy Belief Instrument (Riggs & Enochs, 1990) N=97 and written reflections to 4 open-ended prompts, 99 completed N=21 analyzed</td>
<td>UGTAs reported improved academic skills as learners and teachers, improved communications skills, and increased depth of knowledge in their respective disciplines.</td>
<td></td>
</tr>
<tr>
<td>Keup, 2016</td>
<td>Four essential learning outcomes and ten high impact practices (HIP) identified by the Association of American Colleges and Universities (AAC&U)</td>
<td>UG students holding at least 1 peer leadership position from 142 institutions completed the survey which was provided to faculty at these institutions to be forwarded to qualifying individuals</td>
<td>Vast majority of UGs reported benefits to their skill development, academic ventures, and campus involvement. Peer leaders in community service roles reported the most positive change and peer leaders receiving financial compensation reported the broadest range of positive change.</td>
</tr>
<tr>
<td>Cutright & Evans, 2016</td>
<td>Near peer mentoring</td>
<td>UG mentors completed SR exit surveys and exit interviews that were observed, results of each were blind coded</td>
<td>All mentors found the experience to be unique, more than half reported an expansion of knowledge, and all endorsed improvement in time management and communication skills - largely attributed to faculty support.</td>
</tr>
<tr>
<td>Roy & Brown, 2016</td>
<td>Not explicitly stated</td>
<td>Qualitative analysis of data gathered through semi-structured interviews</td>
<td>Mentors reported their motivation and personal satisfaction improved due to their realization of their ability to support and help students they mentored.</td>
</tr>
<tr>
<td>Wong et al., 2016</td>
<td>Only one study in this review stated a framework: Maslow’s framework of needs to assist transition to university life</td>
<td>Within the studies that had UG mentors, they completed/attended at least one of the following: Surveys, questionnaires, interviews, focus groups.</td>
<td>Overall positive outcomes most frequently reported in academic, social, mental health, professional, and personal skills essential to a profession in nursing.</td>
</tr>
<tr>
<td>Source</td>
<td>Methodology</td>
<td>Sample Size</td>
<td>Findings</td>
</tr>
<tr>
<td>--------------------------------</td>
<td>------------------------------------</td>
<td>-------------</td>
<td>--</td>
</tr>
<tr>
<td>Murphy, 2016</td>
<td>Not explicitly stated</td>
<td>4</td>
<td>Mentor interviews were all conducted in 2014 at the end of the programs 4th year either in person, through email, or over the phone. Some mentors reported that the PAL program had specific positive outcomes in improving their skills in setting goals, planning, and public speaking. The primary goal for the program was for peer mentors to benefit through the experiential mentoring program, and mentors overall indicated the goal was achieved and noted it to be a memorable experience.</td>
</tr>
<tr>
<td>Köse & Johnson, 2016</td>
<td>Nested mentorship model</td>
<td>4</td>
<td>Throughout the course UGs completed field notes, they were given the Fennema–Sherman MAS survey during the first and final week of the course and the informal open-ended question survey on the 9th and the final week, during the last course session UGs wrote course letters to future UGs and/or middle school students on their experience. Qual: More than half of the UGs reported increased confidence in mathematical abilities and awareness of women's underrepresentation in mathematics. Quan: UG attitudes toward mathematics improved in all measured areas except for awareness of women's underrepresentation in mathematics (authors attribute this disparity between quan and qual to increased knowledge without a change in attitude).</td>
</tr>
<tr>
<td>Fogg-Rogers et al., 2017</td>
<td>Not explicitly stated</td>
<td>4</td>
<td>Survey based post program. UGs filled out surveys and provided responses to open-ended questions provided by faculty post program. Mentors, both student engineers and pre-service teachers, agreed that the program was successful, enjoyable, and that it was beneficial to work in pairs. Student engineers largely reported an increase in confidence to engage with the public and improved communication skills.</td>
</tr>
<tr>
<td>Lee et al., 2017</td>
<td>Multicultural service learning</td>
<td>5</td>
<td>Reflection essays were written by the UG mentors post program and were qualitatively analyzed. Majority of mentors reflected on a philanthropic or adverse view, and did not endorse a mutual relationship with mentees. This is in opposition to the authors' expected results of reflection on civic views and development of mutual relationships.</td>
</tr>
<tr>
<td>Bunting & Williams, 2017</td>
<td>**Legitimate peripheral participation (LPP; Lave and Wenger, 1991)</td>
<td>4</td>
<td>UG post program narrative provided in response to faculty inquiry. All mentors agreed that one or more of 5 themes identified by authors contributed to their transformative experience through mentoring: Meaningfulness of everyday experience, pretending as a move toward transformation, unfamiliarity and surprise as catalysts, reflection in transformation, and the value of participating alongside one's own mentors.</td>
</tr>
<tr>
<td>Wallin et al., 2017</td>
<td>**Not explicitly stated, Hunzicker's (2012) framework for teacher leadership and community learning discussed</td>
<td>4</td>
<td>UG semi-structured focus groups and interviews conducted by faculty post program. Overall, mentors reported improved understanding of teacher leadership, more positive attitudes toward teacher leadership, development and improvement of teacher leadership skills, increased sense of and ability to foster a professional community, and</td>
</tr>
<tr>
<td>Author(s)</td>
<td>Mentoring Model</td>
<td>Methodology</td>
<td>Data Collection</td>
</tr>
<tr>
<td>---------------------------</td>
<td>--------------------------</td>
<td>--</td>
<td>---</td>
</tr>
<tr>
<td>Ryan et al., 2017</td>
<td>Not explicitly stated</td>
<td>Qual only: Semi-structured interviews, reflective logs, observations, document analysis, and focus groups N=18</td>
<td>Semi-structured interviews, peer mentor notes and reflective logs, documents such as peer mentoring manuals and guidelines, and focus group member check de-briefing sessions, all collected/administered intermittently throughout the 3 years of the program - Semi-structured interviews and focus groups included similar open-ended questions, some participants were included in multiple of each throughout the program</td>
</tr>
<tr>
<td>Davis, 2017</td>
<td>Mentoring mosaic</td>
<td>Qual only: Interview questionnaire, journal entries, peer and member checks, researcher field notes N=11</td>
<td>Author reports collecting participant data and compiling their own, using triangulation, peer review, member checks, and qualitative description to obtain qual data for analysis - no description of timeline provided</td>
</tr>
<tr>
<td>Masehela & Mabika, 2017</td>
<td>Morphogenic framework</td>
<td>Qual only: In-depth open-ended question interviewing N=3 (authors explicitly state MM, but only qual data provided for mentors)</td>
<td>Critical discourse analysis approach of Norman Fairclough (1989) used to analyze and pull data from interviews – no description of timeline provided</td>
</tr>
<tr>
<td>Gunn et al., 2017</td>
<td>Crisp and Cruz’s (2009) mentoring framework</td>
<td>Qual only: Reporting of at least 4 critical incidents N=16</td>
<td>Data was analyzed using the Critical Incident Technique (CIT), no description of timeline provided</td>
</tr>
<tr>
<td>Finkel, 2017</td>
<td>“Laddered” mentoring model</td>
<td>Qual only: Closed-ended survey N=15</td>
<td>UGs completed surveys provided by faculty post program</td>
</tr>
</tbody>
</table>

improved confidence/ability in professional interactions.
<table>
<thead>
<tr>
<th>Authors</th>
<th>Methodology</th>
<th>Phase</th>
<th>Design</th>
<th>Sample Size</th>
<th>Data Collection Methods</th>
<th>Findings</th>
</tr>
</thead>
<tbody>
<tr>
<td>Rohatinsky et al., 2017</td>
<td>Not explicitly stated</td>
<td>4</td>
<td>Qual</td>
<td>N=25 (contains mentors & mentees, not further specified), N=54 (not further specified), N=15, N=20, N=58, N=125, N=16, N=34, N=11, N=17, N=180 (not further specified), N=342 (not further specified), 8 did not specify N</td>
<td>Literature review of mentoring in nursing education including 20 studies with UG mentors with each study using at least one of the following data collection methods: questionnaire, Likert scale survey, open-ended questions, observations, focus groups, journals or peer debriefing</td>
<td>Majority of UG mentors agreed the mentorship programs benefitted them across all four of the following domains: clinical, laboratory, socialization, and academia.</td>
</tr>
<tr>
<td>Lim et al., 2017</td>
<td>Phenomenology and Symbolic Interactionism</td>
<td>4</td>
<td>Qual</td>
<td>N=12</td>
<td>Interviews with mentors were conducted by faculty and a research company, no description of timeline provided</td>
<td>UG mentors’ views of their roles changed over the course of the program. They reported becoming more comfortable with their role, more egalitarian leaders, and that they were able to remain calm when being questioned by multiple mentees at a time. Mentors also endorsed improved communication skills and interpersonal skills that they feel they would not have gained in their traditional student role.</td>
</tr>
<tr>
<td>Draves, 2017</td>
<td>Not explicitly stated</td>
<td>4</td>
<td>Qual</td>
<td>N=4</td>
<td>Peer mentoring activities and assignments were collected throughout the program, written reflections were completed by mentors after each activity, and the author conducted peer-mentoring interviews on an individual and focus group basis - one mid program individual interview, end of program individual and focus group interviews</td>
<td>Expanded professional knowledge was the most mentioned benefit by mentors. All mentors felt the program was beneficial, with two participants discussing how peer mentoring would fit into their post program future.</td>
</tr>
<tr>
<td>Abdolalizadeh et al., 2017</td>
<td>Not explicitly stated</td>
<td>4</td>
<td>Qual</td>
<td>N=15</td>
<td>Qualitative analysis of mentor post program focus group comments</td>
<td>UG mentors preferred a formal relationship with their mentees and endorsed that their personal abilities and social skills improved as a result of the program.</td>
</tr>
<tr>
<td>Won & Choi, 2017</td>
<td>**GROW mentoring model (Whitmore, 2009)</td>
<td>4</td>
<td>Qual</td>
<td>N=12</td>
<td>Qualitative content captured from mentor comments in a post program focus group and analyzed through content analysis</td>
<td>UG nursing student mentors experienced a sense of gratification, accomplishment through helping mentees, and a sense of meaning in their life.</td>
</tr>
<tr>
<td>Study</td>
<td>Sample Type</td>
<td>Data Collection Methods</td>
<td>Data Description</td>
<td>Key Findings</td>
<td></td>
<td></td>
</tr>
<tr>
<td>---</td>
<td>-------------------</td>
<td>--</td>
<td>---</td>
<td>---</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Goodrich et al., 2018</td>
<td>Qual only: Interviews, observations, and post course questionnaire N=26 (includes UGs and postgraduates, not further specified)</td>
<td>Data was collected through live observations of peer mentoring, a post program questionnaire, and author conducted interviews - once at semester midpoint and once at the end of the semester</td>
<td>UG peer mentors enjoyed the experience and endorsed benefits including enhanced awareness of themselves as teachers, additional comfort with providing and receiving critique, a sense of professional community, and improved confidence.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Najmr et al., 2018</td>
<td>Qual only: 3-4 guided written reflections N=26 (consisting of 4 sophomores, 7 juniors, 12 seniors, and 3 postbaccalaureate students) – data not separable</td>
<td>Analysis of 4 guided written reflections completed by mentors in the Fall of 2015 and 3 guided reflections in the Spring of 2016 – no further description of timeline provided</td>
<td>Mentors felt the program was effective in helping them to explore and identify competencies for teaching and communication of scientific concepts.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Fried et al., 2018</td>
<td>MM: qual: Pre-, mid- & post-intervention semi-structured interviews N=28, quan: Mid- and post-intervention Mental Health Inventory (MHI; Veit & Ware, 1983), Brief Resilience Scale (BRs; Smith et al., 2008), and Short Form (36) Health Survey (SF-36; Ware, Kosinski, & Gandek, 2003) N=30</td>
<td>Qualitative data was gathered through semi structured interviews of the UG mentors mid and post program. For quantitative analysis mentors had to complete the brief resilience scale, mental health inventory and a short form health study pre-, mid-, and post-program.</td>
<td>UGs reported perceptions that the program had positive influence on their physical activity, resiliency, and mental health. Quantitative results were not consistent with these reports – authors discussed possibility of normal undergraduate stressors bringing about this dissonance.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Sweeney, 2018</td>
<td>Qual only: Open-ended questions N=13</td>
<td>Qualitative data was gathered retrospectively through a post program evaluation session to illicit open feedback on the program</td>
<td>The UG mentors expressed satisfaction in their leadership roles and endorsed receiving the unanticipated benefits of improving their own nursing skills.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Kramer et al., 2018</td>
<td>Qual only: Journals, “mentor session reports”, questioning N=N.S. - author states it ranged from 10-20 per year</td>
<td>UG mentors kept journal logs of time and reflections of their experience and filled out planning forms intermittently throughout the program, and were questioned at the end of each semester – questioning procedure not further specified</td>
<td>Senior UG nursing student mentors described being a mentor as beneficial in their own education and understanding of themselves as a possible teacher or leader. They were also proud in being able to help another person.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>James, 2019</td>
<td>MM: qual: SR objectives, activities, and reflections N=N.S., quan: Self-efficacy, self-esteem and psychological literacy pre and posttests N=20</td>
<td>UGs took pre and post program tests to provide quantitative data. SR objectives, activities, and reflections were completed after each session and provided qualitative data.</td>
<td>Mentors reported improvement of presentation skills, confidence, and understanding of psychology. Author reported benefits beyond the program, citing that some mentors became involved in outreach and research as a result.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Bonner et al., 2019</td>
<td>Work-Integrated Learning (WIL; DISSRTE, 2013; Mahalinga-Iyer et al., 2004)</td>
<td>4</td>
<td>MM: qual: Structured written reflections and semi-structured open-ended interview quan: Closed-ended 10-point ordinal rating questions N=12</td>
<td>Mentors completed written reflection just status post the program, 3 weeks later they each participated in a recorded interview which consisted of open-ended questions and closed-ended 10-point ordinal rating questions</td>
<td>The mentors reported that the experience gave them an opportunity to identify weaknesses, define their strengths, help their peers, and understand what mentees needed to know.</td>
<td></td>
</tr>
<tr>
<td>-------------------------</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td></td>
</tr>
<tr>
<td>Hastings & Sunderman, 2019</td>
<td>Generativity, Socially Responsible Leadership (Higher Education Research Institute, 1996)</td>
<td>4</td>
<td>MM: qual: In-depth, semi-structured interviews N=9, quan: Loyola Generativity Scale (LGS), Generativity Behavior Checklist (GBC), open-ended reports, Socially Responsible Leadership Scale (SRLS), and a demographic form N=82</td>
<td>Quantitative data was collected first and analyzed by multiple regression and qualitative data was used to support the former – no further description of timeline provided</td>
<td>Mentors acknowledged enhanced generativity conscientiousness as they continued to mentor and an increased desire to act on this awareness. Multiple regression analysis suggests significant associations between generativity, aspirations, and socially responsible leadership.</td>
<td></td>
</tr>
<tr>
<td>Wheat et al., 2019</td>
<td>Not explicitly stated</td>
<td>4</td>
<td>Qual only: Semi-structured interviews, online survey with 4 demographic and 4 open-ended questions, and course evaluations N=7</td>
<td>End of course evaluations inquired about course value from current mentors, online surveys contained questions on UG perceptions of the program, and semi-structured interviews prompting UG SR on the experience were conducted with current and prior mentors – timeline of survey administration and interview conduction not further specified</td>
<td>UG mentors reported improved self-awareness and grief processing self-efficacy.</td>
<td></td>
</tr>
<tr>
<td>McIntosh, 2019</td>
<td>Not explicitly stated</td>
<td>4</td>
<td>Explicitly stated to be MM: qual: Focus group, questionnaire, quan: Not explicitly stated N=32</td>
<td>UGs at time point one answered a questionnaire, at point two they participated in a large-scale focus group, at point three another questionnaire was issued and data was subsequently thematically analyzed – no further description provided</td>
<td>Mentors reported increased confidence in their learning alongside its products and endorsed the practicing and development of social consciousness, mindfulness, and leadership in a non-hierarchical manner.</td>
<td></td>
</tr>
<tr>
<td>Weiler et al., 2019</td>
<td>Rhodes’ (2005) model of youth mentoring</td>
<td>4</td>
<td>Qual only: Likert surveys throughout program N=458</td>
<td>UGs completed online surveys at week 9 and week 11 of the program</td>
<td>UG mentors survey results indicated a positive association between their mentoring relationship quality and their experiences within the program. Mentor perceptions of supportive relationships and skill building also moderated a negative relationship between environmental risk and relationship quality, but not individual risk.</td>
<td></td>
</tr>
<tr>
<td>Authors</td>
<td>Theory/Framework</td>
<td>Methodology</td>
<td>Data/Reflections</td>
<td>Findings/Outcomes</td>
<td></td>
<td></td>
</tr>
<tr>
<td>--------------------</td>
<td>--</td>
<td>-------------</td>
<td>------------------</td>
<td>--</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Diaz et al., 2019</td>
<td>Cognitive development theory (Dewey, 1934; Dewey, 1938), constructivist epistemology (Piaget, 1970)</td>
<td>4</td>
<td>Quan only stated, only qual data provided: Two self-assessments were completed by mentors and collected through Qualtrics - open-ended questions were thematically analyzed</td>
<td>More than half of mentors reported subjective improvement in content delivery, student engagement, classroom management, and professionalism. Through thematic analysis authors reported identifying benefits to mentors of improved self-awareness and skill in teaching, awareness of the importance of caring for and respecting students, and self-reflection through teaching.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Moy et al., 2019</td>
<td>Tiered mentor framework employing a ten-week course-based research experience</td>
<td>4</td>
<td>Qual only: Mentor reflections N=5</td>
<td>Mentors submitted post program reflections that were qualitatively analyzed. UGTAs reported gains relating to their roles as teachers, scientists, and mentors.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Huvard et al., 2020</td>
<td>Cultural Historical Activity Theory (CHAT; Engeström, 1987, 2001)</td>
<td>4</td>
<td>Qual only: Written reflections N=20</td>
<td>14 or 11 reflections per UG mentor were completed over a 16-week semester and used as data sources to be coded and analyzed through constant comparison. UG mentors reported improvements in and rethinking/construction of their scientific identities.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Dunn & Moore, 2020</td>
<td>Fink’s (2003) Taxonomy</td>
<td>4</td>
<td>Qual only: Pre- and post-semi-structured interviews N=5</td>
<td>Data collection via semi-structured interviews at the beginning and end of their 1-year peer mentor term. Improvement and/or presence of five of Fink’s (2003) categories of learning were reported by authors after analysis of mentor reflections: Foundational knowledge of leadership learning and application learning (most prevalent), human dimension learning and caring (moderately prevalent), and integration learning (least prevalent). The only category not represented at all was learning how to learn.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Daley & Zeidan, 2020</td>
<td>Expectancy-value theory (Eccles, 2011).</td>
<td>4</td>
<td>Qual only: Semi-structured interviews N=6</td>
<td>UG mentors completed two interviews, the first was concerned with high school – higher education transition and the second had a broader academic focus, each were transcribed and recorded – no description of timeline provided. Participants endorsed improvement or affirmation in self-advocation, improved self-identity, and a sense of belonging through mentoring and their academic experience. Dissonance between confidence and ability was a commonly reported challenge.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Cruz & Diaz, 2020</td>
<td>Not explicitly stated</td>
<td>4</td>
<td>Qual only: Authors reflection on their own mentoring experiences N=2</td>
<td>UGs used their own reflections to determine whether spirituality plays a large role in effective mentoring. Each author professed some fulfillment in their need for spirituality through mentoring, and one mentioned that their mentoring experiences and the feeling of spiritual fulfillment helped her define her mission in life and her intended career path.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Study Reference</td>
<td>Methodology / Design</td>
<td>Data Collection</td>
<td>Findings/Results</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>-----------------------</td>
<td>---------------------------------------</td>
<td>-----------------</td>
<td>--</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Matheson et al., 2020</td>
<td>Not explicitly stated</td>
<td>Quan: Therapist Belief Scale (TBS; Emery et al., 2009; McLean et al., 2003) N=16</td>
<td>Demographic questionnaires and a slightly modified Therapist Belief Scale (TBS) were administered pre-mentor training, the modified TBS was then administered a second time post-mentor training but prior to mentee assignment, and was administered for a third and final time near the end of program. UGs demonstrated the most significant positive change in beliefs from pretraining survey completion to survey completion near the end of the program, suggesting the mentor-mentee relationship was more impactful than the training.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Spaulding et al., 2020b</td>
<td>Not explicitly stated</td>
<td>Quan: Survey that included demographic questions and 19 closed-ended Likert questions N=309</td>
<td>Over 3 years researchers administered electronic surveys at the end of each Fall semester to mentors participating in the program. Both male and female mentors felt they became more successful scholars and endorsed an improved sense of academic fit. The reported experiences differed between male and females, with females more frequently reporting a better grasp of subject matter, leadership, and presentation skills, as well improved relationships with faculty and TAs.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Spaulding et al., 2020a</td>
<td>Not explicitly stated</td>
<td>Quan: Survey that included demographic questions and 19 closed-ended Likert questions N=309</td>
<td>Over 3 years researchers administered electronic surveys at the end of each Fall semester to mentors participating in the program. Majority of mentors reported making connections with faculty and friends, developing leadership and communication skills, and consideration of providing mentoring again.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Forrester et al., 2020</td>
<td>Asset Based Community Development framework (Kretzmann and McKnight, 1993; Dewar, 1997; Kretzmann & McKnight, 1997; Turner et al., 1999)</td>
<td>Qual: Written reflections, interviews N=between 5 (end) and 13 (beginning), not otherwise specified</td>
<td>Authors state written reflections were provided in response to a series of prompts and describe interviews to have been produced in the form of reflective documentary videos – no further description of timeline or data collection provided. Mentors reported positive benefits of the program to include their observations of change in mentees and their own sense of accomplishment.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Athamanah et al., 2020</td>
<td>Self-Determination Theory (SDT; Ryan & Deci, 2000; Fisher et al., 2020)</td>
<td>Qual: Individual interviews, focus groups, written reflections, and weekly check-ins (author mentions quan data collection, but states that it is not used for this article) N=13</td>
<td>All data collection methods were utilized year- and post-program. Peer mentors indicated their perceptions toward individuals with IDD in the community changed positively after participating in the program. They also reported willingness to engage those in the community and workplace with IDD. In addition, peer mentors reported increased sense of disability awareness outside of the program, including positive attitudes toward inclusion of individuals with IDD in work and community settings.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Baroudi & David, 2020</td>
<td>**Constructivist Theory</td>
<td>Qual: Semi-structured interviews containing 9 open-ended questions N=22</td>
<td>Twenty-two semi-structured individual interviews were conducted and recorded to afford participants the opportunity to Peer mentors reported improved confidence levels and felt they were provided leadership development opportunities.</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
describe and elaborate on the benefits of the program

<table>
<thead>
<tr>
<th>Source</th>
<th>Methodology</th>
<th>Data Collection</th>
<th>Findings</th>
</tr>
</thead>
<tbody>
<tr>
<td>Rompolski & Dallaire, 2020</td>
<td>Not explicitly stated</td>
<td>Qual only: SR reflections N=4, N=1 author reflection</td>
<td>UGTA self-reflection and self-monitoring submitted once every three weeks throughout one quarter, and reflection from one UGTA author</td>
</tr>
<tr>
<td>Pica & Fripp, 2020</td>
<td>Not explicitly stated</td>
<td>MM: qual: Weekly reflections, quan: Attitudes toward juvenile offenders (AJO) Likert scale survey N=13</td>
<td>AJO survey was administered during the first session of the course prior to any other coursework or discussion, and again during the final session, UG mentors also wrote weekly reflection papers relating their meetings to class material</td>
</tr>
<tr>
<td>Skjevik et al., 2020</td>
<td>Kirkpatrick’s four level evaluation model as a framework</td>
<td>Systemic review with qual analysis by the Medical Education Research Study Quality Instrument (MERSQI; Cook & Reed, 2015) of 17 different mentorship programs, only 5 contained UG mentors, 3 stated qual only: Questionnaires or interview, 1 stated MM, 1 provided no evaluation N=N.S. for each</td>
<td>Of the programs with UGs 2 administered questionnaires, 1 conducted interview individually or by focus groups, and 1 used mixed method design - no specification of data collection timeline was provided, but the 4 studies with forms of evaluation included mentor perspectives</td>
</tr>
<tr>
<td>Haqee et al., 2020</td>
<td>Constructive Alignment (Biggs & Tang, 2003)</td>
<td>Qual only: Survey containing Likert scale and open-end questions N=32</td>
<td>UG mentors from two different programs completed the online SR survey at or near the end of their respective programs and qual data were coded by use of ATLAS-Ti</td>
</tr>
</tbody>
</table>

*Table originally used in Crisp and Cruz (2009) and adapted by Gershenfeld (2014). MM, mixed methods; quan, quantitative; qual, qualitative; SR, self-report; UG, undergraduate, GTA, graduate teaching assistant; UGTA, undergraduate teaching assistant. **Relates to at least one of four major theoretical frameworks of mentoring programs put forward by Jacobi (1991).
Table 4. Mixed methods research criteria.

<table>
<thead>
<tr>
<th>Citation</th>
<th>Explicit statement that mixed methods research was used</th>
<th>Rationale for using mixed methods</th>
<th>Integration of data (triangulation or connecting/building)</th>
<th>Analytic logic (independent or dependent)</th>
<th>Timing (concurrent or sequential)</th>
<th>Priority (quan, qual or both)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Douglass et al., 2013</td>
<td>Not explicitly stated, but quan and qual were explicitly stated</td>
<td>Quan SR to determine most important mentor characteristics and qual to allow mentor descriptions of experience and suggestions of improvement for the program</td>
<td>Not explicitly stated</td>
<td>Independent</td>
<td>Concurrent</td>
<td>Both</td>
</tr>
<tr>
<td>Afghani et al., 2013</td>
<td>Not explicitly stated, but quan and qual were explicitly stated</td>
<td>Quan for program opinion and qual for changes in perception</td>
<td>Not explicitly stated</td>
<td>Independent</td>
<td>Concurrent</td>
<td>Both</td>
</tr>
<tr>
<td>Karlin et al., 2013</td>
<td>Not explicitly stated, but quan and qual were explicitly stated</td>
<td>Improvement over prior evaluation of Education for Sustainable Development (ESD), typically incorporating only descriptive case studies</td>
<td>Triangulation of data, presentation of open-ended quotes in conjunction with related Likert survey results</td>
<td>Independent</td>
<td>Concurrent</td>
<td>Qual</td>
</tr>
<tr>
<td>James, 2014</td>
<td>Yes, in the text it states mixed methodology is used</td>
<td>None explicitly stated (used to assess impact of program and mentor perceptions), lack of quantitative data in prior research discussed by author</td>
<td>Not explicitly stated</td>
<td>Independent</td>
<td>Concurrent</td>
<td>Both</td>
</tr>
<tr>
<td>Wasburn-Moses et al., 2014</td>
<td>Yes, in the text it states mixed methodology is used</td>
<td>Authors state that it allowed the analysis of various data sources and enhanced the credibility and quality of their results</td>
<td>Triangulation, each data source was used to observe/analyze college student motivation and learning from a different angle</td>
<td>Independent</td>
<td>Concurrent</td>
<td>Qual</td>
</tr>
<tr>
<td>Zentz et al., 2014</td>
<td>Not explicitly stated, but quan and qual were explicitly stated</td>
<td>None explicitly stated</td>
<td>Not explicitly stated</td>
<td>Independent</td>
<td>Concurrent</td>
<td>Both</td>
</tr>
<tr>
<td>Aderibigbe et al., 2015</td>
<td>Not explicitly stated, but quan and qual stated</td>
<td>Better understanding of the peer mentoring process</td>
<td>Triangulation</td>
<td>Independent</td>
<td>Concurrent</td>
<td>Both</td>
</tr>
<tr>
<td>Grant et al., 2015</td>
<td>Yes, in the text it states mixed methodology is used</td>
<td>Mixed-methods was necessary in order to triangulate data from many different sources</td>
<td>Triangulation</td>
<td>Independent</td>
<td>Concurrent</td>
<td>Qual</td>
</tr>
<tr>
<td>Köse & Johnson, 2016</td>
<td>Not explicitly stated, but quan and qual were explicitly stated</td>
<td>To determine whether program goals were met, no other rational stated</td>
<td>Not explicitly stated but authors reported looking for common patterns in quan and qual data</td>
<td>Independent</td>
<td>Concurrent</td>
<td>Both</td>
</tr>
<tr>
<td>-----------------------------------</td>
<td>---------------------------------</td>
<td>-------------------------</td>
<td>---</td>
<td>---</td>
<td>-------------</td>
<td>----------------</td>
</tr>
<tr>
<td>Fogg-Rogers et al., 2017</td>
<td>Yes, in the text it states mixed methodology is used</td>
<td>Allowed for quantitative and qualitative responses from the pre-service teachers and student engineers to be triangulated into one coding frame</td>
<td>Triangulated from 3 participant groups (student engineers, pre-service teachers, and children) into one coding frame</td>
<td>Independent</td>
<td>Concurrent</td>
<td>Both</td>
</tr>
<tr>
<td>Fried et al., 2018</td>
<td>Yes, in the text it states mixed methodology is used</td>
<td>To most appropriately address participant experiences, as a mix of qualitative (inductive) and quantitative (deductive) data would emphasize the research questions</td>
<td>Not explicitly stated</td>
<td>Independent</td>
<td>Concurrent</td>
<td>Both</td>
</tr>
<tr>
<td>James, 2019</td>
<td>Yes, in the text it states mixed methodology is used</td>
<td>Not explicitly stated, but quan described as objective measure of self-efficacy, self-esteem and psychological literacy, and qual described as mentors’ subjective perceptions</td>
<td>Not explicitly stated</td>
<td>Independent</td>
<td>Concurrent</td>
<td>Both</td>
</tr>
<tr>
<td>Bonner et al., 2019</td>
<td>Yes, in the text it states mixed methodology is used</td>
<td>Not explicitly stated, but authors discussed at length the importance of analyzing qual and quan data inductively and deductively</td>
<td>Not explicitly stated but authors reported looking for common patterns in quan and qual data</td>
<td>Independent</td>
<td>Concurrent</td>
<td>Both</td>
</tr>
<tr>
<td>Hastings & Sunderman, 2019</td>
<td>Yes, in the text it states mixed methodology is used</td>
<td>Quantitative results needed enhancing to be fully understood</td>
<td>Integration explicitly stated, authors reported building onto quan data by use of supportive qual data</td>
<td>Dependent</td>
<td>Sequential</td>
<td>Quan</td>
</tr>
<tr>
<td>McIntosh, 2019</td>
<td>Yes, in the text it states mixed methodology is used</td>
<td>Not explicitly stated</td>
<td>Not explicitly stated</td>
<td>Indeterminate</td>
<td>Indeterminate</td>
<td>Qual</td>
</tr>
<tr>
<td>Pica & Fripp, 2020</td>
<td>Not explicitly stated, but quan and qual were explicitly stated</td>
<td>Not explicitly stated</td>
<td>Not explicitly stated, building implied as authors discussed using each data set (quan and qual) to support the other</td>
<td>Independent</td>
<td>Concurrent</td>
<td>Both</td>
</tr>
</tbody>
</table>

Mixed methods research statement, rationale, and integration were taken from the studies examined, if present. Analytic logic, timing, and priority were only detailed in Bonner et al. (2019) but were not detailed in any of the other studies; rather, these are interpretations from the authors of this review. Quan, quantitative; qual, qualitative; SR, self-report.