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ABSTRACT: 

Resulting infections of mucosal tissues by Candida albicans present difficulty in treatment due 

to the formation of biofilms and invasion of tissue directed by thigmo-tropic responses of hyphal 

cells. Initiation of biofilm formation, however, is largely dependent on yeast-form cells. Their 

ability to sense surfaces, however, has yet to be examined. In the present study, an initial genetic 

profiling of the surface sensing response by non-filamentous Candida albicans was generated. In 

order to assess the ability for yeast-form C. albicans cells to recognize surfaces, four 

differentially solidified YPD plate types were created using agar, noble agar, Gelrite, and 

carrageenan. Genetic expression was assessed after 30 minutes growth on solid plates via qRT-

PCR and compared against liquid YPD conditions. Of the 15 genes tested, 4 genes were 

significantly differentially expressed across all plate types including Rhd3, Nce103, Hwp1, and 

Ece1. This analysis indicates a potential surface sensing response by yeast-form C. albicans cells 

characterized by inhibition of biofilm forming genes and the discernment of growth under 

atmospheric conditions on noninducing surfaces. 

Keywords: fungal surface recognition, Candida albicans, non-filamentous, qRT-PCR, solid 

surfaces, biofilm 
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INTRODUCTION 

The human microbiome is largely characterized by bacterial populations making up the 

overwhelming majority. Indeed, 99.9% of all microbial cells belonging to only a few species 

(Huffnagle & Noverr, 2013). As a result a large portion of research has focused on the bacterial 

component of the microbiome. The remaining 0.1% of the microbiome, however, possesses an 

equal, if not greater impact on human health despite its lower percent of sheer cell numbers 

(Huffnagle & Noverr, 2013). Being commonly referred to as the ‘rare biosphere’ this small 

group of microbes is involved in many of the diseases associated with the microbiome 

throughout the body (Huffnagle & Noverr, 2013). Important contributors to this group include 

fungi that, like other rare biosphere microbes, only represent a small percent of commensal 

microbes. Despite this, fungi are still found in every human microbiome with their combined 

presence known as the mycobiome (Huffnagle & Noverr, 2013). Chief among commensal fungi 

are Candida species of which Candida albicans has the largest role in disease across mucosal 

tissues in addition to being the most abundant Candida species found in up to 75% of the US 

population’s oral cavities (Mayer et al., 2013). Candida infections as a result are common with 

over ¾ of all women experiencing vulvovaginal (yeast) infections due to Candida spp. at least 

once in their lives (Mayer et al., 2013). 

Importantly, Candida infections can be split up into two main categories: mild, superficial 

infections of the skin and mucosal tissues, like the previously mentioned yeast infections, or 

severe systemic infections that have fatality rates of over 50% in immunocompromised and 

elderly populations (Kollu & LaJeunesse, 2021). Notably, both types of infections occur as the 

result of dysregulation of the immune system and or surrounding microbiome, like after 

antibiotic usage (Brand, 2012). This is because Candida albicans’ populations are largely held in 
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check by surrounding microbes and through more nuanced immune regulation (Brand, 2012). 

The precise interactions of Candida albicans and the immune system, however, are still not fully 

understood (Richardson & Moyes, 2015). Nevertheless, due to the regulatory role of the 

surrounding microbiome and its significant bacterial make up, broad spectrum antibiotic usage 

creates advantageous environments for fungal expansion allowing Candida spp. to overtake 

mucosal tissues leading to infection. 

The ability for Candida albicans to cause infection, however, is dependent on its ability to 

transition between yeast and hyphae morphologies through a process known as filamentation 

(Almeida & Brand, 2017). Filamentation then is characterized by the reversible, unbroken, 

parallel extension of its cell wall to form hyphae and is what makes Candida albicans an 

opportunistic pathogen as its virulence is dependent on its ability to filament (Brand, 2012). 

Filamentation is induced based on environmental cues including elevated temperature (> 37 ºC), 

elevated pH (> 7), exposure to serum, and the absence of quorum sensing factors, like farnesol, 

indicating low cell densities (< 107 cells per ml) (Mayer et al., 2013). Hyphae formation then 

represents a specific response that is highly site dependent being linked to a subset of genes 

associated with virulence factors and hypha specific proteins (Brand, 2012). Commonly 

identified proteins within this subset include Hwp1, Als1, Sap genes, and Ece1. Hwp1 and Als1 

proteins function in cellular specific adhesion through encoded glycosylphosphatidylinositol 

(GPI) linked cell surface proteins (Mayer et al., 2013). The multiple expressed Sap genes encode 

secreted hydrolases similar to Ece1 which encodes the precursor for candidalysin, a peptide toxin 

that causes molecular damage aiding in scavenging of host cell nutrients (Richardson & Moyes, 

2015). Together these genes allow for filaments to adhere to and invade tissues or other surfaces 
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having a large role in virulence giving its morphological change in hyphal formation its ability 

cause infections. 

Hyphae formation is also essential for proper biofilm formation with filamentous fungal 

biofilms characterized by their pseudomembranous structure (Brand, 2012). In Candida 

albicans, biofilm formation follows a sequential process initiated by the adherence of yeast cells 

to a surface followed by the proliferation and further adherence of these cells in addition to 

hyphae transition of the upper biofilm and buildup of extracellular matrix (ECM) (Mayer et al., 

2013). Interestingly, this process can occur on both biotic and abiotic surfaces . Commonly 

adhered surfaces include not only mucosal and other bodily tissues but also medical implants like 

dentures, stents, and prosthetics. Biofilms however are not simply stable, passive features but 

instead are highly dynamic posing an even greater health concern than filamentous cells on their 

own due to difficultly in their clearance (Brand, 2012). Much of the difficulty in treatment lies in 

increased expression of drug efflux pumps removing antifungal compounds and the 

incorporation of other oral microbes such as Streptococcus mutans and Streptococcus gordonii 

(Brand, 2012). These bacteria add to the complexity of the structure and further block diffusion 

of drug to the biofilm’s center along with regulating fungal cell proliferation via secreted quorum 

sensing factors (Brand, 2012). Biofilms also release virulent cells, allowing for greater 

dissemination of the pathogen (Mayer et al., 2013). Beyond treatment evasion biofilms also show 

strong tendencies to invade underlying substrates (Brand, 2012). This includes mucosal tissue 

surfaces along with plastic and other abiotic surfaces even when little nutrient value is present 

(Fan et al., 2013). Such invasion is likely the result of the incorporation of filamentous cells 

within the biofilm as normal functioning of both biofilm and hyphae require proper surface 

recognition.  
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In hyphae, some evidence points towards surface recognition as a result of general cell wall 

perturbations across cell wall adhesion zones activating stretch sensors within the cell, that when 

coupled with chemical signaling, help to identify the specific surface (Almeida & Brand, 2017). 

However, more evidence points to asymmetrical growth of hyphae along surfaces driving 

Candida albicans’ thigmo-tropic response (Thomson et al., 2015).This is because asymmetrical 

growth serves to orient polarity protein complexes, known to direct hyphal positioning, as close 

to the substrate as possible allowing for precise navigation and reorientation of the hyphal tip 

around obstacles across the surface (Thomson et al., 2015). The corresponding response is highly 

specific with the ability to recognize ridges less than half the height of the hyphae (Thomson et 

al., 2015). Asymmetrical growth then allows for hyphal tips to follow contours and gaps on 

surfaces and importantly direct hyphae tips towards softer regions through sensing surface 

stiffness, directing direct invasion (Thomson et al., 2015). Additionally, previous work has 

shown that thigmotropic responses are contingent upon adhesion to the surface as poorly adhered 

cells have reduced surface recognition (Thomson et al., 2015). Greater adherence 

correspondingly also shows greater reorientation of hyphal tips (Thomson et al., 2015). The 

critical role of hyphal cells to biofilm formation and subsequent invasion of substrate then can be 

explained as seen when hyphal formation is inhibited, biofilm integrity is greatly reduced 

(Tsuchimori et al., 2000). However, what is not known is if yeast cells possess a similar ability to 

recognize surfaces. Yeast cells, like hyphae, are able to adhere to surfaces and play an essential 

role in initiating biofilm formation adhering first and acting as a base across both biotic and 

abiotic surfaces. As these surfaces require the presence of differentially expressed adhesion 

molecules, yeast cells likely possess some ability to differentiate between surfaces. Additionally, 

their adhesion alone, while often cited as a trigger for filamentation is not exclusive to inducing 
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filamentation meaning some response by yeast cells to surfaces is occurring that is able to be 

regulated. Further, previous work in our lab has shown differential expression across liquid and 

solid rich media conditions (YPD) at 30 minutes, pointing towards a potential specific response 

to solidified surfaces. This response, however, has yet to be examined across surfaces beyond the 

traditional agar plate. Our goal for this work was to generate an initial genetic profile of non-

filamentous Candida albicans yeast form cells across solid surfaces using qRT-PCR analysis of 

15 previously defined genes that differentiated liquid and solid YPD media growth at 30 minutes 

(Figure 1). Candida albicans yeast-form cells were tested across 4 solid conditions to determine 

if a universal response to solid surfaces is present and, if so, further characterize it. Our results 

showed 4 of the 15 genes to be significantly differently regulated across all surfaces. Our results 

demonstrate an expanded role of yeast cells in biofilm initiation and holds implication for other 

microbial recognition of surfaces that may have been previously overlooked. 

Figure 1. Selected significantly differentially expressed genes from RNA-seq analysis of solid vs liquid 

conditions at 30 minutes. Genes fall into four main categories with blue arrows indicating upregulation 

and red arrows indicating downregulation in solid YPD agar conditions compared to liquid YPD at 30 

minutes. 

MATERIALS AND METHODS 

Strains and media 

All analyses were performed using Candida albicans strain SC5314 grown on yeast-

extract-peptone-dextrose (YPD) media following standard protocol as outlined previously by 
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Sherman (1991). To generate a range of solid surfaces YPD media was solidified using agar and 

known agar substitutes including noble agar (RPI), carrageenan (Sigma), Gelrite (RPI), guar gum 

(Sigma), and 300 bloom porcine gelatin (Sigma). Based on literature weight per volume percent 

formulations were formulated and tested across a range of weight per volume percentage (Jain et 

al., 2005; Mateen et al., 2012; Watson and Apirion, 1976). Final formulations included 1.6% w/v 

agar, 1.8% w/v noble agar, 3% w/v carrageenan, 0.08% w/v Gelrite, 10% w/v gelatin, and 7% 

w/v gaur gum.  Plates were allowed to solidify for at least 48 hours to ensure fully hardened 

surfaces across each plate type.  

Pre-testing analysis 

Cells were grown overnight in 3 ml of YPD media at 30º with shaking. In 1 ml aliquots, 

overnight samples were washed twice in equal volume phosphate buffered saline (PBS) at pH 

7.2. Cells were then resuspended in an equal volume of PBS. Plates were preheated at 30º for at 

least 4 hours to ensure consistent temperature throughout the plate before being inoculated with 

200 µl of washed cells and 140 µl of sterile water. Cells were spread using glass beads and 

incubated at 30º for 3 hours. In triplicate, solid plates were imaged on an Evos FL inverted 

microscope at 40x magnification at time points 30 minutes and 3 hours. Cell morphologies were 

compared to the agar solidified plates to detect filamentous growth as a result of the properties of 

the solidification agents at either time point. Plates without visible filaments were selected to 

continue with further analysis on. 

RNA extraction and cDNA generation 

Overnight samples of strain SC5314 were grown at 30º with shaking. Cells were 

subsequently washed twice and resuspended in equal volumes of PBS. Preheated plates (4 hours) 
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at 30ºC were inoculated with 200 µl of washed cells and 140 µl of sterile water spread evenly 

using glass beads. After incubating at 30ºC for 30 minutes cells were collected from plates using 

a cell scraper and 2 ml of sterile water. Cells were immediately spun down to remove 

supernatant before proceeding with RNA extraction using an Rneasy mini kit with on-column 

DNase treatment (Qiagen). Upon combination in 70% ethanol RNA was held at -4ºC overnight 

before proceeding with the RNA isolation. Fully isolated RNA quality was assessed on a 

Nanodrop machine before being used in cDNA synthesis. Following standard procedures, cDNA 

was generated using the Thermo Scientific Maxima First Strand cDNA Synthesis Kit with 

remaining RNA stored at -80ºC for long term storage. Genomic contamination assays were 

performed on all samples using a -RT control with ideal CT differences greater than 10 cycles. 

RNA was also extracted from the liquid YPD condition at 30 minutes via introduction of 110 µl 

of PBS washed cells into 50 µl of prewarmed YPD media at 30ºC. Cells were incubated for 30 

minutes at 30ºC before being collected through vacuum filtration using 0.2 micron paper filter. 

Filter paper was immediately frozen in a sterile 50 mL conical tube overnight before subsequent 

removal of cells using 2 ml of cold sterile water alternating vertexing at max speed and scraping 

of the paper filter surface for 1 minute. Collected cells were spun down, supernatant removed, 

and RNA extraction performed as described previously. 

qRT-PCR analysis 

Prior to qPCR analysis, generated gene primer pair efficiencies was performed using a 1:10 

genomic DNA dilution series. qPCR analysis was performed using 20 µl reactions consisted of 9 

µl of primer master mix and 11 µl of cDNA master mix. Primer master mixes were generated 

using a 2:5 microliter ratio of each primer pair to nuclease free H2O per reaction. cDNA master 

mixes were generated using a 1:10 microliter ratio of +RT cDNA to 2x SYBER green per 
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reaction (Thermo Scientific). The previously identified housekeeping gene HSP90, a stable 

expressed heat shock factor, was used to control for RNA concentration variations between 

replicates within plate conditions. Reactions were run in a quantitative PCR machine.  

Figure 2. Expression analysis scheme for solid surface recognition. Plate types were generated with a 

YPD base and variable solidification agent. Plates were then assessed for non-filamentous cell profiles at 

30 minutes and 3 hours. Non-filamentous cells were then collected after 30 minutes growth, RNA 

extracted, and qRT-PCR performed to characterize the genetic response. 

 

RESULTS 

Plate formulations 

Agar is almost universally used as the solidifying agent of choice when making solid media for 

microorganisms. Our initial studies, suggesting that yeast cells may be sensing surface, were 

based on the difference in gene expression observed between liquid and solid versions of rich 
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media, with the agar solidifying agent as the only difference in the media recipes. It is possible 

that the differing response to media may have been driven by agar itself, and not the solid nature 

of the plates compared to liquid growth. Our goal for this work was to determine if yeast cells 

grown in rich media using other solidifying agents would show a similar gene expression pattern. 

In order to generate differently solidified solid plates, five known agar substitutes were used. Of 

the five, only three substitutes resulted in a hardened surface comparable to agar. This included 

noble agar, carrageenan, and Gelrite, but guar gum and gelatin failed to form fully solidified 

plates (Figure 3). Gelatin solidified plates formed a hardened solid surface at room temperature 

but melted at elevated temperatures at and above 30ºC. Guar gum failed to form a hardened 

surface instead forming a highly viscous liquid at room temperature transitioning from its fully 

liquid state after leaving the autoclave to a highly viscous semi solid state within 60 seconds 

regardless of concentration. Both plates were unusable in subsequent expression analyses.  

Figure 3. Solid plate formulations. Plates were made with a YPD base using differing solidification 

agents as indicated on each image. Orange squares represent the solid control condition, purple squares 

represent the tested conditions, and red squares represent plates that failed to solidify fully and were not 

used in the analysis. 
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Non-filamentous growth pretesting 

To ensure only yeast cells were assessed in genetic testing, cell morphologies were 

analyzed after prolonged incubation at 30ºC at 30 minute and 3 hour time points on solid 

conditions. All 3 agar substitute solidified plates exclusively showed yeast cell morphologies 

with no difference from the control agar plate type at both 30 minutes and 3 hours post 

incubation indicating solidifying agents were inducing compounds (Figure 4). Similar 

concentrations of cells were seen across plates with any present clustering of cells attributed to 

the evaporation of the water used to help spread the cells initially, clumping cells together.  
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Figure 4. Pre-testing of solid plate formulations to ensure non-filamentous cell growth. Each plate type 

was imaged at both 30 minutes and 3 hours in triplicate to ensure filamentous growth was not induced by 

the solidification agent. Cells were imaged using an EVOS FL inverted microscope at 40x magnification. 

RNA isolation and cDNA synthesis 

To determine the purity of isolated RNA, 1 µl RNA aliquot readings from each sample were 

taken using a Nanodrop machine. RNA samples showed highly pure RNA samples with ratios 

above 2.1 centered around 2.19 for each solid plate and liquid YPD replicate except noble agar 

replicate C that had a 260/280 ratio below 2 at 1.94. This still is considered acceptable as a 260/280 

ratio of around 2 is generally accepted as pure for RNA with above 1.8 denoting a pure DNA 

sample. RNA 260/230 readings also indicated a pure sample with values above 2 (Table 1). This 

is expected as 260/230 values are typically higher than their respective 280/260 values.  Of note, 

agar replicate B had a lowered 260/230 ratio of 1.95. This lowered 260/230 ratio indicates the 

potential presence of organic contaminants like phenol, TRIzol, or peptide bonds that absorb at 

230 nm pointing to a potential problem within the sample extraction process. This reading, 

however, is also considered acceptable as 260/230 values are more variable than 280/260 values 

and this value centers around 2 which is considered pure. Extracted RNA concentrations were 

between 100 ng/µl and 350 ng/µl (Table 1). These values were on the lower end of the desired 

range but resulted in cDNA concentrations centered around 550 ng/µl or above (data not shown) 

sufficient for qRT-PCR analysis.  

cDNA replicates were assessed for genomic contamination prior to gene expression analysis 

using the negative RT samples using C. albicans housekeeping gene TDH3.  
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Primer efficiencies 

To verify selected primers could properly replicate the desired gene sequence of interest, 

primer pair efficiencies were measured using genomic DNA dilution series. Generated primer 

pairs showed efficiencies between 90 and 105 percent across all primer pairs indicating primer 

specificity and lack of dimer formation (Figure 5). 
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Figure 5. Gene primer efficiencies for qRT-PCR analysis. 5 µM stock primer pairs were assessed using 

housekeeping gene TDH3 to ensure primer efficiencies were between 90 and 105%. The red line indicates 

the cut off for overexpression of primer pairs at 105%.   
 

Gene expression analysis 

To characterize the genetic response of non-filamentous Candida albicans yeast cells to solid 

surfaces, 9 upregulated and 6 downregulated genes identified previously in an RNA-seq analysis 

of solid versus liquid YPD conditions at 30 minutes were assessed via qRT-PCR across multiple 

solid surfaces. Of the 9 RNA-seq assessed upregulated genes, only 1 gene, RHD3, was found to 

be significantly upregulated in comparison to the liquid condition across all solid conditions 

(Figure 6). UCF1 showed potential upregulation across carrageenan, noble agar, and agar 

solidified surfaces. Of these, however, only carrageenan was significantly upregulated with 

Gelrite plates being significantly downregulated (Figure 6). As a result of its variable expression 

no clear pattern is able to be drawn meaning it is likely not involved with the recognition of solid 

surfaces, but instead involved in a carrageenan specific response. Similarly, carrageenan plates 

generated significant upregulation of PGK1, PIL1, and TYE7. No one other solid plate 

condition, however, was upregulated indicating a lack of a consistent role in surface recognition 
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for these genes. Gelrite solidified plates induced significant downregulation of STF2, GSY1, 

HGT2, and TYE7. This is in direct contrast to previously determined RNA-seq analysis 

demonstrating significant upregulation of these genes on YPD surfaces meaning the properties of 

Gelrite are eliciting the opposite response to agar. 

Figure 6. Fold expression difference of RNA-seq upregulated genes across solid conditions. Genetic 

expression was assessed via qRT-PCR with fold change in expression in comparison to liquid YPD 

condition at 30 minutes. Dark purple bars indicate Gelrite solidified plates, medium purple bars indicate 

carrageenan solidified plates, light purple bars indicate noble agar solidified plates, and yellow bars 

indicate agar solidified plates. Error bars represent standard deviations of biological triplicates (n=3). 
 

Of the six RNA-seq defined downregulated genes, only ECE1 and HWP1 showed significant 

downregulation across all conditions with NCE103 significantly upregulated across all 

conditions (Figure 7). Both IME2 and C1_09320 had significant downregulation of the agar 

solidified condition (Figure 7). Similar downregulation was not seen in the carrageenan or noble 

agar conditions. Gelrite, however mirrored agar conditions being significantly downregulated 

across C1_09320 as well. IME2, C1_09320, and BCR1 however all showed variable expression 

across solid conditions indicating they likely do not play a role in surface recognition (Figure 7).  
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Figure 7. Fold expression difference of RNA-seq downregulated genes across solid conditions. Genetic 

expression was assessed via qRT-PCR with fold change in expression in comparison to liquid YPD 

condition at 30 minutes. Dark purple bars indicate Gelrite solidified plates, medium purple bars indicate 

carrageenan solidified plates, light purple bars indicate noble agar solidified plates, and yellow bars 

indicate agar solidified plates. Error bars represent standard deviations of biological triplicates (n=3). 

 

DISCUSSION 

Candida albicans, despite existing as a commensal fungus in the majority of the US 

population, is an opportunistic pathogen reliant on its dimorphic nature for virulence (Mayer et 

al., 2013). In inducing conditions hyphae formation allows for tissue invasion and biofilm 

formation demonstrating surface recognition responses (Desai & Mitchell, 2015). As a result, 

yeast form Candida albicans cells may also possess some ability to sense surfaces not previously 

identified. 

In order to test this, formulation of differentially solidified plates was generated using 

multiple agar substitutes in addition to agar. Of the initial five substitutes two, guar gum and 

gelatin, failed to properly solidify fully for use in experimentation. Initially described weight per 

volume percentages were subsequently increased in order increase surface hardness. Gelatin 
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weight per volume percentages ranging from 4% to 10% gelatin were tested. At 4% and higher, 

plates solidified at room temperature. At 30ºC, however, all formulation percentages melted with 

no noticeable increase in solidification identified via increase in concentration and was therefore 

not used in further analyses. Similarly guar gum, a hydrocolloid, failed to form a solid surface 

between 3% and 6% weight per volume formulations. Lack of sufficient hardening is likely due 

in part to difficulty in dissolving the guar in solution because of its rapid hydration creating 

agglomerates that were unable to be further broken down by either heat or increased stirring rate 

of lab available equipment. In industrial settings this property of guar gum presents notable 

problems as well but is able to be solved using heavy machinery with sufficient sheer force to 

break apart agglomerates (Mudgil et al., 2014). In the lab, this was difficult to replicate and 

resulted in an inability to form consistent solid surfaces. Even when gaur was successfully fully 

dissolved it resulted in a highly viscous semi solid consistency that was unable to absorb the 

added 20% glucose or form plates effectively as a result of its viscous nature. This plate type was 

also not utilized in further analyses as a result. 

To generate an initial genetic profile across the differentially solidified surfaces, 15 genes 

were selected from previously analyzed RNA-seq data between solid and liquid YPD conditions 

at 30 minutes. Of the RNA-seq identified genes, 15 genes were selected for analysis across all 

four plate conditions. Genes were selected based on a combination of function, significant fold 

change between liquid and solid YPD conditions, and base-mean value expression levels 10,000 

or higher. This meant that the top differentially expressed genes, both up and down regulated, 

were not exclusively selected in order to get a more comprehensive perspective across multiple 

molecular cellular functioning’s. 
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 qPCR analysis of the selected 15 differentially expressed RNA-seq genes identified four 

genes differentially expressed in comparison to liquid conditions across all solid plate conditions. 

Of these, two genes were significantly upregulated, Rhd3 and Nce103, and two significantly 

downregulated, Hwp1 and Ece1.  

 Fungal cell walls function as essential organelles providing shape, strength, and 

protection for the cell and are arranged in networks of layered polysaccharides and cell wall 

proteins (Vavala et al., 2013). Rhd3/Pga29 encodes a cell wall protein specific to Candida 

albicans that is not found in other fungi (de Boer et al., 2010). This gene has been shown to be 

highly expressed exclusively in yeast cell morphologies being subsequently downregulated upon 

hyphal formation (Heilmann et al., 2011). Interestingly this protein has not been associated with 

any role in adhesion or cell wall integrity as exposure to different agents that affect cell wall 

organization and stability, like NaCl, Calcofluor white, and Zymolyase, did not alter expression 

of Rhd3 (de Boer et al., 2010). Rhd3 deletion mutants also demonstrated overall normal 

functioning despite lowered virulence (Vavala et al., 2013). This indicates it may have a 

previously unidentified role associated with yeast cells that may include some functionality in 

surface recognition. For example, it may be expressed in order to block other protein interactions 

on cell surfaces to maintain yeast form morphology until strong enough environmental cues 

override it to signal more specialized actions are needed, like hyphal formation, in which it is 

subsequently down regulated. This could mean surface recognition only occurs when large 

enough solids are encountered. 

 Proper regulation of CO2 levels is essential for all branches of life with both prokaryotes 

and eukaryotes including conserved carbonic anhydrases in their genomes (Aguilera et al., 

2005). Nce103 plays a critical role in yeast growth on host skin and abiotic surfaces like medical 
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devices encoding a conserved carbonic anhydrase (Dostál et al., 2020). Like all carbonic 

anhydrases it serves to hydrate CO2, however, Nce103 importantly also serves as a CO2 level 

sensor for the cell being centralized to the cell wall and plasma membranes of yeast cells (Dostál 

et al., 2020). Subsequent deletion mutants are unable to grow under normal atmospheric 

conditions, while still being able to grow in still liquid conditions (Götz et al., 1999). Nce103’s 

expression then is required when encountering atmospheric air containing 0.04% of CO2 

(Aguilera et al., 2005). This indicates that yeast cells may potentially gauge solid surfaces in part 

based on CO2 levels. This then only functions for specific surfaces in which are exposed to air, 

acting as part of a large response that gives it specificity. The upregulation in our samples is 

likely the result of the evaporation of sterile water used to spread it across the plates leaving cells 

exposed directly to the air. 

 Of the down regulated genes, hyphal wall protein 1 or Hwp1, forms important covalent 

bonds with primary amines found on human epithelial cells and functions to adhere Candida 

albicans cells to mucosal tissues specifically during virulence being highly expressed in biofilm 

formation. Indeed, the vital role of Hwp1in biofilm formation specifically can be seen in 

knockout mutants demonstrating normal colonization of the gut and equivalent fatal infection 

rates and tissue invasion in mice with reduced stability of biofilms. Further, Hwp1 is induced 

when in contact with either abiotic or biotic surfaces. In light of this, Hwp1 is likely being 

significantly downregulated in order to ensure adhesion of the yeast cell is not inducing biofilm 

formation as surrounding environmental cues do not indicate advantageous filamentation 

presently. This then correspondingly indicates the cell has in some way recognized it is on a 

surface and is working to ensure non-virulent adhesion of the yeast cell to the solid. Due to the 



22 
 

degree of down regulation the cell appears to be trying to guarantee improper filamentation is not 

ensuing.  

Additionally, commonly expressed together with Hwp1, Ece1 is upregulated in biofilm 

formation and has been shown to restore partial biofilm maturation in the absence of regulatory 

transcription factor Bcr1. It, however, unlike Hwp1 is important in tissue damage encoding 

candidalysin, a peptide toxin. Ece1’s downregulation may once again be in response of the cell’s 

recognition of a solid surface in which biofilm formation is likely being downregulated to ensure 

improper tissue damage is not initiated and yeast cell morphology can be maintained. Its 

significant downregulation in comparison to liquid conditions indicate the cell knowns it is on a 

surface as biofilm formation is possible. The mechanism behind this, however, is still unclear. 

The remaining 11 tested genes showed variable expression across plate conditions and did 

not indicate a significant differential expression across liquid and solid conditions (Figures 6 and 

7). This may be due to the difference in length of time washed cells were held in PBS before 

being tested. This is the result of the experimental design in which, in an attempt to keep 

biological triplicate conditions as similar as possible, plate type triplicates were done together. 

This meant extended periods of time in PBS separated each plate condition. Due to the variable 

exposure times to PBS, gene expression then may have been affected most especially seen in 

later run plate types agar and gelrite and should be considered when assessing the generated 

results. Some variation between solid plate conditions, however, may be the result of cellular 

responses to the solidifying agents instead of to the solid surface due to the unique properties of 

each solidification agent. This, however, likely only plays a minor role as no consistent pattern is 

seen across similar solidifying agents, like noble agar and agar or carrageenan and agar all being 

derived from seaweed vegetation (Watson & Apirion, 1976). 
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RNA is also a transient biological molecule with a very short half life in cells (Chen et al., 

2008). This is important for the cell in order to be able to adapt quickly to environment and 

internal stimuli. It however presents potential difficulties in working with RNA as variation 

between replicates can be high with the timing of experiments between 30 minutes and a few 

hours generating largely different expression profiles making precise data collection key.  

This study then holds important implications for the yeast cell’s role in regulating biofilm 

formation based upon surface recognition responses that ensure appropriate adhesion is 

proceeded with via downregulation of Hwp1 and Ece1. Similarly, upregulated geness Nce103 

may serve to help indicate if cells are in atmospheric conditions or not along with the still 

unclear role of Rhd3 potentially including regulating what the cell interacts with. These insights 

may then may also be valuable in beginning to look at how other microbes function to 

recognition surfaces within the commensal microbiome and beyond. Future work still remains in 

further clarification of the role of the four identified differentially expressed genes in surface 

recognition. How these genes work together, however, is still unclear. Further examination of 

more differentially expressed genes from the 30 min YPD condition set may help to complete the 

picture that is non-filamentous surface recognition of Candida albicans. 
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