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  Synthesizer Parameter Approximation by Deep Learning 
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Abstract 
Synthesizers have been an essential tool for composers of any style of music including computer 
generated sound. They allow for an expansion in timbral variety to the orchestration of a piece of 
music or sound scape. Sound designers are trained to be able to recreate a timbre in their head 
using a synthesizer. This works well for simple sounds but becomes more difficult as the number 
of parameters required to produce a specific timbre increase. The goal of this research project is 
to formulate a method for synthesizers to approximate a timbre given an input audio sample 
using deep learning. The synthesizer should be able to modify its settings (oscillators, filters, 
LFOs, effects, etc.) to produce an audio signal as close to the input sample as possible. A cost 
function will measure the difference between the outputted audio signal from the learned 
synthesizer parameters and the original audio signal that is being mimicked. 
 
Introduction 
Over the years, a variety of machine learning approaches have been used to approximate specific 
timbres. For the most part, this approach has been used to model acoustic instruments [1-2]. 
However, this project used these techniques to recreate sounds that were original generated by a 
computer. The lack of robust research in this area means that there was room to explore multiple 
aspects of parameterized deep learning for sound synthesizers. InverSynth, a recent project 
completed in 2019, attempted this same idea [3]. However, only subtractive and frequency 
modulation synthesis techniques were used. For this project, the goal was to expand the current 
literature by exploring synthesizer parameter learning with additive, wavetable, and linear 
arithmetic synthesis. InverSynth used an open source java libray, JSyn [4] to programmatically 
produce audio. Unfortunately, that software will not work for this project because of the added 
synthesis methods. As such, a custom synthesizer was created using the JUCE framework [5]. 
For this semester, the goal was to replicate the InverSynth project, focusing particularly on using 
parameter learning with subtractive synthesis to learn from an audio signal. 
 
Methods 
The duration of the project was 5 months. The project was split into three different phases: 
synthesizer development, data set generation, and deep learning module creation. 
 
Synthesizer Development 
JUCE is a very power tool when trying to develop audio tools. It allows for ease of use when 
juggling between a variety of platforms with strong libraries for digital signal processing and 
GUI development. It is no surprise that it is the leading framework for multi-platform audio 
development. I decided to develop two different synthesizer apps, one that used a GUI to tweak 
parameters and generate sound, and a second that generated a sound from command line 
parameters. The GUI app was useful when trying to test if the synthesizer was working correctly, 
the command line app was useful for generating large amounts of audio data very quickly 
 



 

 

The first focus for the development 
stage was understanding both the GUI 
and audio threads that were 
foundational to JUCE programming 
flow. JUCE provided many 
components that made building a 
graphical interface fairly simple. 
Buttons, sliders, and different views 
were included. The main challenge 
was to understand how to connect all 
the different components together. 
The result can be seen in Figure 1. 
 
The audio thread of the application 
was separate from the graphics. This 
was the part of the application that 
was shared between the command 
line and GUI application. 
 
For the computer to generate audio using subtractive synthesis, it must follow a few prescribed 
steps. First, an oscillator must generate a periodic waveform. In this case, there are three 
different oscillators working at once. Many times, in subtractive synthesis, a frequency rich 
signal is preferred as frequencies can be subtracted later on using filters. For a signal to be 
frequency rich, it means that Fourier transform [6] of the signal produces a lot of frequency 
content. The oscillators were capable of producing five different types of waveforms: sinusoidal, 
sawtooth, square, triangle, and noise. The equations used to generate each of these wave forms 
can be seen below for the audio signal dependent on time t with a fundamental frequency of f. 
 

𝑆𝑖𝑛𝑒	𝑊𝑎𝑣𝑒 = sin	(2𝜋𝑓𝑡) 
 
 

𝑆𝑎𝑤𝑡𝑜𝑜𝑡ℎ	𝑊𝑎𝑣𝑒 =
−2
𝜋 arctan(tan(ft)) 

 
 

𝑆𝑞𝑢𝑎𝑟𝑒	𝑊𝑎𝑣𝑒 = sgn(sin(2𝜋𝑓𝑡)) 
 
 

𝑇𝑟𝑖𝑎𝑛𝑔𝑙𝑒	𝑊𝑎𝑣𝑒 =
2
𝜋 arccos(cos(2𝜋ft)) 

 
 

𝑊ℎ𝑖𝑡𝑒	𝑁𝑜𝑖𝑠𝑒 = rand(t) 
 
 
 

Figure 1 - GUI Application 



 

 

Once the oscillators generate a sound, they are passed through two different filters. Each filter 
takes away a specific set a frequency depending on the type. A lowpass filter cuts high 
frequency. A high pass filter cuts low frequency. A band bass filter only lets a small band of 
frequencies around a certain frequency pass. Finally, a notch filter lets everything but a specific 
frequency pass. 
 
After the signal is filtered, it is passed to an amplifier. As one would expect, the amplifier can 
make the sound louder or softer. Attached to the amplifier is something called an ADSR 
envelope. This is responsible for shaping the amplifier gain over time and it gives the 
synthesizer a more expressive element to its sound. The A stands for attack. This is the amount 
of time before the sound will reach its full volume, starting from silence. The D is decay, this is 
the amount of time before the sound decays to the sustain level after its peak amplitude was 
reached. The S is the sustain level which is held as long as the note is sustained. The R stands 
for release and is the amount of time that it takes the sound to get from the sustain level to 
silence. 
 

 
All of these components must come 
together to make a subtractive synthesizer. 
Figure 2 provides a block diagram of the 
subtractive synthesis process. 
 
The command line app is very similar to the 
GUI app. However, sound could not be 

previewed. All of the synthesizer parameters 
are passed into the terminal application and a 

five second audio file is produced in the file directory of your choice. 
 
 
 
Data Set Generation 
To properly train a neural network, large amount of labelled data is needed. This is called 
supervised learning 
because the computer gains 
knowledge by recognizing 
patterns and comparing it 
to correct answers that are 
supervised by a human. To 
generate enough data, the 
command line synthesizer 
was used. The labels were 
the synthesizer parameters. 
These will be the correct 
answers that we want the 
deep learning network to 

Figure 2 - Subtractive Synthesis Method 

Figure 3 - Dataset Generation 



 

 

understand. A python script was developed that made the synthesizer produce thousands of audio 
samples. Unfortunately, this method caused my computer to run out of space. The script was 
modified to generate an audio file, extract the features that will be used in the deep learning 
network, then delete the audio files. All the data, including labels and features, would be stored 
in a simple json text file. An example of the data generation process can be seen in Figure 3. 
 
Deciding which features were best to extract took a little bit of time. It was very important that 
the audio features were able to represent the timbral qualities of the audio sample. In the end, we 
decided to use Mel-frequency cepstral coefficients, chroma, spectral centroid, and spectral 
contrast as features. 
 
Mel-frequency cepstral coefficients were used because of their focus on timbral content. These 
features have often been used in machine learning algorithms to classify song genres or 
instrument type. These features rely on frequency content that has been log tapered to fit the 
Mel-frequency scale which is more aligned with how humans hear sound than something like the 
Fourier series. 
 
Chroma was used because of its strong relation to the western diatonic pitch classes. This made it 
ideal for trying to have the oscillator learn what frequencies are best to generate. The features are 
designed to easily categorize sounds that fit into the twelve-tone equal-tempered scale. 
 
Finally, spectral centroid and spectral contrast were used to add more frequency information. In 
theory, this would help classify timbral content, which was the main purpose of this project. 
 
Deep Learning Module Creation 
 
Tensor flow was used to develop the deep learning module. Keras allows for quick and easy 
neural networks to be built. First, the json data set generate from the console synthesizer was 

loaded. Sklearn’s training set split algorithim was used 
to create a training data set and a testing data set.  
 
When constructing the deep learning module, it was 
decided that 2 hidden layers would be serviceable. The 
first hidden layer contained 1024 neurons and the 
second hidden layer contained 512 neurons. Rather 
than use the stand sigmoid function the Rectified linear 
unit (ReLU) was used instead as seen in Figure 4. This 
activation function is often preferred in networks with 
many layers because the sigmoid and hyperbolic 
tangent functions usually have a vanishing gradient 

problem. The module had 30 input features and 14 
outputs that were compared to labels. 
 
Once the model was built, it was run for 20 Epochs with a learning rate of 0.01. 
 
*Code used in this project is available at https://github.com/dafaronbi/Honors-Thesis 

Figure 4 - Rectified Linear Unit 



 

 

Results 
Unfortunately, the network was not able to classify the signal very accurately. At best, the 
accuracy was around 40.67%, at worst it was around 25.56%. This is somewhat disappointing. 
However, there are many improvements that could be made to the model. 
 
The data set could be improved. Generating a wide variety of data took my computer a few days. 
Because there were so many different permutations of synthesizer parameters, I would never 
have finished the project in time if I wanted to have the most robust data. To save on time, I 
lowered the variability of the data. This meant that only one oscillator changed frequency. Also, 
the amplitudes of all the oscillators never changed. Perhaps if the data set contained more 
nuance, the trained model would have performed better. 
 
There is also much to be improved with the deep learning model itself. There could be many 
more layers added and a variety of activation function to test. We could also try implementing 
dropout during the learning process to make sure that the network is not relying too heavily on 
specific neurons. 
 
 
Conclusion 
This research project focused on using cutting edge machine learning approaches to music 
information retrieval. Based on a review of current literature, more research in this area is 
needed. The knowledge generated from this project would be very beneficial to others involved 
in music information retrieval and can be applied to other digital signal processing projects. 
The novel technology developed from this product makes it ideal for a product. This adds 
economic value to society as well as enjoyment to consumers. The new technology also allows 
for other products to improve by adding options to developers of similar software. I am proud of 
my work and I am glad to share it. 
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