
University of Nebraska at Omaha University of Nebraska at Omaha

DigitalCommons@UNO DigitalCommons@UNO

Theses/Capstones/Creative Projects University Honors Program

5-2021

Synthesizer Parameter Approximation by Deep Learning Synthesizer Parameter Approximation by Deep Learning

Daniel Faronbi
dfaronbi@unomaha.edu

Alisa Gilmore
University of Nebraska-Lincoln

Follow this and additional works at: https://digitalcommons.unomaha.edu/university_honors_program

 Part of the Other Computer Engineering Commons, and the Other Music Commons

Please take our feedback survey at: https://unomaha.az1.qualtrics.com/jfe/form/

SV_8cchtFmpDyGfBLE

Recommended Citation Recommended Citation
Faronbi, Daniel and Gilmore, Alisa, "Synthesizer Parameter Approximation by Deep Learning" (2021).
Theses/Capstones/Creative Projects. 151.
https://digitalcommons.unomaha.edu/university_honors_program/151

This Dissertation/Thesis is brought to you for free and
open access by the University Honors Program at
DigitalCommons@UNO. It has been accepted for
inclusion in Theses/Capstones/Creative Projects by an
authorized administrator of DigitalCommons@UNO. For
more information, please contact
unodigitalcommons@unomaha.edu.

http://www.unomaha.edu/
http://www.unomaha.edu/
https://digitalcommons.unomaha.edu/
https://digitalcommons.unomaha.edu/university_honors_program
https://digitalcommons.unomaha.edu/honors_community
https://digitalcommons.unomaha.edu/university_honors_program?utm_source=digitalcommons.unomaha.edu%2Funiversity_honors_program%2F151&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/265?utm_source=digitalcommons.unomaha.edu%2Funiversity_honors_program%2F151&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/524?utm_source=digitalcommons.unomaha.edu%2Funiversity_honors_program%2F151&utm_medium=PDF&utm_campaign=PDFCoverPages
https://unomaha.az1.qualtrics.com/jfe/form/SV_8cchtFmpDyGfBLE
https://unomaha.az1.qualtrics.com/jfe/form/SV_8cchtFmpDyGfBLE
https://digitalcommons.unomaha.edu/university_honors_program/151?utm_source=digitalcommons.unomaha.edu%2Funiversity_honors_program%2F151&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:unodigitalcommons@unomaha.edu
http://library.unomaha.edu/
http://library.unomaha.edu/

Synthesizer Parameter Approximation by Deep Learning
University Honors Thesis/Capstone

 University of Nebraska Omaha

 Daniel Faronbi

 May 3, 2021

Faculty Mentor: Alisa Gilmore

Daniel Faronbi Honors Thesis Proposal

 Synthesizer Parameter Approximation by Deep Learning
 Keywords: Timbral Feature Extraction, Linear Arithmetic Synthesis, Machine Learning

Abstract
Synthesizers have been an essential tool for composers of any style of music including computer
generated sound. They allow for an expansion in timbral variety to the orchestration of a piece of
music or sound scape. Sound designers are trained to be able to recreate a timbre in their head
using a synthesizer. This works well for simple sounds but becomes more difficult as the number
of parameters required to produce a specific timbre increase. The goal of this research project is
to formulate a method for synthesizers to approximate a timbre given an input audio sample
using deep learning. The synthesizer should be able to modify its settings (oscillators, filters,
LFOs, effects, etc.) to produce an audio signal as close to the input sample as possible. A cost
function will measure the difference between the outputted audio signal from the learned
synthesizer parameters and the original audio signal that is being mimicked.

Introduction
Over the years, a variety of machine learning approaches have been used to approximate specific
timbres. For the most part, this approach has been used to model acoustic instruments [1-2].
However, this project used these techniques to recreate sounds that were original generated by a
computer. The lack of robust research in this area means that there was room to explore multiple
aspects of parameterized deep learning for sound synthesizers. InverSynth, a recent project
completed in 2019, attempted this same idea [3]. However, only subtractive and frequency
modulation synthesis techniques were used. For this project, the goal was to expand the current
literature by exploring synthesizer parameter learning with additive, wavetable, and linear
arithmetic synthesis. InverSynth used an open source java libray, JSyn [4] to programmatically
produce audio. Unfortunately, that software will not work for this project because of the added
synthesis methods. As such, a custom synthesizer was created using the JUCE framework [5].
For this semester, the goal was to replicate the InverSynth project, focusing particularly on using
parameter learning with subtractive synthesis to learn from an audio signal.

Methods
The duration of the project was 5 months. The project was split into three different phases:
synthesizer development, data set generation, and deep learning module creation.

Synthesizer Development
JUCE is a very power tool when trying to develop audio tools. It allows for ease of use when
juggling between a variety of platforms with strong libraries for digital signal processing and
GUI development. It is no surprise that it is the leading framework for multi-platform audio
development. I decided to develop two different synthesizer apps, one that used a GUI to tweak
parameters and generate sound, and a second that generated a sound from command line
parameters. The GUI app was useful when trying to test if the synthesizer was working correctly,
the command line app was useful for generating large amounts of audio data very quickly

The first focus for the development
stage was understanding both the GUI
and audio threads that were
foundational to JUCE programming
flow. JUCE provided many
components that made building a
graphical interface fairly simple.
Buttons, sliders, and different views
were included. The main challenge
was to understand how to connect all
the different components together.
The result can be seen in Figure 1.

The audio thread of the application
was separate from the graphics. This
was the part of the application that
was shared between the command
line and GUI application.

For the computer to generate audio using subtractive synthesis, it must follow a few prescribed
steps. First, an oscillator must generate a periodic waveform. In this case, there are three
different oscillators working at once. Many times, in subtractive synthesis, a frequency rich
signal is preferred as frequencies can be subtracted later on using filters. For a signal to be
frequency rich, it means that Fourier transform [6] of the signal produces a lot of frequency
content. The oscillators were capable of producing five different types of waveforms: sinusoidal,
sawtooth, square, triangle, and noise. The equations used to generate each of these wave forms
can be seen below for the audio signal dependent on time t with a fundamental frequency of f.

𝑆𝑖𝑛𝑒	𝑊𝑎𝑣𝑒 = sin	(2𝜋𝑓𝑡)

𝑆𝑎𝑤𝑡𝑜𝑜𝑡ℎ	𝑊𝑎𝑣𝑒 =
−2
𝜋 arctan(tan(ft))

𝑆𝑞𝑢𝑎𝑟𝑒	𝑊𝑎𝑣𝑒 = sgn(sin(2𝜋𝑓𝑡))

𝑇𝑟𝑖𝑎𝑛𝑔𝑙𝑒	𝑊𝑎𝑣𝑒 =
2
𝜋 arccos(cos(2𝜋ft))

𝑊ℎ𝑖𝑡𝑒	𝑁𝑜𝑖𝑠𝑒 = rand(t)

Figure 1 - GUI Application

Once the oscillators generate a sound, they are passed through two different filters. Each filter
takes away a specific set a frequency depending on the type. A lowpass filter cuts high
frequency. A high pass filter cuts low frequency. A band bass filter only lets a small band of
frequencies around a certain frequency pass. Finally, a notch filter lets everything but a specific
frequency pass.

After the signal is filtered, it is passed to an amplifier. As one would expect, the amplifier can
make the sound louder or softer. Attached to the amplifier is something called an ADSR
envelope. This is responsible for shaping the amplifier gain over time and it gives the
synthesizer a more expressive element to its sound. The A stands for attack. This is the amount
of time before the sound will reach its full volume, starting from silence. The D is decay, this is
the amount of time before the sound decays to the sustain level after its peak amplitude was
reached. The S is the sustain level which is held as long as the note is sustained. The R stands
for release and is the amount of time that it takes the sound to get from the sustain level to
silence.

All of these components must come
together to make a subtractive synthesizer.
Figure 2 provides a block diagram of the
subtractive synthesis process.

The command line app is very similar to the
GUI app. However, sound could not be

previewed. All of the synthesizer parameters
are passed into the terminal application and a

five second audio file is produced in the file directory of your choice.

Data Set Generation
To properly train a neural network, large amount of labelled data is needed. This is called
supervised learning
because the computer gains
knowledge by recognizing
patterns and comparing it
to correct answers that are
supervised by a human. To
generate enough data, the
command line synthesizer
was used. The labels were
the synthesizer parameters.
These will be the correct
answers that we want the
deep learning network to

Figure 2 - Subtractive Synthesis Method

Figure 3 - Dataset Generation

understand. A python script was developed that made the synthesizer produce thousands of audio
samples. Unfortunately, this method caused my computer to run out of space. The script was
modified to generate an audio file, extract the features that will be used in the deep learning
network, then delete the audio files. All the data, including labels and features, would be stored
in a simple json text file. An example of the data generation process can be seen in Figure 3.

Deciding which features were best to extract took a little bit of time. It was very important that
the audio features were able to represent the timbral qualities of the audio sample. In the end, we
decided to use Mel-frequency cepstral coefficients, chroma, spectral centroid, and spectral
contrast as features.

Mel-frequency cepstral coefficients were used because of their focus on timbral content. These
features have often been used in machine learning algorithms to classify song genres or
instrument type. These features rely on frequency content that has been log tapered to fit the
Mel-frequency scale which is more aligned with how humans hear sound than something like the
Fourier series.

Chroma was used because of its strong relation to the western diatonic pitch classes. This made it
ideal for trying to have the oscillator learn what frequencies are best to generate. The features are
designed to easily categorize sounds that fit into the twelve-tone equal-tempered scale.

Finally, spectral centroid and spectral contrast were used to add more frequency information. In
theory, this would help classify timbral content, which was the main purpose of this project.

Deep Learning Module Creation

Tensor flow was used to develop the deep learning module. Keras allows for quick and easy
neural networks to be built. First, the json data set generate from the console synthesizer was

loaded. Sklearn’s training set split algorithim was used
to create a training data set and a testing data set.

When constructing the deep learning module, it was
decided that 2 hidden layers would be serviceable. The
first hidden layer contained 1024 neurons and the
second hidden layer contained 512 neurons. Rather
than use the stand sigmoid function the Rectified linear
unit (ReLU) was used instead as seen in Figure 4. This
activation function is often preferred in networks with
many layers because the sigmoid and hyperbolic
tangent functions usually have a vanishing gradient

problem. The module had 30 input features and 14
outputs that were compared to labels.

Once the model was built, it was run for 20 Epochs with a learning rate of 0.01.

*Code used in this project is available at https://github.com/dafaronbi/Honors-Thesis

Figure 4 - Rectified Linear Unit

Results
Unfortunately, the network was not able to classify the signal very accurately. At best, the
accuracy was around 40.67%, at worst it was around 25.56%. This is somewhat disappointing.
However, there are many improvements that could be made to the model.

The data set could be improved. Generating a wide variety of data took my computer a few days.
Because there were so many different permutations of synthesizer parameters, I would never
have finished the project in time if I wanted to have the most robust data. To save on time, I
lowered the variability of the data. This meant that only one oscillator changed frequency. Also,
the amplitudes of all the oscillators never changed. Perhaps if the data set contained more
nuance, the trained model would have performed better.

There is also much to be improved with the deep learning model itself. There could be many
more layers added and a variety of activation function to test. We could also try implementing
dropout during the learning process to make sure that the network is not relying too heavily on
specific neurons.

Conclusion
This research project focused on using cutting edge machine learning approaches to music
information retrieval. Based on a review of current literature, more research in this area is
needed. The knowledge generated from this project would be very beneficial to others involved
in music information retrieval and can be applied to other digital signal processing projects.
The novel technology developed from this product makes it ideal for a product. This adds
economic value to society as well as enjoyment to consumers. The new technology also allows
for other products to improve by adding options to developers of similar software. I am proud of
my work and I am glad to share it.

[1] Riionheimo, J., Välimäki, V. Parameter Estimation of a Plucked String Synthesis Model Using a
Genetic Algorithm with Perceptual Fitness Calculation. EURASIP J. Adv. Signal Process. 2003, 758284
(2003). https://doi.org/10.1155/S1110865703302100
[2] Itoyama, Katsutoshi, and Hiroshi G. Okuno. "Parameter estimation of virtual musical instrument
synthesizers." ICMC. 2014.
[3] Barkan, Oren, et al. "InverSynth: Deep Estimation of Synthesizer Parameter Configurations From
Audio Signals." IEEE/ACM Transactions on Audio, Speech, and Language Processing 27.12 (2019):
2385-2396.
[4] http://www.softsynth.com/jsyn
[5] https://juce.com/
[6] https://www.thefouriertransform.com/

	Synthesizer Parameter Approximation by Deep Learning
	Recommended Citation

	Microsoft Word - Honors Thesis Final.docx

