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Abstract

Smoking is an established risk factor for pancreatic cancer (PC), but late diagnosis limits the 

evaluation of its mechanistic role in the progression of PC. We used a well-established genetically 

engineered mouse model (LSL-K-rasG12D) of PC to elucidate the role of smoking during initiation 

and development of pancreatic intraepithelial neoplasia (PanIN). The 10-week-old floxed mice 

(K-rasG12D; Pdx-1cre) and their control unfloxed (LSL-K-rasG12D) littermates were exposed to 

cigarette smoke (total suspended particles: 150 mg/m3) for 20 weeks. Smoke exposure 

significantly accelerated the development of PanIN lesions in the floxed mice, which correlated 

with tenfold increase in the expression of cytokeratin19. The systemic accumulation of myeloid-

derived suppressor cells (MDSCs) decreased significantly in floxed mice compared with unfloxed 
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controls (P<0.01) after the smoke exposure with the concurrent increase in the macrophage 

(P<0.05) and dendritic cell (DCs) (P<0.01) population. Further, smoking-induced inflammation 

(IFN-γ, CXCL2; P<0.05) was accompanied by enhanced activation of pancreatic stellate cells and 

elevated levels of serum retinoic acid-binding protein 4, indicating increased bioavailability of 

retinoic acid which contributes to differentiation of MDSCs to tumor-associated macrophages 

(TAMs) and DCs. TAMs predominantly contribute to the increased expression of heparin-binding 

epidermal growth factor-like growth factor (EGFR ligand) in pre-neoplastic lesions in smoke-

exposed floxed mice that facilitate acinar-to-ductal metaplasia (ADM). Further, smoke exposure 

also resulted in partial suppression of the immune system early during PC progression. Overall, 

the present study provides a novel mechanism of smoking-induced increase in ADM in the 

presence of constitutively active K-ras mutation.

INTRODUCTION

Pancreatic cancer (PC) is one of the most lethal malignancies with an overall 5-year survival 

rate of 6%.1,2 One of the main reasons for its poor prognosis is that PC patients remain 

asymptomatic until the disease progresses to advanced stages. Mutations resulting in the 

constitutive activation of the K-ras gene are present in 90% of pancreatic tumors and are 

considered to be a critical initiating event in PC pathology.3 However, the K-ras mutation 

alone is not sufficient to develop aggressive PC and requires the loss or mutations in other 

tumor suppressor genes. Furthermore, the role of tumor microenvironment (TME) is 

increasingly being appreciated as an essential component required for the progression of the 

cancer. Components of TME viz, cancer-associated fibroblasts, endothelial cells and most 

importantly, the immune system have a critical role in the progression of the cancer. 

Myeloid-derived suppressor cells (MDSCs) have recently been suggested to have a key role 

in tumor-derived immune suppression.4–6 These immature cells of myeloid origin appear in 

the peripheral circulation at pre-neoplastic stages, significantly suppress T-cell activity, and 

promote the development of T regulatory cells,7 thereby helping tumors to evade the 

immune surveillance.

In addition to mutations and TME, studies have shown that obesity8 and smoking9,10 are the 

two major epidemiologically established preventable risk factors for PC. Smoking is the 

leading cause of mortality and morbidity worldwide and is a major health issue due to its 

epidemic proportion.11,12 Cigarette smoke contains a complex mixture of over 4000 

compounds having carcinogenic effects,12,13 which influences all aspects of tumor biology 

including initiation, progression and metastasis through mutations,14 inflammation15 and 

immunosuppression.11,12,16 Nevertheless, due to the late diagnosis of PC, the evaluation of 

these risk factors at early stages of PC progression is limited.

In the present study, we investigated the role of smoking at early stages of PC progression in 

a genetically engineered mouse model (that is, K-rasG12D; Pdx-1cre),17,18 which 

endogenously expresses an oncogenic K-ras allele in the pancreas and recapitulates the 

entire spectrum of human PC from pancreatic intraepithelial neoplasia (PanIN) lesions to 

invasive ductal carcinoma. K-rasG12D; Pdx-1cre mice were exposed to cigarette smoke for 

20 weeks after the emergence of PanIN lesions (that is, 10 weeks of age, PanIN-1).17 

Kumar et al. Page 2

Oncogene. Author manuscript; available in PMC 2015 October 16.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Overall, smoking resulted in a significant increase in low-grade PanIN formation in K-

rasG12D; Pdx-1cre mice. There was reduction in MDSCs after smoke exposure, which was 

partially attributed to the presence of alltrans retinoic acid (ATRA) secreted by activated 

pancreatic stellate cells (PSCs). ATRA alone or in combination with cytokines potentially 

leads to the maturation of MDSCs to tumor-associated macrophages (TAMs) and dendritic 

cells (DCs). Our study further suggests that smoke exposure increased the expression of 

heparin-binding epidermal growth factor-like growth factor (HB-EGF) in TAMs in TME, 

which in conjunction with constitutively active K-ras mutation has been shown to accelerate 

the pre-neoplastic PC progression.

RESULTS

The cigarette smoke exposure regimen followed by us resulted in circulating cotinine levels 

of 125.0 ± 15.6 ng/ml. Lung lavage analysis demonstrated elevated lung chemokines and 

neutrophil numbers (data not shown), which was in agreement with previous studies.19

Smoking aggravates PanIN lesion formation

All the floxed mice developed PanINs by 30 weeks of age with complete penetrance, 

whereas the pancreas of unfloxed mice were unremarkable (Figure 1a). Smoking 

significantly accelerated the PanIN (PanIN-1 and -2) formation in the floxed mice as 

compared with sham controls (Figures 1a and b). There was a significant increase in the 

number of the PanINs per higher-power field (P = 0.0064). Real time reverse transcription 

PCR analysis from the RNA isolated from pancreas of smoke-exposed floxed mice showed 

an tenfold increase in the expression of CK19 (ductal marker) with concurrent decrease in 

the amylase expression levels (acinar marker) (Figure 1c). The accelerated formation of 

PanIN lesions in response to smoking and the switching of markers from acinar to ductal 

type suggest enhanced acinar-to-ductal metaplasia (ADM) and experimentally support the 

epidemiological data of smoking being a risk factor for PC.

Smoking modulates the mobilization and accumulation of MDSCs

MDSCs consisting of two subsets (monocytic (CD11b+Ly6Chi-Ly6G−) and the granulocytic 

(CD11b+Ly6ClowLy6Ghigh) fractions) (Figure 2a) appear early during pre-neoplastic 

conditions and contribute to tumor progression and tumor-associated immune suppression. 

The granulocytic fraction was the major subset that accumulated in the peripheral 

circulation, spleen (P<0.001) and bone marrow in the floxed mice (Figures 2b and c). 

Likewise, there was a significant accumulation of the monocytic (P= 0.002) and 

granulocytic (P = 0.002) fractions of MDSCs in the liver, which is the primary site for the 

PC metastasis (Supplementary Figures 2A and B). Conflicting to our expectation, MDSCs 

(granulocytic subset preferentially) decreased in the peripheral circulation (Figure 2b), bone 

marrow (P<0.001) and spleen (P = 0.001) (Figure 2c) of floxed mice after smoke exposure 

compared with sham controls. Validating our data, in vitro treatment of the splenocytes 

isolated from 30-week-old floxed mice with conditioned media from untreated or smoke 

lysate (SL)-treated KCT 961 cells (cell line derived from mouse tumor) significantly 

decreased the granulocytic population (P<0.01) (Figure 2d).
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Smoking leads to activation of PSC and elevated levels of retinoic acid in circulation

The decrease in MDSCs following smoke exposure in floxed mice could either be due to 

their maturation or apoptosis and previous studies have characterized the role of ATRA and 

cytokines in MDSCs maturation.20–22 One potential source of ATRA in TME is PSCs,23–26 

which on activation under inflammatory conditions secrete ATRA and express 

myofibroblast markers (α-SMA).27 Indeed, smoking resulted in the increased activation of 

PSCs in floxed mice (composite score 5.0) compared with sham controls (composite score 

3.3), as assessed by α-SMA staining (Figure 3a). ATRA in the serum is transported by 

retinoic acid-binding protein 4,28 which is also considered as a surrogate marker for the 

circulating ATRA levels. There was a significant increase in the retinoic acid-binding 

protein 4 levels (P<0.05) in the sera of smoked animals compared with sham controls in 

both unfloxed and floxed mice, suggesting the presence of higher levels of ATRA in 

circulation (Figure 3b, Supplementary Figure 3). The impact of smoking on the PSCs was 

evaluated in vitro by treating PSC lines derived from pancreas (imPSCc2) with SL alone and 

the conditioned media from untreated or SL-treated KCT 961 cells. There was a significant 

increase in Ki-67 staining (nuclear localization) and higher expression of α-SMA in 

imPSCc2 cells after treatment with SL as well as with conditioned media from untreated and 

SL-treated cancer cells, demonstrating the role of smoking on greater activation and 

proliferation of PSCs (Figures 3c and d).

Cigarette smoke modulates the expression of cytokines and promotes inflammation

The levels of cytokines involved in the mobilization, maturation and activation of MDSCs 

were estimated in the sera of smoke-exposed and sham mice (Figure 4, Supplementary 

Figures 4A and F). The levels of cytokines, such as granulocyte-macrophage colony-

stimulating factor (GM-CSF), interleukin (IL)-1β and IL-2, were higher in floxed mice in 

comparison to unfloxed group but their levels reduced after smoke exposure in floxed mice, 

consistent with the reduction in MDSCs (Supplementary Figures 4A and C). In addition, we 

observed increased levels of IL-12p40 and IL-6 (DCs specific cytokines) in smoked group 

compared with sham controls in floxed mice (Figure 4a). No significant differences were 

observed in the levels of other cytokines, such as G-CSF, M-CSF, IL-10, IL-13, TGF-β or 

tumor necrosis factor alpha (TNF-α) and macrophage inflammatory protein 1 alpha 

(MIP-1α), across the different experimental groups. The levels of inflammatory markers 

including IFN-γ, CXCL1 and CXCL2 increased in the pancreas of smoke-exposed floxed 

mice (~ twofold) compared with sham controls (Figure 4b). In agreement with these results, 

there was an increase in the overall degree of inflammation in the pancreas after smoke 

exposure (inflammatory score 1–2) compared with sham controls (inflammatory score 0–2) 

(Supplementary Table 4) as indicated by increased presence of mononucleated cells.

Increased accumulation of macrophages and DCs after smoke exposure

The decrease in the MDSCs was attributed to their differentiation to macrophages and DCs 

in response to factors including ATRA.22,29–31 This premise was strengthened by a 

significant increase (*P<0.05) in the number of TAMs (F4/80-positive cells) in the pancreas 

of floxed mice after smoke exposure (average area 1.3%, average intensity 1.6, n = 5) 

compared with sham controls (average area <1%, average intensity 1.3, n = 5) (Figure 5a). 
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The median number of infiltrating macrophages was significantly higher in smoke-exposed 

(average count of 50/field) mice as compared with sham controls (average count of 20/

field), as well as there was an increase in the DC population (CD80HCD86H) in liver and 

spleen (P<0.001) (Figures 5b and c). However, there was no significant difference in the DC 

population in pancreas of sham and smoke-exposed groups.

Smoking upregulates HB-EGF expression in macrophages

The presence of TAMs correlates with aggressive phenotype and poor prognosis in solid 

tumors.32 Further, in PC, aberrant overexpression of EGFR ligands, especially HB-EGF by 

TAMs, has been associated with ADM and early appearance of the PanIN lesions in K-

rasG12D (KC) mice.33,34 EGFR signaling is in fact essential in promoting K-ras-oncogene-

driven progression of PC, especially in presence of wild-type p53.33,35 In parallel to this, we 

have observed sevenfold increase in the expression of HB-EGF in the pancreas of the floxed 

mice following smoke exposure (Figure 6a), and immunofluorescence analysis using F4/80 

and HB-EGF antibodies in floxed mice demonstrated that macrophages were indeed the 

predominant source of the HB-EGF in PanIN-associated stroma following smoke exposure 

(Figures 6b and c). In vitro treatment of mouse macrophage cell line RAW 264.7 with 

conditioned media derived from SL-treated KCT 961 PC cell line also resulted in 2.8-fold 

increase in HB-EGF at transcription level (Figure 6d) and similarly, there was increase in 

protein levels of HB-EGF as well (Supplementary Figure 5).

Smoking partially suppressed the immune response at initial stages of PC progression

To confirm the functional status of immune system, peripheral blood mononucleated cells 

and splenocytes isolated from sham and smoke-exposed mice were stimulated with the T/B-

cell mitogens concanavalin A (Con A), phytohemagglutinin (PHA) and pokeweed mitogen 

(PW). Lymphocytes from the blood of unfloxed smoke-exposed mice proliferated at 

significantly higher rates in response to both PHA and PW when compared with sham 

controls (Figure 7a); however, the lymphocyte proliferation potential from peripheral 

circulation reduced after the smoke exposure along with the decrease in the CD3+TCR+ 

population in peripheral circulation (Supplementary Figure 6), suggesting the partial 

suppression of the immune system in the mice with pre-neoplastic lesions in response to 

smoke exposure (Figure 7a). On the other hand, splenocytes proliferated at comparable 

levels to mitogen stimulation even after the smoke exposure in unfloxed and floxed mice 

(Figure 7b). This smoking-induced immune suppression further helped tumor to accelerate 

faster.

DISCUSSION

Epidemiological studies have recognized smoking as a significant risk factor for PC9,10 and 

the experimental evidence indicates that smoke exposure modulates macrophage, DC and T-

cell functions in vitro.16,36,37 A previous study investigating the immune response to PC in 

K-rasG12D mouse model demonstrated infiltration of MDSCs and regulatory T cells during 

the development of PanIN lesions.38 The increased frequency of PanIN lesion formation in 

the pancreas of floxed animals after smoking as compared with the sham controls in the 

present study establish a direct association between smoking and higher risk of PC 
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development in individuals harboring constitutively active K-ras mutation in the pancreas. 

The increased expression of the epithelial marker, CK19 and α-SMA suggests that chronic 

inflammation induced by smoking facilitates the ADM and accumulation of fibrotic stroma 

in K-rasG12D; Pdx-1cre mice respectively, much similar to BK5.COX2 chronic pancreatitis 

transgenic mice, which develops pancreatic ductal adenocarcinoma by 6–8 months of age.39

The presence of PanIN lesions leads to the mobilization and accumulation of MDSCs in 

different organs. Serum cytokine analysis revealed higher levels of factors involved in the 

recruitment and maturation of MDSCs, such as GM-CSF40,41 and IL-1β, in floxed mice 

compared with unfloxed mice. The decrease in the MDSCs (CD11b+ Gr1+ (Ly6C, Ly6G)) 

after smoke exposure in our study was unexpected; however, the concurrent increase in the 

DC and macrophage population suggested maturation and/or apoptosis of MDSCs. A 

previous study by Kusmartsev et al.21 has demonstrated that immature cells of myeloid 

origin (CD11b+ Gr-1+) differentiate into macrophage (F4/80) and DC (CD11c+CD86+) 

populations in response to ATRA both under in vitro and in vivo conditions. ATRA is also 

known to induce differentiation of acute promyelocytic leukemia42 and hematopoietic 

progenitor cell.43 Further, vitamin A deficiency in mice leads to the expansion of immature 

myeloid fraction, highlighting the importance of ATRA in the maturation of myeloid 

lineage.44

The increased level of ATRA after the smoke exposure in our study strengthens our 

assumption that smoking resulted in exaggerated inflammatory response leading to 

enhanced activation of the PSCs. The quiescent stellate cells store retinoic acid in fat 

droplets as retinoid and upon activation by inflammatory stimuli secrete their retinoid store 

as ATRA23–25,45 and start expressing α-SMA.27 The increased expression of α-SMA in the 

pancreas after smoke exposure suggests higher activation status of PSCs, which was also 

validated in vitro by significant increase in Ki-67 expression and nuclear localization in 

PSCs (imPSCc2) after treatment with SL and conditioned media from SL-treated cancer cell 

line (KCT 961). The increased activation of PSCs in response to smoke exposure was 

corroborated by previous work documenting higher levels of pancreatic fibrosis in smokers 

compared with never smokers.46 The increased levels of IL-12p40 cytokine secreted by DCs 

matured explicitly in response to ATRA, suggesting the involvement of ATRA in smoking-

mediated immune modulation.47

We believe that increase in TAMs due to differentiation of MDSCs or their higher 

infiltration accelerates the PanIN formation. Previous reports have established that increased 

macrophage accumulation in early pre-neoplastic lesions in pancreas accelerates ADM and 

phenotypic changes associated with PC initiation.33,34 These PanIN-associated macrophages 

are predominant source of cytokines and the EGFR ligands in multiple cancers.33,48 EGFR-

mediated signaling has been demonstrated to be essential and acts synergistically with 

activated K-ras to drive PC oncogenesis35 involving multiple signaling pathways. Further, 

studies have specifically demonstrated that TAMs are the primary source of HB-EGF 

(EGFR ligand) in the microenvironment as compared with classically activated 

macrophages.49 In pancreas, HB-EGF has been demonstrated to promote ADM in the 

presence of K-ras mutation and promotes the development of PanINs and PDAC in vivo.33 

Therefore, higher expression of HB-EGF in the pancreas of floxed mice after smoke 
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exposure mechanistically explains the increase in PanIN formation and faster progression of 

PC. Furthermore, the present study has also demonstrated that TAMs are the principal 

source of HB-EGF in pre-neoplastic microenvironment, as reported previously. In addition 

to EGFR-mediated signaling, the impairment of immune system due to persistent smoke 

exposure demonstrated by us and others12,16,36 also assisted in the faster progression of the 

PC.

Taken together, present study provides a novel mechanism for smoking-induced acceleration 

of the PC progression (Figure 7c) through differentiation of immature myeloid cells into 

tumor-promoting macrophage population (in response to ATRA and cytokines), expressing 

higher levels of HB-EGF in TME.33 However, to fully understand the role of TAM-derived 

HB-EGF in smoking-induced PanIN progression in KC mice, further studies involving 

macrophage-targeted conditional knockout of HB-EGF need to be undertaken. In addition, it 

is important to emphasize that chronic inflammation and progression of cancer may tip the 

scale toward the expansion of the MDSC compartment later during PC progression.

MATERIALS AND METHODS

Smoke exposure

All animal experiments were reviewed and approved by the University of Nebraska Medical 

Center Institutional Animal Care and Use Committee (IACUC). The animals (LSL-K-

rasG12D and K-rasG12D; Pdx-1cre referred as unfloxed and floxed, respectively) were 

exposed to cigarette (University of Kentucky Reference Cigarette, 3R4F, Lexington, KY, 

USA) smoke (Teague TE-10C, Davis, CA, USA) for 20 weeks, 3 h twice a day (150 mg 

total suspended particles/m3) starting at 10 weeks of age when floxed mice start developing 

low-grade PanIN lesions.17 Sham animals were used as controls (Supplementary Table 1).

Real time PCR analysis

Total RNA from pancreas and RAW 264.7 cells was isolated using the mirVana miRNA kit 

(Applied Biosystems, Austin, TX, USA) and Qiagen RNeasy Kits (Qiagen, Valencia, CA, 

USA), respectively. RNA (1 μg) was reverse transcribed with random hexamer oligo (500 

μg/ml) as previously described.50 Subsequently, for real time PCR analysis, 10 ng of 

complementary DNA was amplified using the Light Cycler 480 SYBR green I master mix 

(Roche Diagnostics, Indianapolis, IN, USA) in the Light Cycler 480II (Roche Diagnostics). 

The amplification was done in a two-step cyclic process (95 °C for 5 min, followed by 45 

cycles of 95 °C for 10 s, 60 °C for 10 s and 72 °C for 10 s). The expression of various genes 

was profiled using gene-specific primers (Supplementary Table 2) and the relative 

expression was calculated using 2ΔΔCT method. Statistical comparisons of two groups were 

made using Student’s t-test and P<0.05 was considered statistically significant.

Cellularity analysis

Cells from bone marrow were isolated by flushing the femur 3–4 times with RPMI media 

supplemented with 10% fetal bovine serum and penicillin/streptomycin. Single cell 

suspension from tissues (n =6) was prepared by repetitive passaging through 25 gauge 

needles and the cells from blood were analyzed after red blood cell lysis using RBC Lysis 
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Buffer (BD Bioscience, San Jose, CA, USA). Cells from pancreas and blood from each 

experimental group were pooled (n = 6) before staining. The cells were stained with the 

indicated antibody cocktail for 1 h on ice and fixed in 4% paraformaldehyde in phosphate-

buffered saline (PBS). The stained cells were analyzed on a BD Bioscience LSRII flow 

cytometer (BD Bioscience). The mouse-specific antibodies and isotype controls used for 

flow cytometry were purchased from BD Bioscience and eBioscience (San Diego, CA, 

USA) (Supplementary Table 3). The gating strategy is described in Supplementary Figure 1.

Western blot analysis

Western blot analysis was performed as previously described.51 Briefly, serum samples 

were mixed with Laemmli buffer and resolved on 10% SDS–PAGE. Proteins were 

transferred to polyvinylidene difluoride membrane and incubated overnight with RBP4 

antibody (2947-1, Epitomics, Burlingame, CA, USA) and HB-EGF (sc1414, Santa Cruz 

Biotechnology, Santa Cruz, TX, USA) after blocking with 5% skim milk. The blot was 

washed three times with PBST (0.1% Tween 20) and incubated with horseradish peroxidase-

conjugated secondary antibody (Thermo Scientific, Rockford, IL, USA) for 1 h at room 

temperature. Membrane was washed with PBST and the proteins were visualized by 

enhanced chemiluminescent reagent (Thermo Scientific). Protein bands for RBP4 were 

quantified using ImageJ software (NIH, Bethesda, MD, USA), and P-values were calculated 

using Student’s t-test of replicate values and values <0.05 were considered to be statistically 

significant. Nonspecific protein band in the blot was used for loading control and 

normalization.

Cytokine assay

For the analysis of various cytokines, blood was allowed to clot and centrifuged at 1000 g 

for 30 min. The serum levels of pro-inflammatory cytokines, chemokines and growth factors 

(G-CSF, GM-CSF, IFN-γ, IL-10, IL-12p70, IL-13, IL-1beta, IL-2, IL-4, IL-6, M-CSF/

CSF1) were assessed utilizing a customized Luminex-based multiplex Procarta Cytokine 

Assay Kit (Multimetrix, Heidelberg, Germany). Standard curves were prepared from 

standards provided with the kit and serially (log4) diluted from 20 ng/ml to 1.2 pg/ml.

In vitro lymphocyte stimulation assay

Peripheral blood mononucleated cells and splenocytes were seeded, in triplicate in 96-well 

plates (2×105/well). The mitogens Con A, PHA at 2.5 μg/ml each and PW at 5 μg/ml final 

concentration were added to each well. After 72 h of incubation, 1 μCi of 3H-thymidine (MP 

Biomedicals, Solon, OH, USA) was added to each well and plates were incubated for 18 h. 

Cells were collected onto glass fiber filter paper discs using a PHD Cell Harvester 

(Cambridge Technology Inc, Lexington, MA, USA). The dried filter discs were placed in 

scintillation counting vials containing scintillation fluid (ScintiVerse CTM Scintillation 

medium, Fisher Scientific, Pittsburg, PA, USA) and the counts per minute (c.p.m.) were 

recorded in a TRI-CARB 2100 TR Packard Liquid Scintillation Analyzer (PerkinElmer, 

Boston, MA, USA) and used to calculate stimulation index (c.p.m. of smoke exposed/c.p.m. 

of sham). Student’s t-test of replicate values was used to calculate the corresponding P-

values (<0.05 was considered to be statistically significant).
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Immunohistochemistry analysis

Tissues (pancreas) from mice were collected and fixed in 10% formalin for 72 h and 

embedded in paraffin wax. Immunohistochemistry analysis was performed as described 

previously.50 Briefly, glass slides containing 5-μm-thick tissue sections were baked 

overnight at 58 °C. After deparaffinization with xylene, tissues were rehydrated in 

decreasing concentrations of ethanol. Endogenous peroxidase activity was blocked by 

incubating tissues for 1 h with 3% H2O2:methanol solution. Antigens were retrieved by 

boiling sections in 0.5% citrate buffer for 15 min, blocked with 2.5% horse serum for 1 h 

and incubated with α-smooth muscle actin (α-SMA; ab18147, Abcam, Cambridge, MA, 

USA), murine F4/80 (123102, Biolegend, San Diego, CA, USA) and primary antibodies 

overnight at 4 °C. Slides were washed with PBS and incubated with horseradish peroxidase-

conjugated secondary antibodies for 1 h, washed and developed for colorimetric detection 

by the 3.3′ diaminobenzidine kit (Vector laboratories, Burlingame, CA, USA). After 

counterstaining with hematoxylin, the tissues were dehydrated, dried and mounted with 

Permount (Cat. No. 17986-05, Fisher Scientific, Hatfield, PA, USA). The intensity of the 

staining was evaluated by pathologist. The composite score for α-SMA was calculated on 

the basis of intensity (scale of 0–3) and percentage positivity (0–100%). The TAM from 

sham and smoke-exposed animals (n = 5) were quantified by counting F4/80-positive cells 

from five independent fields per tissue section and the results were presented as the average 

count of five independent fields. Further, slides were evaluated by pathologist and the 

staining in tissues was evaluated on the basis of percentage average area (area occupied by 

macrophage staining/section) and intensity of staining (scale of 0–3).

Immunofluorescence analysis

Immunofluorescence analysis of pancreas after smoke exposure was performed on 5-μm-

thick tissue sections mounted onto glass slides that were baked overnight at 58 °C. Tissues 

were deparaffinized with xylene, rehydrated in decreasing concentrations of ethanol and 

permeabilized for 30 min with methanol solution. Antigen retrieval was performed by 

boiling sections in 0.5% citrate buffer for 15 min, blocked with 2.5% horse serum for 1 h 

and incubated with murine F4/80 and HB-EGF (sc1414, Santa Cruz Biotechnology) primary 

antibodies overnight at 4 °C. Slides were washed with PBS and incubated with FITC-

conjugated (A-629511, Invitrogen, Grand Island, NY, USA) and Alexa-Fluor-647 

(A-21447, Invitrogen)-conjugated secondary antibodies for 1 h, washed three times and 

mounted with Vectashield containing 4′ 6′-diamidino-2-phenylindole (DAPI).

In vitro cell treatment with SL

The cigarette SL for in vitro experiments was prepared as described previously.52 Briefly, 

two 3R4F cigarettes smoke was passed directly through 35 ml media in air-tight glass 

container at the rate of 1 puff (2 s duration) for 8 min, providing ~ 0.8 mg nicotine/cigarette. 

The splenocytes from the 30-week-old floxed mice were isolated and exposed for 48 h to 

either smoke lysate (1:100 in 10% RPMI) alone (SL) or to the conditioned media from 

cancer cell line (KCT 961, derived from K-rasG12D, TP53R172H; Pdx1-cre mouse pancreatic 

tumor, T) and cancer cell line treated with SL for 24 h (T+SL). The conditioned media were 

also used to treat PSCs and RAW 264.7 cells. After incubation, the splenocytes were 
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analyzed for the expression of indicated markers by flow cytometry analysis. Splenocytes 

were stained with the indicated antibody cocktail for 1h on ice, fixed in 4% 

paraformaldehyde and analyzed on BD Bioscience LSRII flow cytometer (BD Bioscience). 

PSCs (imPSCc2, kindly gifted by Dr Raul A Urrutia, Mayo Clinics)53 seeded on glass 

coverslips were treated and stained with α-SMA and Ki-67 (ab66155, Abcam) primary 

antibodies for 1 h. Cells were washed three times with PBS and incubated with Alexa 

Fluor-488 (anti-mouse, A11001, Invitrogen) and Alexa Fluor-568 (anti-rabbit, A11011, 

Invitrogen) secondary antibodies for 1 h. Cells were again washed three times and mounted 

with Vectashield containing DAPI.

Statistical analysis

The Kruskal–Wallis test was used to compare the distribution of percent gated cells and 

cytokine analysis. If the overall test was statistically significant, pairwise comparisons 

between the groups were conducted and P-values were adjusted for multiple comparisons 

using the Bonferroni method. P-value <0.05 was considered statistically significant.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1. 
Smoking accelerates PanIN formation in the spontaneous PC mouse model. (a) Hematoxylin 

and eosin staining of sham and smoke-exposed unfloxed and floxed animals demonstrating 

the formation of pre-cancerous lesions (PanIN, black arrow) in the floxed mice at 30 weeks 

of age (magnification × 100). (b) Quantification of the number of PanIN lesions (low and 

high grade) in the sham and smoke-exposed floxed animals. There was a significant increase 

(P = 0.006) in the number of the PanIN lesions per high-power field (HPF) after smoke 

exposure. (c) Real time reverse transcription PCR analysis of the RNA isolated from the 

pancreas of sham and smoke-exposed floxed (n =6) animals. There was tenfold increase in 

the expression of ductal marker CK19 (*P<0.05) and a concurrent decrease in the 

expression of acinar marker amylase (#P<0.05) after 20 weeks of smoke exposure.
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Figure 2. 
Smoking decreases the accumulation of MDSCs in the spontaneous PC mouse model. (a) 

Gating strategy for the analysis of different subsets of MDSCs. The granulocytic fraction 

was identified by the expression of CD11b+ Ly6CL Ly6GH (P4) and the monocytic fraction 

(P2) expresses CD11b+ Ly6CH Ly6GL/−. (b) Analysis of different subsets of MDSCs in the 

peripheral circulation. Blood from six animals from each group were collected by retro-

orbital puncture, pooled and analyzed. The samples were drawn at the start of smoking (10 

weeks), at the midpoint of smoking (20 weeks) and at the termination of the experiment (30 

weeks). There was a significant decrease in granulocytic population after smoke exposure in 

floxed mice. (c) Expansion and accumulation of a subset of MDSCs (granulocytic) in the 

bone marrow and spleen of animals in various experimental groups. ((1) Unfloxed sham, (2) 

unfloxed smoked, (3) floxed sham and (4) floxed smoked animals) after 20 weeks of smoke 

exposure (**P<0.001). There was a significant decrease in the granulocytic subset of 

MDSCs after the smoke exposure. (d) The splenocytes isolated from the 30-week-old floxed 

mice were treated in vitro with the SL and the condition media from untreated (T) or SL-

treated tumor cell line KCT 961 (T+SL). There was a significant decrease (*P<0.01) in the 

percentage of granulocytic fraction after treatment with conditioned media.
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Figure 3. 
Smoking induces the activation of PSCs. (a) α-SMA (myofibroblast marker) staining in the 

smoke-exposed and sham control floxed mice. There was higher expression of α-SMA in 

the pancreas of smoke-exposed animals compared with the sham group, reflecting greater 

activation status of stellate cells (magnification × 400). (b) The normalized levels of retinoic 

acid-binding protein 4 from the serum of sham (n = 4) and smoke-exposed (n = 4) unfloxed 

and floxed mice. The smoke-exposed mice showed significantly higher levels of retinoic 

acid-binding protein 4 (*P<0.05) in the serum, reflecting increased levels of the circulating 

ATRA. (c) Immunofluorescence analysis of the PSCs (imPSCc2) for the expression of α-

SMA and Ki-67 after treatment with SL and conditioned media derived from untreated 

tumor cells (KCT 961, T) and SL-treated tumor cell line (KCT 961, T+SL). There was 

higher activation and proliferation of PSCs after treatment with SL, T and T+SL. (d) 

Percentage positive Ki-67 nuclei in imPSCc2 cell line after treatment with SL, T and T+SL. 

The significant increase in the Ki-67 nuclei after treatment with SL (#P<0.001) and 

conditioned media from SL-treated KCT 961 cell line (*P<0.001) indicated the higher 

activation and proliferative status of PSCs.
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Figure 4. 
Smoking-induced changes in the inflammatory cytokines responsible for MDSCs 

maturation. (a) The box plot comparing the levels of indicated cytokines between four 

experimental groups: (1) unfloxed sham, (2) unfloxed smoked, (3) floxed sham and (4) 

floxed smoked. Analyses of the 13 cytokines known to modulate the mobilization, activation 

and differentiation of cells of myeloid origin were performed from serum samples using the 

Luminex-based Procarta Cytokine Assay Kit (Supplementary Figure 2). There was an 

increase in the levels of IL-12p40 and IL-6 after smoke exposure in the floxed animals. (b) 

Real time reverse transcription PCR analysis of inflammatory markers (IFN-γ, CXCL1 and 

CXCL2) in pancreas of floxed mice (sham and smoke exposed). Smoking leads to 

significant increase in IFN-γ (#P<0.05) and CXCL2 (*P<0.05) levels in the pancreas 

compared with sham control, indicating higher inflammatory status in pancreas after smoke 

exposure.
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Figure 5. 
Increased DC and macrophage accumulation in response to smoking. (a) 

Immunohistochemistry analysis of TAMs (identified by F4/80 staining) in K-rasG12D; 

Pdx-1cre smoke-exposed animals compared with the sham control (magnification × 100; 

inset × 400). (b) Quantification of TAMs from sham and smoke-exposed animals showed 

significant increase in TAMs in the pre-neoplastic lesions in the pancreas (*P<0.05) after 

smoke exposure (average count of F4/80-positive cells in five independent fields/tissue 

section). (c) Analysis of the distribution of DCs in spleen, liver and pancreas in (1) unfloxed 

sham, (2) unfloxed smoked, (3) floxed sham and (4) floxed smoked animals. There was 

significantly higher DC population in the spleen and liver as defined by CD80/CD86 

positivity after smoke exposure in floxed mice compared with sham (*P<0.05, **P<0.001).
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Figure 6. 
Smoking induces the expression of HB-EGF in the macrophages. (a) Real time reverse 

transcription PCR analysis of the expression of HB-EGF in the pancreas of the sham and 

smoke-exposed floxed mice. There was higher expression of HB-EGF in the pancreas in 

response to smoking. (b) Immunofluorescence analysis of the pancreas of smoke-exposed 

floxed mice stained with macrophage marker (F4/80) and the HB-EGF antibodies. 

Macrophage population was the predominant source of the HB-EGF in PanIN lesions as 

demonstrated by intensity plot of colocalization of F4/80 and HB-EGF. (c and d) The in 

vitro treatment of mouse macrophage cell line RAW 264.7 with SL and conditioned media 

derived from untreated tumor cells (KCT961, T) and SL-treated tumor cell line (KCT961, T

+SL) showed a significant increase of 2.8-folds in HB-EGF at transcription level (*P<0.01, 

**P<0.05).
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Figure 7. 
Smoking partially suppresses the immune system during early stages of PC. (a) Mitogen 

stimulation (Con A, PHA and PW) of peripheral blood mononucleated cells derived from 

sham and smoke-exposed unfloxed and floxed animals. The lymphocytes from smoke-

exposed unfloxed mice proliferated at significantly higher rate (**P = 0.0005) compared 

with sham control, which was reduced in the floxed mice after smoke exposure. (b) Mitogen 

stimulation (Con A, PHA and PW) of splenocytes derived from sham and smoke-exposed 

unfloxed and floxed mice. There was no effect on the mitogenic potential of the splenocytes 

after smoke exposure. (c) Proposed model of the cigarette smoke-induced acceleration of the 

PC. Smoking induces the inflammation that leads to the activation of the PSCs and changes 

the cytokine profile, which results in the maturation of the immature cells of the myeloid 

origin to macrophages and DCs. Smoking further induces the expression of EGFR ligands 

(HB-EGF) in the macrophages, which in conjunction with the mutant K-ras accelerates the 

progression of PC.
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