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A bioinformatics analysis of microbial diversity and
its correlation with human lifestyle, diet, and health
variables

Alivia Ankrum and Technoloogy
School of Interdisciplinary Omaha, NE
Informatics aankrum@unomaha.edu

College of Information Science

Abstract—The abundant impact of microbiota on human
physiology suggests a need for exploration into their impact on
human health and disease. The American Gut Project (AGP) was
established to aggregate microbiome sequencing data as well as
health, diet, and lifestyle metadata. This study proposes to identify
taxonomic species and build a phylogenetic tree representation
from the AGP participant sample collection as well as find their
respective alpha and beta diversity of all metadata variables based
on patient questionnaire data. Additionally, this study will involve
a chimeric sequence extraction from the 16S rRNA sequences of
the AGP. The expected results are hypothesized to identify the
Actinobacteria’s  Bifidobacterium and the  Firmicutes’
Lactobacillus as dominant genera, as well as significant correlation
between digestive or intestinal diseases and the microbial diversity
due to pathogenic species often present in the microbiome. The
dominant phyla were found to be Bacteroidetes, Firmicutes, and
Proteobacteria. In contrast to predictions, the two dominant
genera were found to be Bacteroides and Faecalibacterium. The
subset of metadata variables that had a statistically significant
correlation between both alpha and beta diversity were found
which included variables relating to lifestyle habits, geographic
location, diet habits, medical diagnoses, and environmental
factors. (4bstract)

Keywords—microbiome, American Gut Project, QIIME?2,
bacteria, bacterial phylogeny, phylogenetic tree, alpha diversity, beta
diversity

I. INTRODUCTION

A. Background

The human microbiome is made up of over 100 trillion
microbes, or microbiota, including that of bacteria, fungi,
protozoa, and viruses which live in adjacency to surrounding
eukaryotic cells [1]. Although, these microbial cells outnumber
the number of eukaryotic cells ten to one, which translates to 200
times more microbial genes than genes in the human genome
[1]. The microbial cells in our body, usually in the large
intestine, have many functions including digestion, regulation of
the immune system, protection against disease-causing bacteria,
production of vitamins, and more [1]. Because of these diverse
and abundant functions that the microbiome performs, they thus
have the ability to impact human physiology, and therefore can
influence health and disease [2].

As technological advancements have developed, the human
microbial components have undergone culture-independent
study through the use of 16S rRNA-encoding gene sequencing
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paired with alignment to bacterial reference sequences [2]. This
gene is commonly utilized to differentiate between microbiota
of varying bacterial phylogeny and taxonomy due to its almost
universal presence in bacteria coupled with its conservation of
function over time [3]. 16S rRNA sequencing produces genus
identification over 90% of the time with 65 to 83% of the genus
identifications also assigned a species identification [3].

There have been significant initiatives to collect data on the
human microbiome, including the Human Microbiome Project
(HMP) and European Metagenomics of the Human Intestinal
Tract (MetaHIT), which revealed 200 times the amount of
microbial DNA sequences previously reported, allowing for a
significant increase in the known diversity of the human
microbiome [2]. This increased microbial diversity has
subsequently led to increased research into correlation between
the presence of certain microbiota with human health. The
microbiome diversity has thus been linked to physiological
changes within the body, thought to possibly contribute to the
pathogenesis of diseases, such as rheumatoid arthritis, colorectal
cancer, obesity, diabetes, cardiovascular disease, irritable bowel
disease, inflammatory bowel disease, and more [2]. There have
also been significant research that supports the idea that
modulation of one’s diet has a significant benefit on their
microbiome, and in turn greatly effects their health. There are
numerous ways to positively impact health by altering ones’
microbiota makeup, such as through taking probiotics from
genera Bifidobacterium and Lactobacillus, or other methods that
increase the diversity of microbiota in one’s intestine [4].

One of the few large-scale studies for human microbiota data
comes from the American Gut Project (AGP) which gathers
stools samples and patient meta-data in the form of a
questionnaire to analyze the diversity of microbiota and how
these correlate with diet, lifestyle, and health metadata [5]. The
intention of this study is to identify and analyze the taxonomical
diversity from the 16S rRNA sequencing data published by the
AGP. Additionally, microbiota species identification and
diversity analysis will be correlated with the patient’s meta-data
such as allergies, diagnoses, and diet. This will be used to
determine reasonable association between specific microbiota
and patient health, diet, and lifestyle metadata. This study will
also involve a chimeric sequence extraction from the 16S rRNA
sequence aggregate, and further analyze these results and apply
a comparison to the original taxonomic classifications. This
project ultimately aims to correlate microbiome diversity with



patient lifestyle, diet, and health data in order to provide a
reasonable method of association in future patient management.

B. Hypothesis

After execution of the taxonomic classification, metadata
analysis, and diversity analysis, an expected outcome of this
project involves identifying the dominant genera as
Bifidobacterium and Lactobacillus, as previous analysis of the
American Gut Project had concluded from ASV inferences [9].
Because microbial species within both of these genera are often
used in probiotics, it is expected that the metadata involving
probiotic use and diet regimens will influence the diversity of
microbial taxa diversity more than that of lifestyle or health
variables. Although, it is expected that health data involved with
that of digestive or intestinal diseases will also greatly affect the
microbial diversity due to the innate state of disease being linked
to lack of homeostasis brought on by the lack of presence or
excessive presence of certain pathogens.

II. MATERIALS AND METHODS

A. Data Availability

The data from the American Gut Project is publicly available
via the European Nucleotide Archive (ENA) at EMBL-EBI
using accession number PRJEB11419 and will be downloaded
locally [6]. The FASTQ files of the first 998 samples were
downloaded using enaBrowserTools with the project accession
on the command line. The corresponding metadata files were
downloaded via a Python script utilizing wget to interact with
the ENA REST APIs. All corresponding documentation and
code can be downloaded at the GitHub Repository
corresponding to this project at
https://github.com/aliviaankrum/BIOI_capstone'.

B. QIIME? Analysis

QIIME2’s end-to-end microbiome analysis tools was used to
perform species identification, phylogenetic tree construction,
and diversity analysis using questionnaire results submitted by
participants of the American Gut Project [7]. The first 998
microbiome sequence files from PRJEB11419 were imported
into QIIME2 using a manifest file in ‘SingleEndFastq-
ManifestPhred33V2’ format. Firstly, DADA?2 was used to
perform denoising of the single-end sequences. To perform
taxonomic classification, the QIIME2 feature classifier plugin
was used to classify the previously produced ASVs alongside
a naive Bayes machine-learning classifier using the
Greengenes 138 reference set to identify taxa. The resulting
taxonomic classifications were then used to create a
phylogenetic tree using the fragment insertion plugin which
inserts the sequences into the Greengenes 13_8 99% identity
reference tree backbone. The chimeric sequence identification
was performed using the ‘vsearch uchime ref” method, which
uses the UCHIME de novo program alongside the QIIME2
‘vsearch’ analysis pipeline tool based on the sequencing
abundance data [8]. Alpha and beta diversity was calculated
using the QIIME2 diversity plugin. The alpha diversity was
calculated, which includes Faith’s phylogenetic diversity and
Pielou’s evenness value, as well as the beta diversity using a
PERMANOVA test of variance. The alpha diversity metrics
were then used to understand the diversity within samples and
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how this relates to each metadata variable. Beta diversity will
be used to analyze differences in microbiome diversity
between the samples and therefore, how each metadata
variable involving health, diet, and lifestyle is correlated with
the identified differences in taxa classification. Additionally,
the chimeric sequence extraction will be done

III. RESULTS

A. Quality Control

After performing QIIME2’s importation command, a
visualization was produced to summarize sequence statistics
(Table 1) as well as a quality control plot (Fig. 1). Table 1 reveals
a wide range of forward sequence counts, though only 93
sequences ranged from one to 57 base pairs in length, while a
significant jump from 57 to 2952 subsequently occurs.

Measurement Forward reads
Minimum 1
Median 30257.5
Mean 30556.885772
Maximum 76651
Total 30495772
TABLE 1. DEMULTIPLEXED SEQUENCES SUMMARY

Table showing the minimum, median, mean, maximum, and total number of
forward reads calculated from the 998 FASTQ files imported into QIIME2.

Fig. 1 shows a box and whisker plot for each base pair within
the 150 base pair forward read. Each quality measure per
sequence base was calculated by taking a random sample of
10,000 sequences out of the total 3,0495,772 forward reads. The
lowest quality score measured at the 9" percentile was 12 at
position 150. Though, the next highest 9" percentile quality
score was 27 at positions 139 and 140. At all but 13 base
positions, the median or 50" percentile was between quality
scores of 37 and 39. The full TSV file detailing all quality scores
for each sequence base position can be found on the GitHub
corresponding to this project at
https://github.com/aliviaankrum/BIOI_capstone'.

Forward Reads

Quality Score
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Fig. 1. Interactive quality control plot visualized using QIIME2View. At each

sequence base, a box and whisker plot portrays the 9, 25" 50™, 75% and 91°

percentile quality scores for a random sample of 10000 forward reads.



To better discern the presence of chimeras in the sample set, a
chimeric sequence extraction was done using QIIME2 with the
‘uchime-denovo’ command of the ‘vsearch’ plugin. The
resulting statistics calculated a score for each of the 32940
unique features or OTUs seen within the 998 sequences, which
was then used to classify them as chimeras. The resulting set of
non-chimeric sequences, containing those with and without
borderline features, contained 966 samples, which then
included 22,873 non-chimeric OTUs, which were then
included in the subsequent QIIME?2 analysis.

B. Taxonomical Classification

Based on the results of the Interactive Quality Plot seen in
Fig. 1, denoising was performed with a truncate length value of
150, based on the observation that the quality does not have an
significant low-quality region. After denoising with DADA2,
the taxonomical classification bar chart was visualized using
QIIME2View. This revealed two instances of Archaea, both of
the Candidatus Nitrososphaera genera. The dominant phyla
were found to be Bacteroidetes, Firmicutes, and Proteobacteria.
In contrast to predictions, the two dominant genera were found
to be Bacteroides, with 721 occurrences, and Faecalibacterium,
with 279 occurrences, while Bifidobacterium had 46
occurrences and Lactobacillus had 115. A screen shot of a
taxonomical bar plot representing the relative proportion of
microbiota taxa identified to a phylogenetic level of 7 of a subset
of samples used for analysis can be seen in Fig. 3. The complete
TSV file listing all taxonomical classifications for all 998
samples along with their Feature ID and confidence level can be
found on the GitHub repository corresponding to this project at
https://github.com/aliviaankrum/BIOI_capstone'.

C. Phylogenetic Tree Construction

A fragment insertion tree was constructed in QIIME2 using
DADAZ2’s output representative sequences and the Greengenes
13 8 99% identity reference backbone (Fig. 3). This
phylogenetic tree contains 249 nodes, with two major clades that
contain the majority of nodes, alongside five branches spanning

directly from the center. Additionally, the ‘align-to-tree-mafft-
fasttree’ pipeline was utilized to construct another phylogenetic
tree, this time, portraying all 32940 unique features detected in
the 998 sequences (Fig. 4). This tree more accurately shows the
relative phyla distribution based on the imported microbiome
sequences. These phylogenetic trees as .qza artificats can be
downloaded from the GitHub corresponding to this project at
https://github.com/aliviaankrum/BIOI_capstone'.

Fig. 3. Unrooted fragment insertion phylogenetic tree created using QIIME2
fragment-insertion plugin with DADA?2’s representative sequences and the
Greengenes 138 99% identity reference backbone, visualized using ITOL.
Tree contains 249 nodes around the periphery without branch lengths.

100%

Fig. 2. Taxonomical classification bar plot showing relative frequencies of
each microbial organism at a phylogenetic level of 7, denoting species
identification, for each patient sample seen on the x-axis. This image and legend
represents a small portion of the full visualization, and therefore does not
represent all samples or taxonomical classifiations, respectively.
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Fig. 4. Feature phylogenetic tree mapping all 32940 OTUs detected in the 998
FASTQ files imported into QIIME2. Shaded portions represent phylum
classification, aside from the red section which represents an undetectable phyla
and OTUs only defined within the kingdom Bacteria, viewed using ITOL.

D. Alpha and Beta Diversity

The alpha diversity was first calculated using the ‘core-metrics-
phylogenetic’ pipeline. Based on the results of the resulting
DADA?2 table artifact, the sampling depth was set at 5047,
because of its distinguished separation from the
uncharacteristically low number of sequences in a few samples,
which also allowed most of the samples to be retained. The Faith
Phylogenetic Diversity, a measure of alpha diversity, revealed
which metadata variables were statistically significantly
associated with species richness, or how much of the
phylogenetic tree is represented in the sample. For each alpha
diversity measurement, a p-value is calculated that reveals
whether the association between species richness and the
metadata variable is statistically significant. When visualized in
QIIME2View, they produced a box and whisker plot, like the
one shown in Fig. 5. All metadata variables with a Faith’s
Phylogenetic alpha diversity p-value less than 0.05 is listed in
Table 2 with the corresponding p-value.

100
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Fig. 5. Sample Faith Phylogenetic Diversity boxplot representing the alpha
diversity, or species richness, present in one of the categorical variables tested
in the American Gut Project. This image shows alpha diversity measures of the
‘bmi_cat’, a categorical variable for the patient’s Body Mass Index. As shown,
there is significant difference in alpha diversity in those who are overweight
and normal.

Metadata Variable P-value
Age_cat 0.0032698629643783685
Alcohol_consumption 0.0001943406975716111

Alcohol_frequency

0.000016268361573957885

Antibiotic_history

0.00039896899756371434

Appendix_removed 0.019592670823693464
Birth_year 0.021122750674523724
Bmi_cat 0.00010883129994906723

Body_habitat

2.776623161224216e-51

Body_product 2.776623161224216¢-51
Body_site 2.0575774719245235¢-50
Bowel_movement_frequency 0.025832436239938417
Census_region 0.01701165501941924
Collection_date 0.019239404315396724

Collection_month

1.4012767014455236e-8

Collection_time 0.0281505078576528
Csection 0.0028991712289122462
Drinking_water_source 0.023431988283273076

Economic_region

0.000034583728625899345

Env_material

2.776623161224216e-51

Env_package 2.776623161224216e-51
Exercise_frequency 0.0006819892336315701
Exercise_location 0.0013139094435320334
Height_cm 0.0338452873503027

Ibd 0.003133324358146945
Latitude 0.0423326043103398

Longitude 0.021990268160364368
Milk_cheese_frequency 0.037599110648606736

Sample_type

1.4411950703055883e-49

Skin_condition 0.02362689149906728

Sleep_duration 0.031170752400950213
State 0.0013042506756748959
Subset_age 0.0005736253664513524

Subset_antibiotic_history

0.00010382988424618728

Subset_bmi

0.000004931894070504741

Subset_healthy

7.665407219457153e-10

Subset_ibd

0.0033952496073359154

Types_of plants

0.00032147286037028294

Weight_change

0.008164336542164086

TABLE II. ALPHA DIVERSITY P-VALUES

Table showing the metadata variables with an alpha diversity p-value less than
0.05, indicative of a statistically significant correlation between species
richness and each variable listed.




The beta diversity was later calculated using a
PERMANOVA test with the ‘beta-group-significance’
command in QIIME2. The beta diversity command measures
the similarity of microbiome composition between samples and
based on the resulting p-value, reveals whether the association
between microbiome diversity and metadata variable is
statistically significant. Each categorical metadata variable
underwent pairwise permutation tests to reveal these statistically
significant associations between instances of the metadata
variable and their microbiome composition. Table 3 shows the
metadata variables tested and corresponding p-value if less than
0.05.
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Fig. 6. PERMANOVA group significance plots for the metadata variable
‘bmi_cat’, a categorical variable for the patient’s Body Mass Index,
representing the distances between participants who are within ‘normal’ BMI
to other responses, a measure of beta diversity.

IV. DIScUssION

A. Taxonomical Distribution

Based on the results of the taxonomical classification and
phylogenetic tree construction, the majority of bacterial phyla
represented by all 998 microbiome samples were found to be
Firmicutes, Proteobacteria, and Bacteroidetes. Additionally,
the phylogenetic distribution of all microbiota represented in
this study is mainly broken up between two major clades. As
seen in both Figs. 3 and 4, the middle of the graph separates into
two branches, that subsequently contain the majority of
microbiota or OTUs. One clade is more diverse than the other,
which contains mostly Firmicutes. Therefore, it can be
concluded that the majority the human microbiome analyzed in
these samples is composed of bacteria classified as Firmicutes,
Proteobacteria, and Bacteroidetes.

B. Diversity Analysis

After performing alpha diversity measures, several metadata
variables were shown to have a statistically significant
association with species richness, or the amount of microbiota
present in one microbiome sample. To better understand how the
microbiome affects health outcomes, alpha diversity is often
calculated and found to be correlated with human health
variables, such as alcohol consumption [10]. This could be due
to complex microbiota interactions with each other as well as a

Metadata Variable P-value
Age_cat 0.001
Age_corrected 0.001
Age_years 0.001
Alcohol_consumption 0.001
Alcohol_frequency 0.001
Alcohol_types_red_wine 0.021
Alcohol_types_unspecified 0.016
Allergic_to_unspecified 0.037
Antibiotic_history 0.001
Autoimmune 0.048
Birth_year 0.001
Bmi 0.001
Bmi_cat 0.001
Body_habitat 0.001
Body_product 0.001
Body_site 0.001
Cat 0.011
Census_region 0.001
Chickenpox 0.048
Collection_date 0.001
Collection_month 0.001
Collection_time 0.001
Collection_timestamp 0.004
Contraceptive 0.001
Cosmetics_frequency 0.023
Csection 0.006
Depression_bipolar_schizophrenia 0.035
Diet_type 0.006
Drinking_water_source 0.002
Economic_region 0.001
Elevation 0.001
Env_material 0.001
Env_package 0.001
Exercise_frequency 0.016
Exercise_location 0.004
Flossing_frequency 0.007
Flu_vaccine_date 0.02
Height_cm 0.041
Ibd 0.02
Latitude 0.001
Livingwith 0.004
Longtidue 0.001
Milk_cheese_frequency 0.040
Other_supplement_frequency 0.005
Race 0.001
Roommates 0.042




Metadata Variable P-value
Sample_type 0.001
Seafood_frequency 0.050
Seasonal_allergies 0.005
Sex 0.008
Sleep_duration 0.047
Softener 0.045
State 0.001
Subset_age 0.002
Subset_antibiotic_history 0.001
Subset_bmi 0.006
Subset_healthy 0.001
Subset_ibd 0.013
Sugary_sweets_frequency 0.045
Teethbrushing_frequency 0.029
Tonsils_removed 0.047
Types_of _plants 0.007
Vegetable_frequency 0.035
Weight _change 0.023
Weight kg 0.001

TABLE III. BETA DIVERSITY P-VALUES

Table showing the metadata variables with a beta diversity p-value less than
0.05, indicative of a statistically significant correlation of microbiome diversity
between samples for each metadata variable.

great variety of interactions between microbiota and the
human body, possibly leading to disease or physiological
imbalance.

This idea is reflected in this study, as there was a significant
association between alcohol consumption and frequency with
both alpha and beta diversity meaning that alcohol has a
noticeable impact on microbiome diversity, which can in turn,
possibly affect human physiology in other ways. Additionally,
microbiome composition after an appendectomy is significantly
altered, thought to be due to the appendix’s role in regulation of
intestinal microbiota, corroborating the correlation seen in this
study [11]. Further, age, method of delivery, diet, antibiotic use,
and probiotic use have been found to alter one’s microbiome
composition, supporting the statistically significant correlation
between both alpha and beta diversity and metadata variables
representing age, c-section delivery method, diet regimens, and
antibiotic use seen in this study [12].

Additionally, the plethora of variables relating to the
environment from which patient samples were collected,
including both the geographic location and variables like
whether the participant has a cat, had a significant impact on the
alpha and beta diversity of the microbiome data. This has been
explained to be due to the increased urbanization of many cities,
leading to decreased aggregation of necessary microbiota as
well as increased abundance of inflammatory diseases due to the
dense human population [13]. Finally, daily habits such as
exercise and sleep were found to produce a significant
correlation with both alpha and beta diversity, though these

lifestyle variables seem to affect the beta diversity more than the
alpha diversity based on the increased number of lifestyle
variables that have a beta diversity p-value less than 0.05 such
as flossing frequency, if the participant uses fabric softener, or
how often the participant brushes their teeth. As shown by both
statistically significant correlations between many of the
metadata variables tested in the American Gut Project with both
alpha and beta diversity, this project supports the idea that
multiple lifestyle, health, and diet variables discussed here affect
the composition of the human microbiome.

C. Downfalls

The American Gut Project currently includes 39,017
participant samples, which were initially anticipated to all be
included in this project. Due to storage constraints when
opening the imported sequence artifact (.qza), a small subset
containing 998 participant samples was used for analysis.
Because this is a small subset, there are only a small number
of participants that have instances such as gluten intolerance
or cardiovascular disease, which makes statistical inferences
much less reliable. Therefore, future work is aimed to
implement all possible samples to increase the accuracy of
statistical correlations between metadata and microbiota
diversity.

D. Implications

Due to the continual research investigating the effects
of microbiome modulation on human health outcomes, there is
need for understanding how human lifestyle, health, and diet
variables change the makeup of the microbiome. Based on the
results of this experiment, correlation between microbiota
presence and biological bias towards health conditions, diseases,
or lifestyle habits can be implemented into healthcare screening
and diagnosis. One’s microbiome sampling may be able to
propose a way to provide a new method of diagnosis and
medical management for patients based on their respective
microbiome composition.
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