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Abstract

Algorithm run-time complexity analysis is an important topic in data structures
and algorithms courses, but it is also a topic that many students struggle with. Com-
monly cited difficulties include the necessary mathematical background knowledge, the
abstract nature of the topic, and the presentation style of the material. Analyzing the
subject of algorithm analysis using multiple learning theories shows that course materi-
als often leave out key steps in the learning process and neglect certain learning styles.
Students can be more successful at learning algorithm run-time complexity analysis if
these missing stages and learning styles are addressed.
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1 Introduction

Algorithm run-time complexity analysis is a common topic in introductory data struc-
tures and algorithms courses. It is typically taught using Big-O notation. Big-O notation
is used to describe the rate of growth of the run time of an algorithm with regard to the
size of the input. Coefficients and non-dominant terms are dropped, so an algorithm with
a rate of growth of 6n2 + 5n + 2 would have a Big-O complexity of O(n2). Big-O notation
is usually used to describe the upper bound of an algorithm’s complexity, while Big-Omega
and Big-Theta are used to describe the lower bound and exact bound, respectively (Huang,
2020). A graph showing the number of operations performed by an algorithm with different
complexities can be seen in Figure 1.

Figure 1: Big-O Complexity Graph
Source: Own Illustration

Learning algorithm run-time complexity analysis can help students improve their abil-
ity to write fast and efficient code. It is a valuable tool for comparing multiple approaches
to solving the same problem. Unfortunately, it is commonly cited as one of the most difficult
topics in data structures and algorithms courses (Fouh et al., 2016). Students and teachers
point to varying reasons related to the topic itself and the method of information delivery
that make algorithm run-time complexity analysis difficult to learn. This paper will examine
some of the most commonly cited learning obstacles and how they can be addressed. It
will also present multiple learning theories that can be used to examine these difficulties.
Students can be more successful at learning algorithm run-time complexity analysis if the
teaching material accommodates varying learning styles and addresses all stages of learning.
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2 Common Challenges of Learning Algorithm Run-time

Complexity Analysis

The reason that algorithm run-time complexity analysis is difficult to learn can vary
between individual students. However, there are hurdles that are frequently pointed to by
instructors and students alike as sticking points. Understanding these hurdles can equip
instructors to address them and students to overcome them.

2.1 Lack of Necessary Mathematical Background Knowledge

When asked in a survey about the reasons that students struggle with algorithm run-
time complexity analysis, instructors frequently cited a lack of mathematical proficiency as a
major hurdle. Some students echoed a similar sentiment, stating that they were intimidated
by the mathematical notation (Fouh et al., 2016). Logarithms are an example of a concept
that students are often unfamiliar with, making it difficult for them to recognize when an al-
gorithm has logarithmic complexity (Parker and Lewis, 2014). There are many mathematical
concepts that must be understood before learning algorithm run-time complexity analysis,
and it appears that students have not yet gained the necessary familiarity with these concepts
before starting the data structures and algorithms course.

The obvious solution to this issue is to ensure that these concepts are covered in pre-
requisite courses to data structures and algorithms. However, this is already the case in many
computer science programs, yet students are still uncomfortable with the material. A review
of the important mathematical concepts could benefit students. Harris recommends using
mathematical software such as Maple to help students learn algorithm analysis. The software
can be used to generate a plot that will give students a visualization of the growth in run
time of an algorithm. It can also be used to automate parts of the analysis of more complex
algorithms that may require a higher level of mathematical knowledge (2006). These solu-
tions can all benefit students. However, some instructors argue that the issue is emblematic
of a larger problem in computer science.

"Too many students enter the field of computer science with high aspirations but poor
math skills. These students often do not realize the significance of mathematics in computer
science" (Beaubouef, 2002). Beaubouef has found that many students are not aware of the
relevance and importance of mathematics to most key topics in computer science, causing
students to avoid focusing on important mathematical concepts. This may not cause issues
in introductory programming courses, but it can create hurdles for students later in their
education and career (2002). A potential solution to the lack of mathematical background
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knowledge among data structures and algorithms students is to better emphasize the impor-
tance of math in early computer science courses. If students understand the importance of
math, they will put more effort into understanding the key concepts rather than viewing it
as a general education subject that is not directly relevant to their area of study.

2.2 Abstract Concept

A common complaint from students learning algorithm analysis is that the material
is purely theoretical, and they do not see the practical application. Many students are more
comfortable with algorithm dynamics than algorithm analysis because they find the latter
to be too abstract (Fouh et al., 2016). Big-O notation seems unnatural and unintuitive to
some students. Kay and Wong found that when asked to analyze an algorithm in coursework,
students would measure the run times of the algorithm, but they required an external source
to determine the Big-O complexity (2018). Similarly, Parker and Lewis found that a student
memorized the run-time complexity of specific algorithms. However, they struggled to analyze
the run time of an algorithm without comparing it to another that they already knew (2014).

It is understandable that timing the actual run time of an algorithm is the first solution
that comes to mind for students when trying to determine the speed and complexity of an
algorithm. However, it appears that students are failing to see the benefits of Big-O as a form
of run-time complexity analysis that has a broader application. The Big-O complexity of an
algorithm is independent of the hardware or programming language that is used to implement
the algorithm. It determines how run time changes with the size of the input. While timing
an algorithm may be useful for small-scale projects, it is impractical when an algorithm will
be used on varying platforms and with variably sized inputs. Data structures and algorithms
course materials should emphasize the real-world benefits of algorithm run-time complexity
analysis. Concrete examples of Big-O complexity’s impact on run time could help students see
these benefits. Shi and Shi suggest showing the formal derivation of algorithms in computer
science courses. They argue that if students understand the ideas behind an algorithm, it will
help them improve their algorithm design and analysis abilities (2009). However, this could
cause even more confusion for students who are already struggling with the mathematical
ideas in a data structures and algorithms course. Course materials should also emphasize the
process of analyzing algorithm complexity. Knowing the complexity of existing algorithms is
useful, but it does not help when trying to program an efficient solution to a novel problem.
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2.3 Lack of Engagement With the Material

Another common complaint from students is that the learning material for algorithm
run-time complexity analysis is not engaging. In their analysis of student activity in a digital
data structures and algorithms textbook, Fouh et al. found that students were spending
less than a minute on the algorithm analysis sections. Some students chalked this up to
the presentation of the material. Other sections in the textbook made use of interactive
visualizations, and students tended to spend more time on these sections and report that
they were more beneficial (2016).

Farghally et al. set out to create visualizations that would help students understand
algorithm analysis. These visualizations featured an input array and a graph corresponding
to the number of operations performed. They found these visualizations to be effective at
improving student engagement and performance (2017). It appears that the presentation
style of algorithm run-time complexity analysis is a significant hurdle. While it may be
that students are simply uninterested in the typical presentation style, it could also be that
the material does not cater to certain learning styles. This idea will be explored further in
sections 3.3 and 3.4.
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3 Explaining the Difficulties of Learning Algorithm Run-

time Complexity Analysis Using Learning Theories

Addressing the most common complaints could benefit students, but it does not ex-
plain what makes algorithm run-time complexity analysis fundamentally difficult to learn.
This section will examine the challenges of learning algorithm analysis using four different
theories. These theories point to a more overarching idea of what makes the topic difficult and
lead to some ideas for the general design of algorithm run-time complexity analysis learning
materials.

3.1 Threshold Concepts

The idea of threshold concepts was introduced by Eric Meyer and Ray Land. They are
concepts that need to be understood to gain mastery of a subject. Threshold concepts tend
to cause a slowdown in students’ progress. However, once they are understood, they cause a
change in a student’s perspective (Kallia and Sentance, 2017). There are seven key features
that characterize a threshold concept. The first is that threshold concepts are transformative.
They fundamentally change the way that a student understands the subject. The second key
feature is that threshold concepts are integrative. They integrate with existing knowledge and
change how students view ideas that they already understand. Threshold concepts are also
bounded. "...this feature indicates that threshold concepts have borders that, when traversed,
can lead to other conceptual developments" (2017). They can be used to differentiate between
areas of study. Threshold concepts are troublesome. They are difficult to understand, and
they tend to be obstacles for students that are learning a subject. Threshold concepts are
irreversible. Because of the way that they shift a student’s understanding, they are unlikely
to be forgotten. Threshold concepts are discursive. They will lead students to start using
the language and jargon of the field that they are studying. Finally, threshold concepts are
reconstitutive. They will cause students to reconfigure the schema by which they understand
the subject (2017).

Kallia and Sentance found that instructors commonly cite parameter passing, variable
scope, control flow, and recursion as threshold concepts within computer science (2017). Per-
haps algorithm run-time complexity analysis could be viewed as a threshold concept in data
structures and algorithms. It is clearly troublesome, as it is considered one of the most diffi-
cult topics within a data structures and algorithms course by students and instructors alike.
It also has the potential to fundamentally change a student’s understanding of algorithms.
Kay and Wong noted that students who did not understand algorithm run-time complexity
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analysis would perform analysis by running an algorithm and measuring the actual running
time (2018). Learning run-time analysis could change how students approach the problem
of determining an algorithm’s complexity, as well as their approach to many programming
problems. If algorithm run-time complexity analysis is a threshold concept, that helps to
explain why it is difficult and frustrating for students to learn. It may be that it needs to be
focused on as a topic that is central to one’s understanding of data structures and algorithms.
Instructors and students alike should be prepared to spend a significant amount of time on
the topic.

3.2 APOS Theory

APOS Theory is a constructivist learning theory that was developed for mathematics
education. It breaks learning up into three stages. The first is the action stage. When a
learner is at this stage, they can perform a task by following step-by step instructions. The
next stage of learning is the process stage. At this stage, the student is able to perform the
task without any external help. They can skip and reorder steps, and even imagine the result
of the task without carrying it out. The final stage is the object stage. At this stage, the
student can understand the task as an object and visualize the whole process. As students
learn, they develop a schema, which connects related actions, processes, and objects (Kay
and Wong, 2018). "APOS Theory is a tool that can be used objectively to explain student
difficulties with a broad range of mathematical concepts and to suggest ways that students
can learn these concepts" (Dubinsky and McDonald, 2001). While it was originally developed
for mathematics education, APOS Theory could help highlight the points that are causing
difficulties for students that are learning algorithm run-time complexity analysis.

Kay and Wong attempted to do just that in their 2018 study. They noted that
students were relying on textual cues to determine the complexity of an algorithm, such
as assuming that code containing a for loop had a complexity of O(n). This showed that
they had only reached the action stage. They also noted that the coursework for the data
structures and algorithms course that they were analyzing skipped over the action stage. It
featured discussion of algorithm analysis without showing students how to perform it on a
concrete algorithm (2018). Their general recommendation for teaching algorithm analysis
was to support each stage of learning. The action stage could be supported using concrete
worked examples. The process stage could be supported by having students derive multiple
growth functions for the same algorithm. Stack traces or call trees could help students
understand the process of algorithm analysis as an object (2018). Students need to learn to
walk before they can run. They will not be able to apply the concepts of algorithm run-time
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complexity analysis in any meaningful way if they are not taught the steps needed to perform
the analysis in the first place.

One criticism of APOS Theory is that it does not take individual students’ thought
processes into account (Kay and Wong, 2018). Every student does not learn in the same way,
but APOS theory takes a generalized approach. Sections 3.3 and 3.4 will discuss theories
that address the learning styles of individual students.

3.3 Kolb’s Theory of Experiential Learning

There are two key elements to Kolb’s Learning Theory. The first is the experiential
learning cycle. The experiential learning cycle is made up of four stages. "The process of
going through the cycle results in the formation of increasingly complex and abstract ‘mental
models’ of whatever the learner is learning about" (Mcleod, 2017). The cycle can be started
from any stage, but the learner must go through all four stages to learn effectively. The
first stage is concrete experience, where the learner undergoes a new experience. The second
stage is reflective observation, where the learner reflects on the experience and compares
it to existing knowledge. The third stage is abstract conceptualization, where the learner
creates new ideas or modifies existing ideas based on their experience. The fourth stage
is active experimentation, where the learner tries applying their newly formed ideas in the
real world (2017). The stages of Kolb’s Experiential Learning Cycle are similar to those in
APOS Theory, but Kolb’s Theory argues that learners can begin learning at different stages.
Regardless, it is important that coursework supports students through all of the different
stages. Both theories seem to imply that concrete worked examples are a good place to start.
They can support the action stage of APOS Theory and the concrete experience stage of
Kolb’s Experiential Learning Cycle. Coursework should also lead students to reflect on the
topic in relation to other topics they have learned and give them opportunities to apply their
newly learned ideas.

The learning styles are the other element of Kolb’s Theory. They categorize people
into four quadrants based on the style of learning they prefer. People within the diverging
quadrant are good at viewing information from multiple perspectives and like to work in
groups. They prefer to watch, gather information, and generate ideas rather than do (2017).
This quadrant can also be referred as the "why" quadrant, as students in this quadrant want
to know why the subject is important (Howard et al., 1996). Students in the assimilating
quadrant are interested in abstract ideas and concepts and require a good explanation of the
topic more than a concrete experience (Mcleod, 2017). This quadrant is also known as the
"what" quadrant, as individuals within this quadrant like knowing the facts of the subject
(Howard et al., 1996). Students in the converging quadrant like technical tasks. They want
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to find practical solutions to problems (Mcleod, 2017). This is also known as the "how"
quadrant because students in this quadrant want to apply the information to the real world
(Howard et al., 1996). The fourth and final quadrant is the accommodating quadrant, which
is the most common learning style. Students in this quadrant enjoy new experiences and
primarily rely on intuition (Mcleod, 2017). It is also referred to as the "what if" quadrant,
as learners in this quadrant like to experiment (Howard et al., 1996).

Figure 2: Kolb’s Theory of Experiential Learning
Source: Mcleod (2017)

Instructors should attempt to design a course that reaches students in all four quad-
rants. Howard et al. suggest starting with the "why" quadrant so students understand the
motivation for learning the material. The "what" quadrant can be addressed by explaining
terminology. Students in the "how" quadrant can be supported if they are given the op-
portunity to apply their knowledge to real problems. Finally, the "what if" quadrant can
be addressed by examining how the problem could be changed and using this to transition
to new subjects (1996). Failing to address all of the learning styles could be what causes
students to find algorithm run-time complexity analysis material unengaging. Therefore,
addressing every quadrant of Kolb’s learning styles could help increase the success rate of
students.

3.4 Felder’s Learning Styles

Felder’s Learning Styles are another way to categorize the different ways that students
prefer to receive information. Learners are categorized along four axes. The first axis is active
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vs. reflective learners. Active learners learn best when they can do something hands-on, and
they typically like to work in groups. Reflective leaners prefer thinking and reflecting on new
information on their own. The next axis is sensing vs. intuitive learners. Sensing learners like
to learn facts and use existing methods to solve problems. Intuitive learners like discovery and
innovation, and dislike repetition. The third axis is visual vs. verbal learners. Visual leaners
learn best by seeing, while verbal learners learn better by hearing or reading information.
Felder and Soloman argue that everyone learns better when information is presented both
ways. The final axis is sequential vs. global learners. Sequential learners acquire information
in a linear, step-by-step manner. Global learners gain knowledge in large chunks and need
to see the bigger picture to understand information (Felder and Soloman, 2000).

Figure 3: Felder’s Learning Styles
Source: Cater (2011)

Teachers should make an effort to accommodate these learning styles. Howard et al.
suggest accommodating active learners through group work and programming problems
(1996). Verbal learners are easy to accommodate in a traditional lecture setting. Visual
learners can be supported through graphs comparing algorithm run-time complexities or
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algorithm visualizations. If a course fails to address certain learning styles, Howard et al.
suggest study methods for students to supplement the course materials. Active learners can
organize group study sessions where they take turns explaining topics to one another. Re-
flective learners can pause occasionally to review new information. Sensing learners can try
to find out how the ideas they have learned apply in practice. Intuitive learners can look for
theories that link the facts. Visual learners should seek out diagrams and schematics, while
verbal learners can write summaries of the information they have learned. Sequential learners
should look for sources that fill in any steps that were skipped. Finally, global learners should
skim through the entirety of a book chapter or lecture slideshow ahead of time so they can
get an overview of the information (1996).
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4 Suggestions for Teaching Algorithm Run-time Com-

plexity Analysis

Reviewing complaints from students and instructors and analyzing the topic using
multiple learning theories leads to a general idea of the format by which algorithm run-
time complexity analysis should be taught. Giving the motivation for learning the topic is
a good place to start. Students need to know why they are learning about algorithm run-
time complexity analysis in the first place. Discuss how algorithm analysis can be used to
compare multiple approaches to a problem and choose the solution that is most scalable and
efficient. Explaining the motivation will appeal to learners from the diverging quadrant in
Kolb’s learning styles.

The next step could be to explain the key facts and terminology related to the subject.
This could include mathematical topics, such as logarithms and the notation used. This will
benefit assimilating learners from Kolb’s styles and sensing learners from Felder’s styles.
Then, begin teaching the steps to follow when computing an algorithm’s complexity. Make
use of worked examples. This will ensure that students reach an action stage of learning as
outlined in APOS theory. It is also an example of concrete experience from Kolb’s experiential
learning cycle, and it will appeal to active and sensing learners from Felder’s styles.

Once students have a solid understanding of the process of analyzing the run-time
complexity of an algorithm, begin to show them how the concept is applied in the real world.
One way to do this would be to have students analyze multiple algorithms that solve the
same problem and see how they compare. This reaches the active experimentation stage in
Kolb’s cycle. It appeals to converging learners from Kolb’s styles and intuitive learners from
Felder’s styles.

The final step would be to relate the topic of algorithm run-time complexity analysis
to other topics. This is an opportunity to transition to the next topic. If the class covers
data structures, now would be a good time to discuss how certain structures are optimized
to improve the run-time complexity for specific operations. This relates to the reflective ob-
servation stage in Kolb’s experiential learning cycle. It also benefits accommodating learners
from Kolb’s learning styles
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Figure 4: Application for Teaching Algorithm Run-time Complexity Analysis
Source: Own Image

It is important to vary the presentation style of the algorithm run-time complexity
analysis material to appeal to the varying learning styles that students might have. Verbal
learners can be supported through the standard lecture style. Graphs such as the one shown
in Figure 1 and visualizations would benefit visual learners. The application developed in
conjunction with this paper, shown in Figure 4, is an example of a way to support active
learners. It also allows students to practice worked examples to get a better understanding
of the process of performing algorithm run-time complexity analysis. Occasionally taking
the time to review what has been covered so far would be helpful for reflective learners.
Teaching the material in a logical order helps sequential learners, while giving an outline of
the material before beginning benefits global learners.
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5 Conclusion

Algorithm run-time complexity analysis is widely cited as one of the most difficult
topics in a typical data structures and algorithms course (Fouh et al., 2016). Instructors give
varying reasons for this, but some of the most common are that students lack the needed
proficiency with key mathematical concepts, students find the material to be too abstract,
and that the style of presentation of the material is unengaging. Examining the topic using
multiple learning theories reveals additional flaws in the way that the material is taught.
Some courses do not spend enough time explaining the steps needed to perform algorithm
analysis, skipping over the action stage in APOS theory (Kay and Wong, 2018). Kolb’s theory
of experiential learning shows also shows that there are stages of the learning process and
learning styles that need to be better addressed. Felder’s learning styles reveal ways that the
presentation style of course materials could be improved. Students can be more successful
at learning algorithm run-time complexity analysis if the teaching material accommodates
varying learning styles and addresses all stages of learning.
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