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Degeneracy and long-range correlations
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Degeneracy is a ubiquitous property of complex adaptive systems, which refers to the ability of

structurally different components to perform the same function in some conditions and different

functions in other conditions. Here, we suppose a causal link between the level of degeneracy in the

system and the strength of long-range correlations in its behavior. In a numerical experiment, we

manipulated degeneracy through the number of networks available in a model composed of a chain

of correlated networks over which a series of random jumps are performed. Results showed that

correlations in the outcome series increased with the number of available networks, and that a

minimal threshold of degeneracy was required to generate long-range correlations. We conclude that

degeneracy could underlie the presence of long-range correlations in the outcome series produced by

complex systems. In turn, we suggest that quantifying long-range correlations could allow to assess

the level of degeneracy of the system. Degeneracy affords a maybe more intuitive way than former

hypotheses for understanding the effects of complexity on essential properties such as robustness and

adaptability. VC 2013 AIP Publishing LLC. [http://dx.doi.org/10.1063/1.4825250]

In the present paper we try to establish a causal link

between degeneracy and long-range correlations. The

concept of long-range correlations refers to an intriguing

statistical property of time series, characterized by the

presence of long-term dependences between the current

observation and a large set of previous observations.

Long-range correlations have been evidenced in the

behavior of a number of physical and biological systems

of time series. Degeneracy, or partial redundancy, is a

design principle that is supposed to underlie the organi-

zation of biological systems, providing them with adapta-

bility and robustness. We show in a simulation study that

the strength of correlations in the series produced by a

complex network is related to its level of degeneracy, and

that a minimum threshold of degeneracy is necessary for

producing long-range correlated series. This hypothesis

opens new perspectives for understanding the origins of

the long-range correlations, their relationships with sys-

tems complexity, and their evolution with changing envi-

ronmental constraints, learning, aging, and disease.

I. INTRODUCTION

A. Long-range correlations and complexity

The concept of long-range correlations refers to an in-

triguing statistical property, which has been evidenced in the

behavior of a number of physical and biological systems. In a

time series, the presence of serial correlation means that there

exists some dependence between successive values. Such cor-

relations could appear on the short term; for example, in a

simple one-order auto-regressive model the current value is

partially determined by a fraction of the just preceding one.1

In contrast long-range correlated series are characterized

by the presence of dependencies that tend to persist over doz-

ens or even hundreds of data. In this kind of process the cur-

rent observation seems to keep the memory of a large set of

previous observations. Long-range correlations can be under-

stood through the fact that over multiple, interpenetrated

time scales, an increasing trend in the past is likely to be fol-

lowed by an increasing trend in the future, and conversely a

decrease in the past is likely to be followed by a decrease in

the future. Long-range correlated series are characterized by

self-similarity, which means that similar statistical features

are observed across different temporal or spatial scales. This

kind of process has also been referred to as long-range de-

pendence, long-term memory, fractal process, or 1/f noise.2–6

Long-range correlations have been evidenced in time

series collected in a number of situations and covering a di-

versity of natural and physical systems, including for exam-

ple the series of discharges of the Nile River,7 the series of

magnitudes of earthquakes,8 or the evolution of traffic in

Ethernet networks.9 In the domain of living systems, long-

range correlations have been evidenced in heartbeat fluctua-

tions,10 in serial reaction time,11,12 in finger tapping,13,14 in

stride duration during walking or running,15,16 or in relative

phase in a bimanual coordination task.17

There is now a general agreement for considering long-

range correlations as reflecting the complexity of the underly-

ing system, defined as a flexible and adaptable coordination

between its multiple components and sub-systems.18 From this

point of view, complexity is thought as an optimal comprise

between complete disorder (no interaction between compo-

nents) and total order (close and rigid coupling between com-

ponents). Long-range correlations are not considered as arising

from some specific component within the system but, rather,

from the complex, multiplicative interactions between its mul-

tiple components, acting at different time scales. Several char-

acteristic features of complex systems have been advocated to
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play a central role in the emergence of long-range correlations,

such as self-organized criticality.12 multiscale dynamics,19

metastability,3 or cascade dynamics.20,21

Long-range correlations are also considered to represent

the hallmark of efficient and perennial systems. In the do-

main of living systems, they have been essentially discov-

ered in experiments analyzing the behavior of young and

healthy organisms. In contrast, the analysis of series pro-

duced by deficient systems (i.e., patients suffering from

diverse pathologies, elderly) revealed a clear alteration of

fractal properties, often towards disorder, and sometimes

towards order. Hausdorff and colleagues, for example,

showed that the series of stride intervals during walking typi-

cally presented long-range correlations in young and healthy

adults. In contrast, stride series appeared less correlated in el-

derly, and in Huntington’s or Parkinson’s patients.22,23

Goldberger et al.24 reported some examples of cardiac inter-

beat interval series, showing that the series produced by

healthy patients typically exhibited a correlated variability,

close to 1/f noise. In contrast, in patients suffering from ar-

rhythmia, the series were less correlated, close to white

noise, and in patients with severe heart failure, series

appeared less variable, and highly predictable. These results

supported the idea of a close link between complexity and

health and led to the theory of the loss of complexity with

aging and disease.25,26 Healthy systems are supposed to pres-

ent a rich set of interactions between their many components

and levels. In contrast, aging or disease are characterized

either by a loss of interactions or by the dominance of few

residual components. In the first case the absence of interac-

tions cannot support coordinated patterns of activity across

components, and in the second the system cannot flexibly

reorganize in response to changing conditions. The main

idea is that complexity provides systems with essential

capacities of adaptation and flexibility. Complexity allows to

protect against the possible deficiency of a given component

or sub-system, in order to maintain stability despite external

perturbations, and favors the emergence of innovative solu-

tions when facing with a new problem.24

B. Degeneracy

Another theoretical framework allows to draw concep-

tual links between complexity, stability, and adaptability.

This framework has been essentially developed in the do-

main of theoretical biology, especially evolution theory.27,28

The authors examined the relationships between complexity,

robustness, and evolvability in complex adaptive systems. In

the context of biological evolution, robustness refers to the

insensitivity of phenotypes to variations in both internal and

external conditions and evolvability to the capacity to adapt

to environmental constraints by generating heritable pheno-

typic variations. This conceptual framework has obviously a

broader scope, and more generally robustness can be consid-

ered equivalent to the concept of stability, and evolvability is

close to those of adaptability and flexibility, widely used in

the analysis of complex systems dynamics.29

The authors show that these three properties are closely

related. Complex systems are more likely to resist to

environmental changes than simple ones, and an increase in

complexity improves system’s robustness. Evolvability

appears a necessary prerequisite for complexity: the evolu-

tion of life forms is characterized by a general increase of

systems complexity, and this trend cannot be understood

without the capacity to generate heritable phenotypic

changes.27,28

Robustness and evolvability could appear as opposite

properties. Robustness suggests resistance to environmental

changes, and evolvability a capacity of flexibility in order to

adapt to changes. Paradoxically, these two properties appear

both essential of the persistence of life. However, Whitacre

and Bender27 showed that under some conditions, robustness

could naturally lead to evolvability. The key factor lies in the

design principles that are used to achieve robustness in the

system. For example, robustness can be obtained through re-

dundancy: In a redundant system, similar components have

similar functionality, and thus redundant components can be

used to replace components that fail, or can be alternatively

used for achieving a given function. One can easily conceive

that redundancy provides the system with stability and

robustness facing external perturbations. However, the

authors show by means of simulation experiments that when

robustness is obtained by pure redundancy, systems present a

low evolvability.

In contrast robustness yields to evolvability when

achieved through degeneracy (or partial redundancy).

Degeneracy refers to a partial overlap in the functions of

the multiple components within the system. In degenerate

systems, structurally different components can perform

similar functions under certain conditions but can also

assume distinct roles in others conditions.27

Degeneracy and redundancy can be contrasted by com-

paring engineering and biological systems. Engineering

systems are generally designed to be as simple and parsi-

monious as possible, with an explicit assignment of func-

tions to each component. There is no place in such systems

for a priori unnecessary or unplanned processes or interac-

tions. Robustness can be afforded by duplicating essential

components (i.e., by pure redundancy), in order to compen-

sate for eventual failures, and errors are a posteriori cor-

rected by feedback mechanisms, following deterministic

rules.30

In contrast, biological systems do not work on the basis

of such planned designs and deterministic functioning.

There is no fixed assignment for a given function: a number

of structurally different sets of components can produce a

given output in a similar way, and components could

assemble for producing new and different outputs under

different constraints. Degeneracy allows biological systems

to be adaptable to unpredictable changes in their environ-

ment or in terms of output requirements. Intuitively, one

may indeed conceive that degeneracy provide systems with

both robustness and evolvability. Because degeneracy

appears as a key factor for the perennity and the evolution

of species, its ubiquity in biological systems, at all levels of

organization, is not surprising.30

Whitacre28 showed that degeneracy plays a central role

in the relationships between complexity, robustness, and
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evolvability. As previously evoked, degeneracy appears as a

precondition of evolvability and as an efficient principle for

providing systems with robustness. Finally, degeneracy is

conceptually close to complexity: Complex systems are usu-

ally described as systems in which components are function-

ally differentiated across a diversity of functions but also in

which interacting components are integrated in more global

functional units. Complex systems are then characterized by

an interplay between functional segregation and functional

integration,31,32 yielding a multiscaled and hierarchical

structure.33 This definition of complexity implies degener-

acy, as one can easily conceive that at low levels of com-

plexity, there will be very few ways for structurally different

parts to yield similar outputs.

C. A possible link between long-range correlations
and degeneracy

The two previous lines of reasoning suggest a possible

link between degeneracy and long-range correlations, which

both seem to characterize complex, stable, and adaptive

systems.

An interesting paradox has to be noticed at this level: If

long-range correlations are supposed to sign the capabilities

of adaptation of a system to environmental changes, they

essentially arise when the system performs repeatedly a

given function in a stable environment. Indeed, long-range

correlations are experimentally observable when measure-

ment focuses on intrinsic fluctuations but tend to transiently

disappear under the influence of extrinsic perturbations.3,34,35

Thus, degeneracy has been evoked as a property allowing

resisting or adapting facing environmental changes, but

long-range correlations are essentially observed when sys-

tems perform in stable conditions. What could be the effects

of degeneracy for a system performing in such stable

conditions?

We present in Figure 1 a very simple illustration of two

systems performing a function by transmitting information

from the upper level to the lower one. Each system presents

alternative pathways, which allow to efficiently achieving

the transduction of the signal. The left panel illustrates a typ-

ically redundant system, presenting independent alternative

pathways, providing more or less equivalent outcomes. The

system is supposed to randomly exploits the available path-

ways over successive trials. As pathways are not similar, but

just equivalent, the series of outcomes will present fluctua-

tions. However, because pathways are independent, succes-

sive performances are likely to be uncorrelated.

The right panel illustrates, in contrast, a degenerate

network. In this network a number of pathways are avail-

able for achieving the outcome, but these pathways are not

independent as in the previous system. Neighbor pathways

share common elements, and in this case successive per-

formances can be expected to be correlated.

Obviously, these oversimplified illustrations do not

reflect the actual complexity of the physical of biological

systems that produce long-range correlations. A better repre-

sentation should consider networks composed of hundreds of

alternative but correlated pathways, each composed of hun-

dreds of components hierarchically organized and acting

over diverse time scales.

II. A DEGENERATE MODEL

A model obeying these principles has been developed

some years ago for accounting for the presence of long-range

correlations in the series of stride durations during walking,

and in the series of periods in forearm oscillations.36–42 This

model is composed of a hybrid self-sustained oscillator,43

which stiffness is discretely determined, cycle-by-cycle, by a

neural hopping model.

Consider the following second-order differential

equation:

€x ¼ a _x � b _xx2 � c _x3 � x2
i þ

ffiffiffiffi
Q

p
nt; (1)

where x represents position. The dot notation indicates dif-

ferentiation with respect to time. In this second-order differ-

ential equation a _x represents linear damping, b _xx2 is a

nonlinear van der Pol damping term, and c _x3 a nonlinear

Rayleigh damping term, and x2
i a cycle-dependent stiffness

parameter. A noise term of strength Q is added to the model

in order to simulate the perturbations that affect all dynami-

cal systems. In the present notation, all coefficients are sup-

posed to be positive. Under these conditions, this model

yields a limit cycle attractor of frequency x2
i .

West and Scafetta41 proposed a neural hopping model

for providing the x2
i series with long-range correlation prop-

erties. The key element of this model is a linear Markov pro-

cess dj, generated by a first-order auto-regressive equation

dj ¼ /dj�1 þ gej; (2)

where 0</< 1 is a constant and ej a white noise process

with zero mean and unit variance. This chain could be con-

ceived as a set of alternative networks in the system, neighbor-

ing networks sharing common components and being then

FIG. 1. Redundancy and degeneracy in networks models. These two panels

represent hypothetical networks performing a function by transmitting infor-

mation from the upper level to the lower one. The left panel illustrates a

redundant system, in which several distinct pathways perform the same

function. The right panel corresponds to a degenerate network: components

could belong to several pathways, and then neighbor pathways share com-

mon components.
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mutually correlated. This chain then contains “correlated

zones” of typical size r

r ¼ �1=log /: (3)

The alternative networks in the system are supposed to be

successively activated by a random walk along the chain,

whose jump sizes follow a Gaussian distribution of width q
(Figure 2). This random walk generates a series di, represent-

ing the networks activated at each successive iteration. In this

process, correlations within the di series increase as the size

of correlation within the chain (r) increases, and decrease as

the width q of the distribution of jumps increases.

The frequency of the limit cycle (Eq. (1)) is determined,

for each successive cycle i, by

xi ¼ x0 þ ldi; (4)

where x0 represents the baseline frequency.

Delignières et al.37 analyzed the series produced by this

model for values of q ranging from 15 to 45 and for values

of r ranging from 5 to 45. These simulations showed, as

expected, that correlations increased as r increased and as q
decreased. More importantly, the authors found that most

combinations produced long-range correlated series, except

for the combinations of low r and high q, and conversely for

high r and low q. They concluded that the production of

long-range dependence was related to a kind of equilibrium

between the two parameters.

In the initial formulation of the model, the Markov chain

was conceived as possessing an infinite length. One can con-

sider that the length of this chain represents the number of al-

ternative pathways susceptible to satisfy the task at hand and

then provides an index of degeneracy in the network. In

order to test the hypothesis linking the level of degeneracy to

the strength and the long-range nature of correlations in the

produced series, we introduced a new variable in the model,

c, corresponding to the length of the chain over which jumps

are performed. The chain is then bounded by two limits d1

and dc. In order to allow the model to work despite this lim-

ited range, we just reversed the direction of the jump when

one or the other limit of the chain was reached.

III. METHODS

We simulated a set of time series with this model, set-

ting the parameters to the following values for the hybrid os-

cillator: a¼ 0.5, b¼ 1.0, c¼ 0.02, x0¼ 4p, and Q¼ 0.1. We

tested three different values for r (40, 60, and 80). We used a

fixed value for the width of jumps distribution (q¼ 20). g
was set to 0.1 and l to 1.0. The length of the chain (c) was

systematically varied from 10 to 200, by steps of 10. Two

hundred series of 1024 data points were generated for each

range value. Some example series generated by these simula-

tions are shown in Figure 3, for c values of 10, 50, 100, and

200 (from top to bottom). One can observe the progressive

appearance of interpenetrated waves in the series, typical of

1/f fluctuations, with the increase of c.

In order to test for the effective presence of long-range

correlations in the series, we applied the ARMA/ARFIMA

modeling procedure proposed by Torre et al.44 ARMA refers

to auto-regressive moving average models, and ARFIMA to

auto-regressive fractionally integrated moving average mod-

els. This method consists in fitting 18 models to the studied

series. Nine of these models are ARMA (p,q) models, p and

q varying systematically from 0 to 2. These ARMA models

do not contain any long-range serial correlation. The other

nine models are the corresponding ARFIMA (p,d,q) models,

differing from the previous ARMA models by the inclusion

of the fractional integration parameter d representing persis-

tent serial correlations. One supposes that if the series con-

tains long-range dependence, ARFIMA models should

present a better fit than the transient ARMA models. The

best model is selected using a goodness-of-fit statistic that is

FIG. 2. Illustration of the hopping model. The random walk selects succes-

sively the variables djþ1, djþ3, djþ5, djþ2, djþ7, and djþ6. The dashed boxes

indicate the size (here r¼ 4) of the correlated zones.

FIG. 3. Example series produced by the hopping model (N¼ 1024). From

top to bottom, c¼ 10, c¼ 50, c¼ 100, and c¼ 200.
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based on a trade-off between accuracy and parsimony. We

used the Bayes Information Criterion (BIC) that was proven

to give the best results in the detection of long-range depend-

ence.44 The ARFIMA/ARMA procedure provides two com-

plementary criteria. The first one is the percentage of series

that are better fitted by an ARFIMA model. The second is

based on a transformation of the raw BIC values into weights

(i.e., the probability that this model is the best over the set of

candidate models). We then computed the sum of the

weights captured by the nine ARFIMA models, considering

that the weights of all tested model sum to one.

In a second step we measured correlations in the series

with the Detrended Fluctuation Analysis (DFA).10 This

method is based on the analysis of the relationship between

the mean magnitude of fluctuations in the series and the length

of the intervals over which these fluctuations are observed.

The algorithm of DFA consists first in integrating the series

x(t) and calculating for every t the cumulated sum of the devi-

ations of the mean. This integrated series is then divided in

non-overlapping intervals of length n. In each interval, a least

squares line is fit to the data (representing the trend in the

interval). The series is then locally detrended by subtracting to

all values the theoretical value given by the regression. For

each interval length n, the mean standard deviation [F(n)] of

these integrated and detrended series is computed. For fractal

series, a power law is expected, as F(n) / na, a being the scal-

ing exponent. a is estimated by the slope of the graph repre-

senting F(n) as a function of n, in log-log coordinates. 1/f
fluctuations are characterized by a exponents close to 1, and

uncorrelated series by exponents close to 0.5.

IV. RESULTS

The results of ARFIMA modeling are reported in Figure

4. The left panel reports the percentage of series recognized

as long-range correlated, as a function of the length of the

Markov chain (c). The results appeared roughly similar for

the three values of r. For c values above 60, the percentage

of long-range correlated series fluctuates between 80 and

90%. For lower range values, this percentage decreased dra-

matically. The median panel illustrates the evolution of the

mean sum of ARFIMA weights with the increase of c. We

obtained similar results than with the previous variable, with

a quite low plausibility of ARFIMA models for the lowest

degeneracy levels. For c values larger than 60, the mean sum

of ARFIMA weights reached a plateau with a mean value of

about 87%.

The results of DFA are illustrated in the right panel of

Figure 4 and were consistent with ARFIMA results. DFA

produced exponents close to 0.5 for the lowest degeneracy

values (c¼ 10 and c¼ 20), suggesting the absence of any de-

pendence in the series. The increase of c yielded a negatively

accelerated increase of mean a exponents that reached 0.8

for c¼ 80 and 0.9 for c values above 140. As expected, mean

a exponents increased with the width of the correlation win-

dow (r), whatever the c values.

We also generated a set of 200 series, using the same

values for r and q, but with a Markov chain of infinite length.

This set of series presented similar percentages of series best

fitted by ARFIMA models and mean sums of ARFIMA

weights than those observed for the highest c values of the

previous simulations. In contrast, mean a exponents were

slightly higher, close to that expected from pure 1/f fluctua-

tions (r¼ 40, a¼ 0.99 6 0.15; r¼ 60, a¼ 1.04 6 0.16,

r¼ 80, a¼ 1.04 6 0.15).

Note that the evolution of ARFIMA and DFA results

presented different shapes: DFA suggested a gradual

increase of the strength of correlations in the series, while

ARFIMA modeling indicated a more abrupt and precocious

emergence of long-range correlations. These results are not

contradictory, as long-range correlations can appear in rather

moderately correlated series.45

FIG. 4. Fractal properties of the series produced by the model, as a function of degeneracy (c) and of the width of the correlation window (r). Left: Percentage

of series best modeled by ARMIFA models, as a function of c. Median panel: Mean sum of ARFIMA weights, as a function of c. Right panel: Evolution of the

mean a exponent with c. Error bars represent 95% confidence intervals.
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V. DISCUSSION

A. Degeneracy and long-range correlations

This simulation study confirms that degeneracy pro-

duces correlated series, and that a minimum threshold of

degeneracy is necessary for obtaining genuine long-range

correlated series. These results suggest a direct, causal link

between degeneracy and long-range correlations. Increasing

degeneracy in the model induces an increase in serial corre-

lations in the produced series. The results obtained for the

highest c values, in the present study, tend asymptotically to-

ward those obtained with a chain of infinite length.

Obviously, the exact values that have been tested in

this simulation study should not be considered in absolute,

and the architecture of the model should not be conceived

as mirroring anatomical structures. This model is too sim-

ple for really accounting for the complexity of natural net-

works. However, we consider that it could reflect some

global properties of biological systems and could be helpful

for understanding the origins of long-range correlations in

physiological time series.

The results show that long-range correlations appear

when sufficiently distinct but correlated networks are involved

in the production of performance over time. Conversely, long-

range correlations tend to disappear when the length of the

chain equals the theoretical length of correlated zones within

the chain. In that case, one could suppose that all networks

share a large amount of common components, and then vari-

ability in the resulting series mainly arises from the stochastic

terms in the model.37

These results open new considerations about variability.

Variability has been often conceived as the expression of

random and non-significant noise in the system and dis-

carded by means of averaging or filtering before analysis.46

From this point of view, variability has often been decom-

posed into a determinist component, representing effective

processes, and a stochastic component considered as unex-

pected fluctuations.47

The present approach suggests a completely different

conception. The behavior of a complex system, in a given

situation, cannot be considered as resulting from the per-

formance of a fixed and immutable network, and its fluctua-

tions as the hallmark of random perturbations. Degeneracy

suggests that throughout repetitions, diverse sets of compo-

nents can be recruited for achieving a given function. As

such, variability does not result from “perturbations” within

the system, but expresses its inherent complexity. In long-

range correlation studies, experimenters try to strictly con-

trol for perturbations arising from external sources and then

analyse focus of the intrinsic fluctuations of the system.3

These intrinsic fluctuations provide essential information

about the system and its design principles.

In turn, we argue that the strength of long-range correla-

tions in the series produced by a system could be considered

a relevant measure of its level of degeneracy. This appears

of central interest for diagnosis and prognosis purposes,

especially in the domain of rehabilitation. Indeed, if degener-

acy represents a resource for adaptability and plasticity,

long-range correlation measures could allow predicting the

possible evolution of the system and its reactivity to rehabili-

tation programs.

B. Global or local degeneracy

This hypothetic link between long-range correlation and

degeneracy poses interesting questions about the concept of

“system.” Some recent experimental results allow develop-

ing interesting considerations. In an experiment analyzing

performance series obtained in finger tapping and circle

drawing, Torre et al.48 showed that long-range correlation

properties were both individual and task specific. This

experiment showed that although the goal of the two tasks

was basically the same (producing a regular series of time

intervals), there was no correlation between the samples of

individual exponents, suggesting that long-range correlations

are a task-specific property. However the results also

revealed a significant individual effect: each participant

tended to produce over tasks a specific level of serial correla-

tion. The authors concluded that long-range correlations

emerge from a unique assembly of cognitive–motor proc-

esses for each individual performing on a particular task,

instead of reflecting some general characteristic of individu-

als.48 In the same experiment, the authors tried to assess the

reproducibility over trials of long-range correlation proper-

ties. They computed over seven successive completions of

the task a Cronbach’a of about 0.59, suggesting that long-

range correlation properties were also partly trial-specific.

Kello et al.3 analyzed in serial reaction time tasks two

simultaneous measures of key-press responses: reaction time

and key-contact duration. Results showed that both series

exhibited long-range correlations, but the two measures were

uncorrelated with each other. The authors stated that even if

reaction times and key-contact durations are measures of the

same underlying system, they exhibit distinct long-range cor-

relation patterns provided that they reflect the activities of

distinct sets of components. Therefore, the intrinsic fluctua-

tions in reaction times were free to vary independently of

key-contact durations.

These results converge toward the idea that the presence

and the strength of long-range correlations in an experimen-

tal series provide information about the specific network that

was involved for producing a particular output, in this spe-

cific task and in the considered trial. In consequence, long-

range correlations cannot be considered as an experimental

index of overall degeneracy in the organism that produced

the series, but rather of the specific and transient sub-system

that was involved in the production of a particular outcome.

Obviously, because sub-systems belong to the same orga-

nism, they could share sufficient components for explaining

a partial consistency in long-range correlations measure-

ments performed among different tasks, or among successive

trials in the same task.

C. The origins of 1/f fluctuations

The main hypothesis of this paper suggested a causal

link between degeneracy, a design principle that seems ubiq-

uitous in most complex living systems, and the presence of

long-range correlations in the times series produced in stable
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conditions. This point of view, which suggests that long-

range correlations could originate from the structural organi-

zation of systems, contrasts with other current hypotheses,

which generally refer to more formal properties of complex

systems. Currently two theoretical explanations are debated

concerning the origins of long-range correlations. Their pos-

sible relationships with the degeneracy hypothesis merit

some developments.

The first hypothesis that clearly explained long-range

correlations by a generic property of complex systems was

proposed by Van Orden, Kello, and colleagues.3,12,34 The

central concept of their hypothesis is criticality, a state where

systems are in delicate balance between multiple behavioral

solutions. Near critical states, systems are metastable, and a

small and local perturbation can result in a global change in

system’s behavior. Critical states made new options for

behavior available and then provide the system with adapta-

bility and flexibility to cope with environmental constraints.

Living systems tends spontaneously to stay near critical

states.49 This so-called self-organized critically is possible

when multiple interactions occur between multiple levels

and individual components, a condition that directly refers to

system’s complexity. Self-organized criticality supposes that

the dynamics of the system is dominated by interactions and

not by some dominant components within the system.50

Finally this interaction-dominant dynamics is known to pro-

duce statically self-similar, fractal fluctuations.49

This point of view does not apparently contradict the

degeneracy hypothesis. Often degeneracy is described as a

principle underlying the anatomical organization of the

human nervous system and characterized by a balance

between segregation and integration of neural pathways.31

This balance is thought to allow cortical and subcortical

areas to maintain some locality of processing while at the

same time participating in globally coordinated patterns of

activation. In other words, the balance of segregation and

integration may allow metastable patterns to form.51,52

An alternative hypothesis has been recently proposed,

relating long-range correlations to cascade dynamics.20,21 As

self-organized criticality, cascade dynamics models incorpo-

rate interactions across multiple time scales. Multiplicative

cascade has been especially developed for modeling energy

transfer across scales in complex systems.53 In these models,

energy transfer works from the coarsest to the finest scales,

and variation on the finer scales is given by multiplying the

variation on the coarser scales with random multipliers.

As previously stated, self-organized criticality produces

mono-fractal fluctuations in behavior. In contrast, multiplica-

tive cascade dynamics produce more complex patterns,

called multifractal fluctuations. In the monofractal model,

scale invariance is numerically defined by a single exponent.

In multifractal series, the behavior around any point is

described by a local scaling exponent, which varies over

time, and then scaling invariance is defined by a spectrum of

scaling exponents, rather than by a single average value.

Multifractals are able to explicitly define the width and

shape of the spectrum of scaling exponents by the width and

shape of the distribution of interaction multipliers, and there

is a formal relationship between the local variation of scaling

exponents and the multiplicative interactions between tem-

poral scales. As such, seeking for the presence of multifractal

fluctuations in the behavior of systems could allow to test the

cascade dynamics hypothesis against that of self-organized

criticality.20 Multifractals have been evidenced, for example,

in human gait, simple, and choice reaction time, word nam-

ing, or interval estimation.20,21,42,54

This cascade dynamics hypothesis could also be consist-

ent with degeneracy. In the present experiment we limited

our investigations to monofractal analyses. However, the

very first attempts for analyzing the neural hopping model

focused on multifractal properties.36,41 These studies showed

that the hopping model generated series possessing multi-

fractal properties, and Ashkenazy et al.36 found that increas-

ing the width of jumps distribution (i.e., q in our notation)

yielded a decrease in the width of the multifractal spectrum.

Degeneracy does not appear as a third hypothesis, com-

peting with the two former. It shares with the two other the-

ories the idea that long-range correlations arise from

generic principles, common to most complex systems.

However, in contrast with the two former hypotheses,

which work at a very abstract level, degeneracy offers an

explanation in terms of structural and functional organiza-

tion that could allow novel and maybe more heuristic per-

spectives. Degeneracy seems particularly interesting from a

neurobiological point of view, because research in this do-

main focuses on structures and organizations, especially

through cortical imagery. This approach could allow a bet-

ter dialogue with experimental psychologists, which are

more inclined toward formal models.

Finally, the degeneracy hypothesis could afford new

points of view about very classical concepts and theories.

For example, Wijnants et al.55 analyzed the effect of practice

in a reciprocal aiming task. In order to obtain significant

practice effects, participants were instructed to perform the

task with their non-dominant hand. The results evidenced a

gradual increase of long-range correlations in movement

time series, over the five successive blocks of practice. This

effect could be interpreted as the progressive emergence of

degeneracy in the organization of the underlying network. In

other words, initial attempts for performing a novel or un-

usual task could be essentially characterized by the involve-

ment of rather simple, non-degenerate networks. Learning,

or performance optimization, could be understood as a pro-

gressive increase of the complexity of the underlying net-

work. This idea nicely challenges more traditional views

considering learning as a process aiming at overcoming the

initial complexity of the system toward a more simple and

controllable organization.56

VI. CONCLUSION

In the present paper we show on the basis of theoretical

arguments and a simulation experiment that degeneracy

could underlie the presence of long-range correlations in the

outcome series produced by complex systems. In turn, we

suggest that quantifying long-range correlations could allow

to assess the level of degeneracy of the system. We argue

that degeneracy should be considered a function-specific
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property, characterizing the networks involved in the produc-

tion of a given outcome. We consider that this hypothesis

does not compete with former theoretical explanations about

the origins of long-range correlations but enriches the theo-

retical debate with a novel and complementary point of

view. Especially, degeneracy affords a maybe more intuitive

way than former hypotheses for understanding the effects of

complexity on essential properties such as robustness and

adaptability.
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