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1 What is a Rubik’s Cube? 
The Rubik’s cube is a cube that is split into 27 smaller cubes, arranged in a 3 × 3 × 3 grid. These 27 

“cubelets” can be manipulated in six different ways: Each of these manipulations rotate the 9 cubelets 

on one face of the Rubik’s cube a total of 90°, centered on the middle cubelet. These six actions 

collectively lead to millions of permutations of the cubelets overall: we can collect these permutations 

into one set, which we will label as 𝔾. This set is a group under composition: the action of performing 

two permutations on a cube in succession. We can let 𝑒 represent the identity element of 𝔾, which is 

the ”nothing” permutation given by performing none of the six actions possible on the cube. 

To track the movements of the cubelets, each of the six sides of the Rubik’s cube are painted with a 

different color: Red, Blue, White, Orange, Green, and Yellow. (The cubelet faces inside of the Rubik’s 

cube are usually black, but this inner color is not important for this project.) These colors may vary 

depending on which cube you have, but my Rubik’s cube has these colors such that red and orange are 

on opposite sides, as are blue and green and, additionally, white and yellow. Furthermore, the red, blue, 

and white sides are adjacent and are arranged counterclockwise. 

To progress our research, we should begin by picking a “default” way to hold the cube: I chose to keep 

the red face facing me and the blue face on the top of the Rubik’s cube. Since I like to hold the Rubik’s 

cube in my left hand, it felt natural to bring the white face into view as well, leading to red, blue, and 

white always being in view. This causes their opposing colors—orange, green, and yellow, respectively—

to be out of view. 

This leads to a solution of an upcoming problem: how can I represent 

all of the cubelets on a two-dimensional piece of paper? I split the six 

faces into two groups: red, blue, and white, which are always in view; 

and orange, green, and yellow, which are always out of view. An 

example of this is shown in the figure to the right. Of course, these 

colors will vary as we manipulate the Rubik’s cube, so we will need to 

build a stronger definition; however, this should provide a good place 

to start. 

1.1 The Six Rotations 
Let’s investigate the six rotations mentioned previously. When rotating one of the faces of the cube, 

nine cubelets are moved. The four vertices cycle among themselves, and the four edges cycle among 

themselves. The center cubelet, though, is rotated on itself: it essentially stays in place! This occurs for 

all six rotations, which means that the center cubelet of each face remains in place regardless of the 

rotations performed. As a result, the red, blue, white, orange, green, and yellow center pieces will 

always stay on the same side of the cube—as long as we do not 

rotate the whole cube out of the standard position. This allows 

us to identify the red center cubelet as always being in the front, 

the blue center cubelet on the top, and so forth. Since each face 

of the Rubik’s cube has only one color, this means that we can 

identify the six faces of the Rubik’s cube with the six colors 

painted on the sides, regardless of the number or types of 

Side of the Cube Color of Center 

Front Red 

Up Blue 

Left White 

Back Orange 

Down Green 

Right Yellow 

 



rotations performed on the cube. This association is explicitly listed in the table to the right. 

Additionally, we should label all six of the different rotations that we can perform. Since there is one for 

each side of the Rubik’s cube, we can use the first letter for each side name1. For example, we can let a 

fancy “𝑓” represent a rotation of the front side of the cube; we will choose this to be a 90° clockwise 

rotation. Thus, our six right-angle rotations are 𝑓, 𝑢, ℓ, 𝑏, 𝑑, and 𝑟. These are depicted in the following 

diagrams: 

   

   

These six rotations generate all of the permutations of the Rubik’s cube: everything that can be done on 

a Rubik’s cube is just a combination of these permutations. For example, the action of rotating the 

horizontal center layer is the same as rotating the Up and Down layers an appropriate distance, which 

can be done by using 𝑢 and 𝑑 respectively. As a result, we can write every permutation of the Rubik’s 

cube as a string of the six letters 𝑓, 𝑢, ℓ, 𝑏, 𝑑, and 𝑟. While a right-to-

left direction would more closely follow function notation, I instead 

chose to write the letters left-to-right. Hence, the permutation 

created by rotating the Back layer and then the Up layer is labeled as 

𝑏𝑢. To help demonstrate this, 𝑏𝑢 is depicted to the right. 

Sometimes we will need to perform a 180° rotation of a side of the 

cube. This can be done by performing two successive 90° clockwise rotations: we can thus notate the 

180° rotation of the front face as 𝑓𝑓. As a shorthand, we can label this as 𝑓2. Then the other 180° 

rotations that can be performed are 𝑢2 , ℓ2, 𝑏2, 𝑑2, and 𝑟2. 

What about a 90° counterclockwise rotation? We can perform a rotation three consecutive times to 

produce the same result: 𝑓3 , 𝑢3, ℓ3, 𝑏3 , 𝑑3, and 𝑟3. For simplicity, we can notate these with the negative 

exponent −1, such as 𝑓−1 ≔ 𝑓3. This helps reflect the fact that 𝑓𝑓−1 and 𝑓−1𝑓 are both the identity 

permutation 𝑒. 

More generally for any 𝑥 ∈ 𝔾 and any 𝑛 ∈ ℕ, we can define 𝑥𝑛  to be the product of 𝑛 copies of 𝑥. We 

can then let 𝑥−1 denote the inverse permutation (which is given by the fact that 𝔾 is a group), and then 

 
1 This is why I (and the Rubik’s cube community) chose to use “Up” and “Down” instead of a more intuitive labeling 
such as “Top” and “Bottom”—the “B” in “Bottom” would conflict with the “B” in “Back.” 

   

   

 



define 𝑥−𝑛 ≔ (𝑥−1)𝑛 for all 𝑥 ∈ 𝔾 and 𝑛 ∈ ℕ. Lastly, we define 𝑥0 ≔ 𝑒 to be the identity permutation 

for all 𝑥 ∈ 𝔾. 

1.2 Special Permutations 
We want to create a list of elements in 𝔾 that will help with some of the arguments later in this paper. 

The first and simplest permutation is the “nothing” permutation 𝑒, which was introduced previously. 

The other more complex permutations are 𝑉↻, 𝑉↰, 𝐸↖, 𝐸⤻, and 𝑃↥. To assist with explaining how to create 

𝑉↻, I also include two other permutations named 𝑇 and  �̅�. 

We shall start with the Vertex Permutor 𝑉↰ that is defined as 𝑉↰ ≔

𝑟−1𝑓𝑟−1𝑏2𝑟𝑓−1𝑟−1𝑏2𝑟2. This permutation is displayed in the diagram 

to the right. This algorithm is used with the classic solving algorithm, 

namely when positioning the vertex cubelets with yellow sides into 

their correct spaces. This algorithm moves around three of the four 

vertices on the top of the cube: it moves the front right vertex to the 

back left position, moves the back left vertex to the back right position, and moves the back right vertex 

to the front right position. This is done while keeping the blue side of all three vertices on the top. Since 

this cycles three vertices, the order of 𝑉↰ is |𝑉↰| = 3. Thus, 𝑉↰
3 = 𝑒 and 𝑉↰

−1 = 𝑉↰
2. 

Next, we will introduce the Edge Permutor 𝐸↖ ≔ 𝑓2𝑢ℓ𝑟−1𝑓2ℓ−1𝑟𝑢𝑓2 . 

This permutation is displayed in the diagram to the right. It is usually 

used in the classic solving algorithm in the final step which moves the 

edge cubelets with yellow faces to their final positions. Instead of 

cycling three vertices, this permutation cycles three edge cubelets on 

the top. In particular, the top front edge is moved to the top left 

position, the top left edge moves to the top right position, and the top right edge is moved to the top 

front position. During this manipulation, all these sides keep their blue faces on the top of the cube. Just 

like with 𝑉↰, its order is |𝐸↖| = 3, which implies that 𝐸↖
3 = 𝑒 and 𝐸↖

−1 = 𝐸↖
2. 

The third cubelet-moving permutation is the Parity Permutor 𝑃↥ ≔

𝑉↰𝐸↖
−1𝑢−1𝐸↖

−1, displayed to the right. While performing this 

permutation is time-consuming, its explanation is a bit shorter: the two 

top front vertices swap places, and the front and back edges on the top 

swap places—all while keeping their blue sides on top. For a change of 

pace, it has order |𝑃↥| = 2. As a result, 𝑃↥
2 = 𝑒 and 𝑃↥

−1 = 𝑃↥. 

Our final cubelet-moving permutation is the Vertex Transformers 𝑇 ≔ ℓ−1𝑢−1ℓ𝑢−1ℓ−1𝑢−2ℓ and �̅� ≔

𝑟𝑢𝑟−1𝑢𝑟𝑢2𝑟−1. These are depicted below where 𝑇 is the left diagram and �̅� is the right diagram. The 

classic solving algorithm provides �̅�, and 𝑇 is a reflection of �̅� onto the left side of the cube. These two 

permutations move around the vertices and edges on the top of the Rubik’s cube in a complicated way. 

  

  

 

 

 



The remaining two permutations to introduce keep all of the cubelets 

in their original places, but they rotate two particular cubelets in place. 

Our first one is the Vertex Rotator 𝑉↻, which is built with the Vertex 

Transformers 𝑇 and �̅�; its diagram is provided to the right of this 

paragraph. It is made by performing 𝑉↻ ≔ 𝑇�̅�. This rotates the two top 

corners on the right side of the cube. The corner at the front is rotated 

120° clockwise, and the back corner is rotated 120° counterclockwise. Effectively, this permuation 

moves the blue side of both vertices to the yellow side of the cube. Note that 𝑉↻ has order 3, which 

means that 𝑉↻
3 = 𝑒. Additionally it follows that 𝑉↻

−1 = 𝑉↻
2. 

The final algorithm is used to rotate two edges. The Edge Rotator is 

𝐸⤻ ≔ 𝐸↖
−1𝑟𝑏𝑢−1𝐸↖𝑢𝑏−1𝑟, which will flip the top front edge along and 

the top right edge. It is depicted to the right. It has order 2, which 

implies that 𝐸⤻
2 = 𝑒 and 𝐸⤻

−1 = 𝐸⤻. 

1.3 Reoriented Permutations 
Occasionally, we may want to perform one of the permutations above at a different position on the 

cube; for example, what if we wanted to flip some of the edges on the green face of the cube? For this, 

we can provide reoriented versions of the permutations previously produced. 

Note that all of the previously mentioned permutations were introduced in the standard position, which 

has the Red side of the Rubik’s cube on the front and the Blue side on the top. We create the symbol RB 

to symbolize this position. We can then place this character in place of the exponent to signify the 

orientation that the permutation is used at. For example, 𝐸⤻ can be written as 𝐸⤻
RB, although this is 

more complicated. 

We will not use this notation when a permutation is performed while the Rubik’s cube is in its standard 

orientation, but it will be used in all other orientations of the cube. For example, we can flip the edges 

on the green face of the cube by performing 𝐸⤻
RG (which flips the front and left edges on the Down side 

of the Rubik’s cube) and then performing 𝐸⤻
OG (which flips the remaining right and back edges on the 

Down side of the Rubik’s cube). 

As a final note, we will also give the special notation 𝑃↥
−WB ≔ (𝑃↥

WB)
−1

. A similar notation applies for all 

of the other permutations and orientations possible. Note that this does not extend to other integers of 

“exponents.” 

 

 

 



2 It’s Just 𝐴20 ∩ 𝑆𝒜𝑆ℬ… 
While there are 27 cubelets in the Rubik’s cube, not all of them move around when the six rotations are 

applied. Clearly, the one cubelet in the center of the cube does not move, but we also know that the 

center cubelet on each face of the Rubik’s cube effectively does not move. In effect, there are only 20 

cubelets that move around the cube when 𝑢, 𝑑, 𝑓, 𝑏, ℓ and 𝑟 are applied. This naturally induces a 

homomorphism into the Symmetric group 𝑆20: 

𝜙: 𝔾 → 𝑆20 

where each number {1, 2, ⋯ , 20} represents one of the moving cubelets 

of the Rubik’s cube. In particular, we can choose the numbering provided 

in the diagram to the right. We can restrict this further, as shown in the 

following sections. Ultimately, we will be able to extend this concept so 

that we have a useful way of representing 𝔾. 

2.1 𝜙 maps Onto Subgroup ℙ ⊆ 𝑆20 
Define the sets 𝒜 = {1, 2, 3 ⋯ , 8} and ℬ = {9, 10, 11, ⋯ , 20}. We can restrict the range of 𝜙 to be ℙ ≔

𝐴20 ∩ 𝑆𝒜𝑆ℬ , and this restricted definition of 𝜙 is onto. (After completing this proof, we will let 𝜙 

represent the restricted homomorphism 𝜙|ℙ: 𝔾 → ℙ.) 

Recall that 𝔾 is generated by 𝑢, 𝑑, 𝑓, 𝑏, ℓ and 𝑟. Under the labeling provided, we have that 𝜙(𝑢) =

(1, 2, 3, 4)(9, 10, 11, 12). This must be in 𝐴20 since it is an even permutation, and we have that 
(1, 2, 3, 4) ∈ 𝑆𝒜  and that (9, 10, 11, 12) ∈ 𝑆ℬ . Therefore 𝜙(𝑢) ∈ 𝐴20 ∩ 𝑆𝒜𝑆ℬ , and it can be checked 

that this will also apply for 𝑑, 𝑓, 𝑏, ℓ, and 𝑟. Then 𝜙(𝔾) ⊆ 𝐴20 ∩ 𝑆𝒜𝑆ℬ  since these six permutations 

generate 𝔾. 

If we use 𝑉↰ at different orientations around the cube, we can generate any of the permutations of 

vertices that cycle three adjacent vertices, such as 𝜙(𝑉↰) = (243). This can be rewritten as (24)(43); 

we can also create the pair 𝜙(𝑉↰
GO) = (834) = (34)(48), and multiplying this to 𝜙(𝑉↰) provides 

(24)(43) ⋅ (34)(48) = (248), which is a cycle of three nonadjacent vertices. (While 4 and 8 are 

adjacent, neither are adjacent to 2.) If we continue this method, we will be able to create any 

permutation of 𝑆𝒜  of cycle type (3)—that is, any cycle of three of the vertices. Since these generate 𝐴𝒜 , 

it follows that 𝐴𝒜 ⊆ 𝜙(𝔾). 

By a similar argument, we can show that 𝐴ℬ ⊆ 𝜙(𝔾) by using the 𝜙(𝐸↖) at different orientations for 𝐸↖. 

Since we have that 𝐴𝒜  and 𝐴ℬ  are in 𝜙(𝔾), it will then follow that 𝐴𝒜𝐴ℬ  will be inside of 𝜙(𝔾). 

For our next step, we can note that 𝜙(𝑃↥) = (1, 2)(9, 11), which then shows that the element 

(1, 2)(9, 11) will be in 𝜙(𝔾). From this and the fact that 𝐴𝒜𝐴ℬ ⊆ 𝜙(𝔾), we can conclude that the set 
(1, 2)(9, 11) ⋅ 𝐴𝒜𝐴ℬ  is inside of 𝜙(𝔾). 

Lastly, we want to rewrite our set 𝐴20 ∩ 𝑆𝒜𝑆ℬ. Let 𝛼 ∈ 𝐴20 ∩ 𝑆𝒜𝑆ℬ  be arbitrary. Because 𝛼 ∈ 𝑆𝒜 𝑆ℬ , we 

can rewrite 𝛼 = 𝛼𝒜𝛼ℬ for some 𝛼𝒜 ∈ 𝑆𝒜  and for some 𝛼ℬ ∈ 𝑆ℬ . Meanwhile, we can use the fact that 

𝛼 ∈ 𝐴20 to note that 𝛼𝒜𝛼ℬ ∈ 𝐴20, which implies that 𝛼𝒜 and 𝛼ℬ are either both even permutations or 

odd permutations. If the former is true, we can write 𝛼𝒜 ∈ 𝐴𝒜 and 𝛼ℬ ∈ 𝐴ℬ, which then shows that 

𝛼 = 𝛼𝒜𝛼ℬ ∈ 𝐴𝒜𝐴ℬ; using the fact that 𝐴𝒜𝐴ℬ ⊆ 𝜙(𝔾), this implies that 𝛼 ∈ 𝜙(𝔾). 

 



Otherwise, 𝛼𝒜 and 𝛼ℬ are both odd permutations. We can write the set of odd permutations of 𝑆𝒜  as 
(1, 2)𝐴𝒜 , so it follows that 𝛼𝒜 ∈ (1, 2)𝐴𝒜 . Thus, 𝛼𝒜 = (1, 2)𝛼𝒜

′  for some 𝛼𝒜
′ ∈ 𝐴𝒜. Likewise, we can 

show that 𝛼ℬ ∈ (9, 11)𝐴ℬ, which then means that there is some 𝛼ℬ
′ ∈ 𝐴ℬ  such that 𝛼ℬ = (9, 11)𝛼ℬ

′ . We 

can then write 𝛼 = 𝛼𝒜𝛼ℬ as (1, 2)𝛼𝒜
′ ⋅ (9, 11)𝛼ℬ

′ . Because 𝛼𝒜
′  and (9, 11) are disjoint permutations of 

𝑆20 (they do not interact with the same integers), they can commute. This property will allow us to write 

𝛼 = (1, 2)(9, 11) ⋅ 𝛼𝒜
′ 𝛼ℬ

′ . We know that 𝛼𝒜
′ ∈ 𝐴𝒜  and 𝛼ℬ

′ ∈ 𝐴ℬ , so this implies that 𝛼 ∈ (1, 2)(9, 11) ⋅

𝐴𝒜𝐴ℬ . We have previously shown that (1, 2)(9, 11) ⋅ 𝐴𝒜𝐴ℬ ⊆ 𝜙(𝔾), so it follows that 𝛼 ∈ 𝜙(𝔾). 

In conclusion, any arbitrary 𝛼 ∈ 𝐴20 ∩ 𝑆𝒜𝑆ℬ  will be in 𝜙(𝔾), so we can conclude that (𝐴20 ∩ 𝑆𝒜𝑆ℬ) ⊆

𝜙(𝔾). We have shown the reverse containment at the beginning of this proof, so it follows that 

(𝐴20 ∩ 𝑆𝒜𝑆ℬ) = 𝜙(𝔾). ∎ 

2.1.1 Definition of 𝕂 = ker 𝜙 and Consequences 
We know that the kernel of any homomorphism will be a normal subgroup of the domain. Hence, we 

can define 𝕂 = ker 𝜙 and note that 𝕂 will be a normal subgroup of 𝔾. As a result, |𝔾| = |𝕂| ⋅ |𝔾 𝕂⁄ |, 

where 𝔾 𝕂⁄  is the factor group of 𝔾 by 𝕂. 

From the structure of the proof above, the First Isomorphism Theorem provides some isomorphism 

Φ: 𝔾 𝕂⁄ → ℙ. This shows that 𝔾 𝕂⁄  is isomorphic to ℙ = 𝐴20 ∩ 𝑆𝒜𝑆ℬ. We can observe that this can be 

alternatively written as 𝐴𝒜𝐴ℬ ∪ (1,2)(9,11)𝐴𝒜𝐴ℬ. Since both of these sets are disjoint and contain 

|𝐴𝒜| ⋅ |𝐴ℬ| =
8!

2
⋅

12!

2
 elements, it follows that: 

|𝔾 𝕂⁄ | = (
8!

2
⋅

12!

2
) + (

8!

2
⋅

12!

2
) =

8! ⋅ 12!

2
 

What are the elements of 𝕂? I claim that this is the set generated by some versions of 𝑉↻ and 𝐸⤻ done 

at different orientations of the Rubik’s Cube. These can be shown to be in 𝕂 because neither move the 

cubelets out of their original positions, but we will need to prove that they generate 𝕂, which will be 

done in an upcoming section. Before this, we need to create a new set that generates 𝔾: 

2.2 Alternate Way to Generate 𝔾. 
Recall that 𝑢, 𝑑, 𝑓, 𝑏, ℓ, and 𝑟 generate 𝔾. While these elements are easy to understand, they are not 

optimal for understanding the limitations of what permutations can be created. Instead, we can 

introduce a set 𝒫 containing a selected set of permutations: 

𝒫 = {𝑉↰, 𝐸↖, 𝑃↥, 𝑉↻, 𝐸⤻, 𝑉↰
OB, 𝐸↖

OB,  𝑉↰
WR, 𝐸↖

WR, 𝑉↰
YO , 𝐸↖

YO,  𝐸↖
RY,  𝐸↖

OW} 

(The strange spacing is used to help clarify the orientations needed.) This set will generate 𝔾. 

Firstly, note that since the orders of 𝑉↰ and 𝐸↖ are both 3, it follows that 𝑉↰
−1 = 𝑉↰

2 and 𝐸↖
−1 = 𝐸↖

2, 

which shows that the inverses of 𝑉↰ and 𝐸↖ are generated by 𝒫. A similar method shows that any 

element of finite order—such as the other versions of 𝑉↰ and 𝐸↖ in 𝒫—will also be generated by 𝒫. 

If we can show that these generate all six of the original permutations, it will follow that they can 

generate 𝔾. We can manually compute that: 

𝑢 = 𝑃↥𝑉↰𝐸↖𝐸↖
−OB 

𝑓 = 𝐸↖
RY𝐸↖

−OB𝑃↥𝐸↖
OB𝐸⤻𝐸↖

−RY𝐸↖
WR𝑉↰

−OB𝑉↰
WR𝑉↰

OB(𝑢−1𝑉↻
−1𝑢) 



𝑏 = 𝐸↖
OW𝐸↖

−1(𝑢2𝑃↥𝑢2)𝐸↖(𝑢2𝐸⤻𝑢2)𝐸↖
−OW𝐸↖

YO𝑉↰
−1𝑉↰

YO𝑉↰(𝑢𝑉↻
−1𝑢−1) 

ℓ = 𝐸↖
−OW𝑓𝑏−1𝑃↥𝑉↰𝑏𝑓−1𝐸↖

−OW 

𝑟 = 𝐸↖
−RY𝑏𝑓−1(𝑢2𝑃↥𝑢2)𝑉↰

OB𝑓𝑏−1𝐸↖
−RY  

𝑑 = ℓ2𝑟2𝐸↖
−WR𝐸↖

−YO𝑢𝐸↖𝐸↖
OB𝐸↖𝐸↖

WR𝐸↖
YO𝑟2ℓ2 

We calculate these from top to bottom: once we show that 𝑢 is generated by 𝒫, we can then use it in 

later equations since we can substitute for 𝑢 = 𝑃↥𝑉↰
RB𝐸↖

RB𝐸↖
−OB as needed. In addition, we can 

substitute 𝑢−1 = 𝑢3 to show that 𝑢−1 is generated by 𝒫 as well. Together, these facts allow us to 

conclude that 𝑓 is generated by 𝒫. Similarly, we can use 𝑓, 𝑏, ℓ and 𝑟 and their inverses for the 

equations after showing that each is generated by 𝒫. 

Note that 𝑏 and 𝑟 are similar to 𝑓 and ℓ, respectively, in their construction: parenthetical values help 

show where the top layer is rotated to simulate 𝑃↥, 𝐸⤻, and 𝑉↻ done in different rotations. Namely, we 

have that: 

𝑢2𝑃↥𝑢2 = 𝑃↥
OB   𝑢2𝐸⤻𝑢2 = 𝐸⤻

OB   𝑢−1𝑉↻
−1𝑢 = 𝑉↻

−WB   𝑢𝑉↻
−1𝑢−1 = 𝑉↻

−YB 

Then altogether, we have that 𝒫 generates the six original permutations; because the six permutations 

generate 𝔾, it follows that 𝒫 will also generate 𝔾. ∎ 

2.2.1 XO Notation and 𝔾 𝕂⁄ ≅ ℍ 
The elements of 𝒫 were chosen to have a specific structure. The copies 

of 𝑉↰ cause the vertices of the Rubik’s cube to permute around the 

cube, but only enough to allow each to access any other point on the 

cube. The figure to the right depicts a cube that helps display this 

pattern: When permuting the vertices, the 𝑉↰ map the “X” sides of the 

vertices to the “X” side of other vertices. The same can be said of 𝑃↥ as 

well. This shows that the only way to rotate a vertex with the elements of 𝒫 is with the single element 

𝑉↻. A similar property applies to the edges: In the diagram, the “O” side of an edge can only be mapped 

to another “O” edge when using the 𝐸↖ and 𝑃↥. 

Out of all the elements of 𝒫, only 𝑉↻ and 𝐸⤻ can move the “X” or “O” of a cubelet out of position. The 

other elements can be used to generate a subgroup ℍ: 

ℍ ≔ ⟨𝒫 ∖ {𝑉↻, 𝐸⤻}⟩ 

Informally, we can see that for every valid permutation 𝜎 ∈ ℙ of the edges and vertices, there exists 

some element ℎ ∈ ℍ such that 𝜙(ℎ) = 𝜎. In fact, 𝜙 establishes a bijection between ℍ and ℙ when the 

domain is restricted to ℍ, as shown in the following proof: 

First, we should show that 𝜙|ℍ: ℍ → ℙ is injective. For this, suppose that there were two elements 

ℎ1, ℎ2 ∈ ℍ such that 𝜙(ℎ1) = 𝜙(ℎ2). It would then follow that 𝜙(ℎ1) ⋅ (𝜙(ℎ2))
−1

= 𝜙(ℎ1ℎ2
−1) = ( ), 

the identity element of ℙ. This implies that ℎ1ℎ2
−1 is an element of ℍ where every cubelet remains in its 

original place. But since none of the generators of ℍ can move a cubelet’s “X” or “O” side, none of the 

elements of ℍ can do so. Thus ℎ1ℎ2
−1 is some permutation of the Rubik’s cube such that none of the 

cubelets can be moved out of their original positions (because 𝜙(ℎ1ℎ2
−1) = ( )) and that cannot rotate 

 



the cubelets in place (due to the “XO” argument). The only element of 𝔾 that satisfies both of these 

requirements is 𝑒, so we have that ℎ1ℎ2
−1 = 𝑒. Then we can quickly conclude that ℎ1 = ℎ2. In summary, 

since 𝜙(ℎ1) = 𝜙(ℎ2) implies that ℎ1 = ℎ2, it follows that 𝜙|ℍ is injective. 

Now let 𝜎 ∈ ℙ be arbitrary. Since 𝜙: 𝔾 → ℙ is surjective, there exists some 𝑔 ∈ 𝔾 such that 𝜙(𝑔) = 𝜎. 

Since 𝒫 generates 𝔾, we can write 𝑔 as the product of elements in 𝒫, say 𝑔 = ∏ 𝑥𝑖
𝑡
𝑖=1  for some 𝑡 ∈ ℕ 

and 𝑥𝑖 ∈ 𝒫. If we remove every copy of 𝐸⤻ and 𝑉↻ in this product, we get another element ℎ = ∏ 𝑦𝑖
𝑡
𝑖=1 , 

where for all 1 ≤ 𝑖 ≤ 𝑡 we define 𝑦𝑖 = 𝑒 if 𝑥𝑖 ∈ {𝐸⤻, 𝑉↻} and 𝑦𝑖 = 𝑥𝑖 otherwise. We can then observe 

that 𝜙(𝑥𝑖) = 𝜙(𝑦𝑖) for all 𝑖 since 𝜙(𝐸⤻) = ( ) = 𝜙(𝑒) and 𝜙(𝑉↻) = ( ) = 𝜙(𝑒), so we can conclude 

that: 

𝜎 = 𝜙(𝑔) = 𝜙 (∏ 𝑥𝑖

𝑡

𝑖=1

) = ∏ 𝜙(𝑥𝑖)

𝑡

𝑖=1

= ∏ 𝜙(𝑦𝑖)

𝑡

𝑖=1

= 𝜙 (∏ 𝑦𝑖

𝑡

𝑖=1

) = 𝜙(ℎ) 

Therefore 𝜙(ℎ) = 𝜎. Meanwhile, ℎ ∈ ℍ since ℎ = ∏ 𝑦𝑖
𝑡
𝑖=1 , where 𝑦𝑖 ∈ {𝑒} ∪ 𝒫 ∖ {𝐸⤻, 𝑉↻} are all 

elements of ℍ. In summary, for every 𝜎 ∈ ℙ there exists some ℎ ∈ ℍ such that 𝜙(ℎ) = 𝜎, so we can 

conclude that 𝜙|ℍ is also surjective. 

Since 𝜙|ℍ is a homomorphism that is both injective and surjective, it follows that it will produce an 

isomorphism between ℙ and ℍ. ∎ 

2.2.2 ℍ is Set of Representatives of 𝔾 𝕂⁄  
Every element of 𝔾 𝕂⁄  can be expressed as ℎ𝕂 for some ℎ ∈ ℍ. Additionally, if ℎ1𝕂 = ℎ2𝕂, then it 

follows that ℎ1 = ℎ2. This then means that ℍ is a set of coset representatives of 𝔾 𝕂⁄ . 

We showed in section 2.1.1 that Φ: 𝔾 𝕂⁄ → ℙ is an isomorphism defined by Φ(𝑔𝕂) = 𝜙(𝑔). 

Meanwhile, we have that 𝜙|ℍ: ℍ → ℙ is an isomorphism as shown in the prior section. We can combine 

these together into an isomorphism (𝜙|ℍ
−1 ∘ Φ): 𝔾 𝕂⁄ → ℍ. 

Let 𝑔𝕂 ∈ 𝔾 𝕂⁄  be arbitrary. Then (𝜙|ℍ
−1 ∘ Φ)(𝑔𝕂) is equal to some ℎ ∈ ℍ. On the other hand, the 

definition of Φ shows that Φ(ℎ𝕂) = 𝜙(ℎ), so it follows that (𝜙|ℍ
−1 ∘ Φ)(ℎ𝕂) = (𝜙|ℍ

−1 ∘ 𝜙)(ℎ). 

Replacing 𝜙(ℎ) with 𝜙|ℍ(ℎ), this value simplifies to be (𝜙|ℍ
−1 ∘ 𝜙|ℍ)(ℎ). It then becomes clear that 

(𝜙|ℍ
−1 ∘ Φ)(ℎ𝕂) = ℎ. As a result: 

(𝜙|ℍ
−1 ∘ Φ)(𝑔𝕂) = ℎ = (𝜙|ℍ

−1 ∘ Φ)(ℎ𝕂) 

But since (𝜙|ℍ
−1 ∘ Φ) is a bijection, this implies that 𝑔𝕂 = ℎ𝕂. Thus, every coset 𝑔𝕂 can be expressed as 

ℎ𝕂 for some ℎ ∈ ℍ. ◩ 

Now suppose that there are two elements ℎ1, ℎ2 ∈ ℍ where ℎ1𝕂 = ℎ2𝕂. Using a similar argument to 

above, we can find that: 

(𝜙|ℍ
−1 ∘ Φ)(ℎ1𝕂) = ℎ1    (𝜙|ℍ

−1 ∘ Φ)(ℎ2𝕂) = ℎ2 

Since ℎ1𝕂 = ℎ2𝕂, we can then set both of these equal to each other: 

ℎ1 = (𝜙|ℍ
−1 ∘ Φ)(ℎ1𝕂) = (𝜙|ℍ

−1 ∘ Φ)(ℎ2𝕂) = ℎ2 

Thus ℎ1 = ℎ2. ◪ 



Due to both of the proofs presented above, it follows that ℍ will be a set of coset representatives of 

𝔾 𝕂⁄  as desired. ∎ 

2.3 Structure of 𝕂 
We can understand that vertices can be rotated in place, but we need to make a notion of how much a 

vertex has been rotated—even if the vertex is not in its “solved” position. The XO notation provides an 

excellent solution to this problem: It is the amount that the “X” side of a vertex has been rotated from 

the “X” position for the position it currently is in. Thus 𝑉↻, which is the only way to rotate a vertex in 𝒫, 

will rotate the top front right vertex 240° and the top back right vertex 120°—considering all angles to 

be counterclockwise. Since we can move any two vertices to the two positions that 𝑉↻ rotates, we can 

rotate any arbitrary pair of vertices. 

In other words, we can rotate any pair of vertices such that the sum of the angles is 360°. If we rotate a 

second pair of vertices afterwards, the sum of the angles rotated will be 2 ⋅ 360° = 720°. And more 

generally, any rotation of vertices performed on the vertices must have a sum of angles rotated equal to 

some multiple of 360°. 

We can build a similar notion for flipped edges: an edge is flipped if its “O” side is not aligned with the 

“O” position for the spot it currently is in. We can see that 𝐸⤻ will flip two edges. When we extend this 

reasoning over several flipped pairs of edges, the total number of flipped edges across the cube must 

always be an even number. 

If we take any element of 𝕂, we know that it must keep all cubelets in their original positions. The only 

significant difference that 𝑘 can have is by rotating vertices and flipping edges; as shown above, this can 

only happen where the sum of the vertices’ rotations must be a multiple of 360°, and there must be an 

even number of edges flipped. In fact, 𝕂 contains a permutation for every possible way to rotate the 

vertices and flip edges that has this property, so we can note that these two properties are the key 

distinction of 𝕂. In other words, 𝕂 is the set of all permutations of the cube where the vertices’ 

rotations add up to a multiple of 360° and where the number of flipped edges is even. 

As a result, we can find that 𝕂 ≅ ℤ2
11 × ℤ3

7: 

We will define the map 𝜙: 𝕂 → ℤ3
7 × ℤ2

11 in the following way for any 𝑘 ∈ 𝕂: 

• For each vertex position 1 ≤ 𝑖 ≤ 7, set the 𝑖th coordinate of 𝜙(𝑘) (i.e. the 𝑖th coordinate of the 

ℤ3
7 portion) to be 0 if the vertex in that position is not rotated at all, 1 if the vertex in that 

position is rotated 120°, or 2 if the vertex in that position is rotated 240°. 

• For each edge position 9 ≤ 𝑖 ≤ 19, set the (𝑖 − 1)th coordinate of 𝜙(𝑘) (i.e. the (𝑖 − 8)th 

coordinate of the ℤ2
11 portion) to be 1 if the edge in that position is flipped, or 0 otherwise. 

Firstly, this map is well-defined since there is only one possible status for all of the cubelets being 

measured. Additionally, we can determine that 𝜙 is additive: if 𝑘1 rotates some cubelet 𝑖 a total of 𝐴𝑖  

degrees and if 𝑘2 rotates 𝑖 a total of 𝐵𝑖  degrees, then 𝑘1𝑘2 will rotate 𝑖 a total of (𝐴𝑖 + 𝐵𝑖) degrees. This 

applies for each cubelet 𝑖, so it follows that: 

(∀𝑘1, 𝑘2 ∈ 𝕂)  𝜙(𝑘1) + 𝜙(𝑘2) = (𝐴1, ⋯ , 𝐴7, 𝐴9, ⋯ , 𝐴19) + (𝐵1, ⋯ , 𝐵7, 𝐵9, ⋯ , 𝐵19)

= (𝐴1 + 𝐵1, ⋯ , 𝐴7 + 𝐵7, 𝐴9 + 𝐵9, ⋯ , 𝐴19 + 𝐵19)

= 𝜙(𝑘1𝑘2)
 



Then 𝜙 will be a homomorphism. 

Now suppose that 𝑘1 and 𝑘2 are two elements of 𝕂 such that 𝜙(𝑘1) = 𝜙(𝑘2). Then 𝜙(𝑘1𝑘2
−1) =

(0, ⋯ ,0) is the zero element of ℤ3
7 × ℤ2

11. By the definition of 𝜙, this then means that 𝑘1𝑘2
−1 does not 

rotate any of the cubelets except possibly the 8th vertex and the 20th edge (in terms of how the 

cubelets were numbered at the beginning of this chapter). When considering the vertices, we know that 

the sum of the angles rotated should be a multiple of 360°; because seven of the eight are 0°, the 

eighth vertex must be rotated a multiple of 360°, which implies that it is essentially not rotated at all. 

Similarly, we know that eleven of the twelve edges are not flipped, so the twelfth edge must not be 

flipped either in order for the number of flipped edges to be even. 

Then none of the cubelets for 𝑘1𝑘2
−1 are flipped or rotated; since the elements of 𝕂 cannot move 

vertices around, it follows that 𝑘1𝑘2
−1 cannot move the cubelets around either. The only element of 𝔾 

that satisfies both of these conditions is 𝑒, so 𝑘1𝑘2
−1 = 𝑒. This implies that 𝑘1 = 𝑘2. In summary, 

𝜙(𝑘1) = 𝜙(𝑘2) implies that 𝑘1 = 𝑘2 for all 𝑘1, 𝑘2 ∈ 𝕂, so we can conclude that 𝜙 will be injective. 

Lastly, we can see that 𝜙 will be surjective: for any 𝜎 = (𝑎1, ⋯ , 𝑎7, 𝑎9, ⋯ , 𝑎19) ∈  ℤ3
7 × ℤ2

11, we can 

create an element 𝑘 ∈ 𝕂 that maps to it in the following manner: For the vertices 1 ≤ 𝑖 ≤ 7, define 𝑘𝑖  

to be the element of 𝕂 that only rotates the 𝑖th vertex and the 8th vertex a total of 𝑎𝑖 ⋅ 120° and 𝑎𝑖 ⋅

120° respectively. For the edges 9 ≤ 𝑖 ≤ 19, define 𝑘𝑖  to be 𝑒 if 𝑎𝑖 = 0, or to be the element of 𝕂  that 

only flips both the 𝑖th edge and the 20th edge if 𝑎𝑖 = 1. Since neither the 8th vertex nor the 20th edge 

affect the value of 𝜙(𝑘𝑖), each 𝜙(𝑘𝑖) is equal to (0, ⋯ ,0, 𝑎𝑖 , 0, ⋯ ,0), where the 𝑎𝑖 is in the same 

position as in 𝜎. It then follows that if we define 𝑘 ≔ 𝑘1 ⋯ 𝑘7𝑘9 ⋯ 𝑘19, then 𝜙(𝑘) = 𝜎. Then for every 

𝜎 ∈ ℤ3
7 × ℤ2

11, there exists some 𝑘 ∈ 𝕂 such that 𝜙(𝑘) = 𝜎, so we can conclude that 𝜙 is surjective. 

Overall, we know that 𝜙 is a bijective homomorphism, so then 𝜙: 𝕂 → ℤ3
7 × ℤ2

11 is an isomorphism. ∎ 

2.3.1 Order of 𝔾 

We then have that |𝔾| = 12! ⋅ 8! ⋅ 210 ⋅ 37. Therefore, the number of permutations of a Rubik’s cube is: 

43, 252, 003, 274, 489, 856, 000 

which is approximately 43 quintillion (short scale). 

Recall from 2.1.1 that |𝔾| = |𝔾 𝕂⁄ | ⋅ |𝕂| and |𝔾 𝕂⁄ | = 12! ⋅ 8! 2⁄ . Since |𝕂| = |ℤ2
11 × ℤ3

7| = 211 ⋅ 37, 

this result comes from multiplying both values together. ∎ 

 



3 Cubes are Very Symmetric 
As you might expect, cubes have many different types of symmetry, but what exactly counts as a 

symmetry of a cube, and how many are there?  

There is a well-known result that the cube has 48 different types of 

symmetry and that the symmetry group of the cube—which will be 

denoted 𝕊—is isomorphic to ℤ2 × 𝑆4. In particular, an isomorphism 

Σ: 𝕊 → (ℤ2 × 𝑆4) can be established in the following way: 

• For 𝜏 ∈ 𝕊, define 𝑧 ∈ ℤ2 and 𝜎 ∈ 𝑆4 such that Σ(𝜏) = (𝑧, 𝜎). 

• Label the long interior diagonals of the cube with the numbers 1 to 4, such as done in the 

diagram to the right. 

• It follows that 𝜏 is equivalent to following these two steps: 

o If 𝑧 = 1, invert each diagonal by moving each vertex to the furthest vertex relative to it. 

If 𝑧 = 0, do not do anything to the cube in this step. 

o Then the cube is rotated such that the diagonals are permuted according to 𝜎. For 

example, the first diagonal must be taken to 𝜎(1). 

▪ This second step must be done without reflecting or inverting the cube. (This 

step is called an orientation-preserving symmetry.) 

In general, we will write 𝜏 ∼ (𝑧, 𝜎) to help explain how 𝜏 operates. An alternative way of writing 𝜏 can 

be presented with the form XYZ, where X, Y, and Z are selected from the set {R, B, W, O, G, Y}. What 

three letters do we replace X, Y, and Z with? If we apply 𝜏 onto a blank Rubik’s cube in standard 

position, it will permute the faces of the cube; the colors of the front, up, and right sides of the cube 

uniquely identify this permutation. We let X represent the color of the front face, Y be the color of the 

up face, and Z be the color of the right face; we select the first letter of the color from {R, B, W, O, G, Y} 

for each part. 

For example, we have that RBW ∼ (( ), 0) is the identity symmetry (which does not rotate the Rubik’s 

cube) and WBO ∼ ((1234), 0) is a 90° rotation of the Rubik’s cube. Also, OGY ∼ (( ), 1) is the inverted 

symmetry (from swapping opposite colors, e.g., Red and Orange), and RGW ∼ ((13)(24), 1) essentially 

mirrors the cube across a horizontal cross-section of the cube. 

  

  

  

  

 



3.1 Types of Symmetries 
With 𝕊 ≅ ℤ2 × 𝑆4, it follows that there are |𝕊| = |ℤ2| ⋅ |𝑆4| = 2 ⋅ 4! = 48 different symmetries to 

consider. It would be daunting to have to consider each one-by-one, especially when we get to analyzing 

which permutations “display” each symmetry, so we will want to classify them into “similar” categories. 

For example, consider how WBO ∼ ((1234), 0) and RWG ∼ ((1243), 0) both rotate the Rubik’s cube 

90°. In standard position, the rotation axis of WBO goes through the up and down sides of the Rubik’s 

cube (which are Blue and Green, respectively), and if we look at the top of the Rubik’s cube, this rotation 

is counterclockwise. Meanwhile, if we arrange the cube such that the Blue side is on the front side and 

the Orange side is on the up side, the rotation axis of RWG goes through the up and down sides of the 

Rubik’s cube (which are Orange and Red, respectively), and if we look at the top of the Rubik’s cube, this 

rotation is still counterclockwise. These symmetries move cubelets with the same movements, the 

exception being that they may use each movement on a different cubelet. 

A good place to start is to consider the 4! = 24 elements of 𝑆4, which are as follows: 

( ) 

(1234) (1243) (1324) (1342) (1423) (1432) 

(12)(34) (13)(24) (14)(23) 

(123) (132) (124) (142) (134) (143) (234) (243) 

(12) (13) (14) (23) (24) (34) 

We can see that there are five types of elements in 𝑆4, one for each row above. These categories can be 

firmly established by considering the cycle type of each (the definition of which is exactly as you expect 

if you look at how each row is organized), but it may be more intuitive to consider how each 

permutation in a row perform similar “movements” of each value, although they may differ on which 

values are moved in which way. 

The idea I am trying to convey is that, for example, (1234) and (1324) both permute the four numbers 

in one cycle, while the other values of 𝑆4 do not cycle all four numbers in one cycle. This allows us to 

differentiate these two elements from others, such as (12) or (123) which may leave one number in 

place, or like (13)(24) which cycles the numbers across two disjoint cycles. 

Using these five classes of elements in 𝑆4, we can add the other differentiation across the first 

coordinate of ℤ2 × 𝑆4 to obtain ten classes of symmetries in 𝕊. We can pick one from each to act as a 

“representative” for each class: 

RBW ∼ (( ), 0) WBO ∼ ((1234), 0) OBY ∼ ((13)(24), 0) BWR ∼ ((234), 0) BRY ∼ ((12), 0) 

OGY ∼ (( ), 1) YGR ∼ ((1234), 1) RGW ∼ ((13)(24), 1) GYO ∼ ((234), 1) GOW ∼ ((12), 1) 

Each class has a unique way in which they affect the cubelets of the Rubik’s cube. To help demonstrate 

this, I introduce the notion of a rotation set, which is basically a glorified element of 𝑆20 that shows how 

the symmetry permutes the cubelets when it is applied to the Rubik’s cube in standard position. While 

each symmetry moves nearly all of the 27 cubelets on the cube (namely, the face-center cubelets are 



also moved), we only are concerned about how they move the 20 cubelets on the edges and vertices of 

the cube. 

For an example of a rotation set, consider the WBO symmetry, which 

is displayed to the right. We will first focus on the four vertices on the 

top. Vertex 1—which is red, blue, and white—is moved to the position 

of Vertex 2. And Vertex 2 moves to the position of Vertex 3. This 

causes Vertex 3 to move to the position of Vertex 4, and Vertex 4 is 

moved to the position of Vertex 1. We can then collect these together 

as the rotation set {1, 2, 3, 4}. Since a similar scenario occurs for the bottom vertices, we also have the 

rotation set {5, 6, 7, 8}. The edges are similarly placed into rotation sets of four elements each. 

The rotation sets can have varying numbers of elements. Some rotation sets may have up to six 

elements, while others may consist of only one cubelet. 

The following subsections provides a brief summary of each of the ten classes of symmetries in 𝕊. Each 

class will list all of the symmetries that belong to that class with a general description for the class. 

Additionally, an example from each class will be provided to help visualize each class. 

The remainder of Chapter 3 is listing these classes. You can read through each type or reference back to 

them in later chapters as needed. Honestly, the format is repetitive, which could make for a boring read; 

I would recommend you to briefly look through them, then reference back as needed later. 

3.1.1 Type RBW ∼ (( ), 0) 

RBW ∼ (( ), 0) 

This category has only one element: the identity symmetry of the cube. This is the symmetry produced 

by not rotating the cube at all. This symmetry has a trivial color map: 

R ↦ R B ↦ B W ↦ W O ↦ O G ↦ G Y ↦ Y 

This symmetry does not generate any other symmetries. Rather, every 

symmetry will eventually produce this symmetry when iterated 

multiple times. 

The cubelets are not moved around at all by this symmetry, so every 

cubelet is in its own rotation set. Thus, the rotation sets are: 

{1} {2} {3} {4} {5} {6} {7} {8} 

{9} {10} {11} {12} {13} {14} {15} {16} {17} {18} {19} {20} 

3.1.2 Type WBO ∼ ((1234), 0) 

WBO ∼ ((1234), 0)  BOW ∼ ((1324), 0)  RWG ∼ ((1243), 0) 

YBR ∼ ((1432), 0)  GRW ∼ ((1423), 0)  RYB ∼ ((1342), 0) 

These take our cube and rotate it 90° as if it were on a flat surface. These can be either clockwise or 

counterclockwise rotations: WBO ∼ ((1234), 0) is a counterclockwise rotation, and YBO ∼ ((1432), 0) 

is a clockwise rotation. (Of course, “clockwise” and “counterclockwise” are relative to the way you 

 

 



orient the cube when looking at the rotation.) These rotations need not be horizontal: for example, 

RWG ∼ ((1243), 0) is also in this category. Each has their own color map; for example, the color map of 

WBO will be: 

W ↦ R B ↦ B O ↦ W Y ↦ O G ↦ G R ↦ Y 

These elements come in pairs: for example, if we apply WBO on a Rubik’s cube three times, it will be the 

same as performing YBR. Additionally, each will generate an element of the type OBY ∼ ((13)(24), 0) 

after being performed twice, and each will generate the identity element RGB ∼ (( ), 0) after being 

performed four times. 

Every vertex is in a rotation set of four elements, so there are two disjoint vertex rotation sets. Similarly, 

the edges are in rotation sets of four elements, so there are three 

disjoint edge rotation sets. For example, the rotation sets of WBO are 

as follows: 

{1, 2, 3, 4} {5, 6, 7, 8} 

{9, 10, 11, 12} {13, 14, 15, 16} {17, 18, 19, 20} 

3.1.3 Type OBY ∼ ((13)(24), 0) 

OBY ∼ ((13)(24), 0)  OGW ∼ ((12)(34), 0)  RGY ∼ ((14)(23), 0) 

These take our cube and rotate it 180° as if it were on a flat surface. However, these rotations need not 

be horizontal: for example, OGW ∼ ((12)(34), 0) is a vertical rotation. Each has their own color map; 

for example, the color map of OBY will be: 

O ↦ R B ↦ B Y ↦ W R ↦ O G ↦ G W ↦ Y 

These elements will generate the identity when performed on a Rubik’s cube two times. 

Every vertex is in a rotation set of two elements, so there are four disjoint rotation sets. Similarly, the 

edges are in rotation sets of two elements, so there are six disjoint 

rotation sets. For example, the rotation sets of OBY are as follows: 

{1, 3} {2, 4} {5, 7} {6, 8} 

{9, 11} {10, 12} {13, 15} {14, 16} {17, 19} {18, 20} 

3.1.4 Type BWR ∼ ((234), 0) 

BWR ∼ ((234), 0)  YRG ∼ ((134), 0)  GYR ∼ ((124), 0)  YOB ∼ ((123), 0) 

WRB ∼ ((243), 0)  BYO ∼ ((143), 0)  WOG ∼ ((142), 0)  GWO ∼ ((132), 0) 

These take our cube and rotate it 120° about a vertex. These can be either clockwise or 

counterclockwise rotations: BWR ∼ ((234), 0) is a clockwise rotation, and WRB ∼ ((243), 0) is a 

counterclockwise rotation. Each has their own color map; for example, the color map of BWR will be: 

B ↦ R W ↦ B R ↦ W G ↦ O Y ↦ G O ↦ Y 

 

 



These elements come in pairs: for example, if we apply BWR on the cube twice, the result will be WRB. 

Additionally, each will generate the identity element RGB ∼ (( ), 0) when applied to the cube three 

times. 

The rotation’s axis goes through two vertices; these will be in rotation sets of size 1. The remaining 

vertices are in rotation sets of 3 elements. Meanwhile, all of the edges are in rotation sets of size 3. 

Hence, there are two 1-element rotation sets of vertices, and two 3-

element rotation sets of vertices. Also, there are four rotation sets of 

edges. For example, the rotation sets of BWR are as follows: 

{1} {2, 5, 4} {3, 6, 8} {7} 

{9, 16, 12} {10, 17, 15} {11, 13, 20} {14, 18, 19} 

3.1.5 Type BRY ∼ ((12), 0) 

BRY ∼ ((12), 0)  WGR ∼ ((13), 0)  OWB ∼ ((14), 0) 

OYG ∼ ((23), 0)  YGO ∼ ((24), 0)  GOY ∼ ((34), 0) 

These take our cube and rotates it 180° about an edge. These are probably the strangest rotations that 

can be done on the cube. Each has their own color map; for example, the color map of BRY will be: 

B ↦ R R ↦ B Y ↦ W G ↦ O O ↦ G W ↦ Y 

If we apply any of these rotations on a cube twice, we will end up with the identity element RGB ∼

(( ), 0). 

The rotation’s axis goes through two edges; these will be in rotation sets of size 1. The remaining edges 

are in rotation sets of 2 elements. Meanwhile, all of the vertices are in rotation sets of size 2. Hence, 

there are two 1-element rotation sets of edges, and five 2-element 

rotation sets of edges. Also, there are four rotation sets of vertices. For 

example, the rotation sets of BRY will be: 

{1, 2} {3, 5} {4, 6} {7, 8} 

{9} {10, 16} {11, 17} {12, 13} {14, 20} {15, 18} {19} 

3.1.6 Type OGY ∼ (( ), 1) 

OGY ∼ (( ), 1) 

This symmetry comes from inverting every diagonal of the cube: imagine mapping each vertex to the 

vertex furthest from it, or imagine scaling the cube by “a factor of −1”. This will have the inversion color 

map that maps each color to its “opposite” color: 

O ↦ R G ↦ B Y ↦ W R ↦ O B ↦ G W ↦ Y 

This symmetry will produce the identity symmetry when iterated with 

itself. 

 

 

 



Each vertex and edge is swapped with its opposing vertex or edge, so it follows that each cubelet will be 

in a rotation set of two elements. Thus, there are four vertex rotation sets, and six edge rotation sets. 

The rotation sets of this symmetry will be: 

{1, 7} {2, 8} {3, 5} {4, 6} 

{9, 19} {10, 20} {11, 17} {12, 18} {13, 15} {14, 16} 

3.1.7 Type YGR ∼ ((1234), 1) 

YGR ∼ ((1234), 1)  GRY ∼ ((1324), 1)  OYB ∼ ((1243), 1) 

WGO ∼ ((1432), 1)  BOY ∼ ((1423), 1)  OWG ∼ ((1342), 0) 

These can be thought of as rotating the cube 90° on a flat surface, then mirroring the cube horizontally. 

The direction rotated will be opposite the direction of its corresponding version of type WBO ∼

((1234), 0): in particular, YGR involves a clockwise rotation, but WBO is a counterclockwise rotation. 

This is because YGR = OGY ∘ WBO; similar facts hold for the other elements. Of course, the “flat 

surface” does not need to be horizontal, as is the case with most of the other elements in this category. 

Each has their own color map; for example, the color map of YGR will be: 

Y ↦ R G ↦ B R ↦ W W ↦ O B ↦ G O ↦ Y 

These elements come in pairs: for example, if we apply YGR on a Rubik’s cube three times, it will be the 

same as performing WGO. Additionally, each will generate an element of the type OBY ∼ ((13)(24), 0) 

after being performed twice, and each will generate the identity element RGB ∼ (( ), 0) after being 

performed four times. 

Every vertex is in a rotation set of four elements, so there are two disjoint vertex rotation sets. Similarly, 

the edges are in rotation sets of four elements, so there are three 

disjoint edge rotation sets. For example, the rotation sets of YGR will 

be as follows: 

{1, 8, 3, 6} {2, 5, 4, 7} 

{9, 20, 11, 18} {10, 17, 12, 19} {13, 16, 15, 14} 

3.1.8 Type RGW ∼ ((13)(24), 1) 

RGW ∼ ((13)(24), 1)  RBY ∼ ((12)(34), 1)  OBW ∼ ((14)(23), 1) 

These take our cube and reflect it across a horizontal axis. Alternatively, it can be considered as rotating 

the cube by 180° on a flat surface, then inverting the cube: This latter perspective is informed by the 

fact that RGW = OGY ∘ OBY and the fact that OBY ∼ ((13)(24), 0) is a rotation of the cube by 180° on 

a flat surface. Each has their own color map; for example, the color map of RGW will be: 

R ↦ R G ↦ B W ↦ W O ↦ O B ↦ G Y ↦ Y 

These elements will generate the identity when performed on a Rubik’s cube two times. 

 



Every vertex is in a rotation set of two elements, so there are four rotation sets. Meanwhile, the edges 

along the axis of the reflection remain in place while the other edges 

are in rotation groups of size 2. Hence, there are four 1-element 

rotation sets and four 2-element rotation sets. Therefore, the rotation 

set of RGW looks like: 

{1, 5} {2, 6} {3, 7} {4, 8} 

{9, 17} {10, 18} {11, 19} {12, 20} {13} {14} {15} {16} 

3.1.9 Type GYO ∼ ((234), 1) 

GYO ∼ ((234), 1)  WOB ∼ ((134), 1)  BWO ∼ ((124), 1)  WRG ∼ ((123), 1) 

YOG ∼ ((243), 1)  GWR ∼ ((143), 1)  YRB ∼ ((142), 1)  BYR ∼ ((132), 1) 

These invert the Rubik’s cube and then rotate it 120° about a vertex. Ultimately, this will “cycle” the 

colors in a zig-zag around the cube. The rotation can be either clockwise or counterclockwise rotation: 

GYO ∼ ((234), 1) is made with a clockwise rotation, and YOG ∼ ((243), 1) is made with a 

counterclockwise rotation. Each has their own color map; for example, the color map of GYO will be: 

G ↦ R Y ↦ B O ↦ W B ↦ O W ↦ G R ↦ Y 

These elements come in pairs: for example, if we apply GYO on the cube five times, the result will be 

YOG; alternatively, we can see that YOG ∘ GYO is the identity symmetry. Additionally, each will generate 

two symmetries of type BWR ∼ ((234), 0), the inversion symmetry OGY ∼ (( ), 1), and the identity 

element RGB ∼ (( ), 0). For GYO, the two elements of type BWR ∼ ((234), 0) are GYO2 = WRB ∼

((243), 0) and GYO4 = BWR ∼ ((234), 0). 

When cycling the colors of the cube, two vertices remain in place while the remaining six vertices form 

one rotation set. The three edges near either of the one-element 

rotation set vertices form a rotation set, and the remaining six edges 

form another rotation set. For example, the rotation sets for GYO will 

be: 

{1} {2, 3, 4, 8, 5, 6} {7} 

{9, 12, 16} {10, 11, 15, 20, 17, 13} {14, 19, 18} 

3.1.10 Type GOW ∼ ((12), 1) 

GOW ∼ ((12), 1)  YBO ∼ ((13), 1)  RYG ∼ ((14), 1) 

RWB ∼ ((23), 1)  WBR ∼ ((24), 1)  BRW ∼ ((34), 1) 

These reflect the cube across a plane that divides the cube into two triangular prisms. In other words, 

they fix two opposite colors, then swap the remaining colors in adjacent pairs. Each has their own color 

map; for example, the color map of GOW will be: 

G ↦ R O ↦ B W ↦ W B ↦ O R ↦ G Y ↦ Y 

 

 



If we apply any of these rotations on a cube twice, we will end up with the identity element RGB ∼

(( ), 0). 

The plane of reflection goes through two edges and four vertices; these will all be in rotation sets of size 

1. The remaining vertices and edges are in rotation sets of 2 elements. 

For example, the rotation sets of GOW will be: 

{1, 8} {2, 7} {3} {4} {5} {6} 

{9, 19} {10, 14} {11} {12, 15} {13, 18} {16, 20} {17} 

 

 



4 Get Excited! 
Consider the hypothetical cube to the right. Intuitively, we know that it 

can be rotated 90° and maintain its pattern: more specifically, it 

displays the 90° rotation symmetry WBO. If we let 𝜎 = WBO and let 𝑔 

represent the hypothetical cube, it follows that 𝜎(𝑔) = 𝑔. Notably, we 

are using 𝜎 as a function on 𝑔. While clearly 𝑔 ∉ 𝔾, the idea is to find a 

way to transfer this idea to 𝑔 ∈ 𝔾. 

We’ll start this idea with the 𝜎(𝑔) side. Our template will be for 𝜎 =

WBO and 𝑔 = 𝑢. When we consider 𝜎(𝑢), we first apply the 

permutation 𝑢 onto the Rubik’s cube, then rotate the Rubik’s cube 

according to WBO. This results in the diagram to the right: 

We can see that 𝑢 and 𝜎(𝑢) have the same pattern, but they have 

different colors. This is in opposition to our opening example where 

𝜎(𝑔) = 𝑔 were the same: there was no color difference. To rectify this, we can invent a “color map” 

that repaints the colors of the cube with different colors. Letting this be 𝜏𝜎 , we then have 𝜎(𝑔) =

𝜏𝜎(𝑢). 

We need to make this notion of a “color map” more rigorous. The following parts are designed to 

specify how this concept works, a better way of writing these concepts, and to ultimately design a plan 

for concluding this project. 

4.1 Rewriting 𝜎(𝑔) 
When we perform a symmetry 𝜎 ∈ 𝕊 on our cube, we are essentially permuting the cubelets around the 

cube. This would suggest some way of considering 𝜎 as an element of 𝔾, but this is not quite right: for 

example, OGY causes every corner cubelet to invert, which deforms them to the point where we cannot 

physically rotate our cube in a way to make it work. One case of this is the Red-Blue-White corner. The 

normal Rubik’s cube has these colors in counterclockwise order on the cubelet. After applying OGY, 

though, this becomes a clockwise order; there isn’t a way to apply some element of 𝔾 to get this to 

occur normally. 

This is why we need to introduce a broader set than 𝔾 in order to house all 𝜎 ∈ 𝕊. We can define 𝔾! to 

be this set. We want this set to allow for permuting any cubelets in any logical way (i.e. we cannot move 

vertex 1 to the position of edge 9). This means that permutations that are not possible in 𝔾, such as 

{1, 2}, will become possible in 𝔾!. Hence, the permutations of the cubelets can be represented by any 

element of 𝑆𝒜𝑆ℬ . 

We also want vertices and edges to be invertible, such as the example provided with the Red-Blue-

White corner. For vertices, this means that each vertex position will be associated with an element of 𝑆3 

instead of an element of ℤ3; that way, we can essentially permute the colors of any cubelet position in 

any way we want. We will define 1 to represent the side with an “X,” then 2 and 3 to be the remaining 

sides in counterclockwise order. The coordinates of 𝑆3
8 list each vertex position in order; thus if this 

looks like (𝛿1, 𝛿2, ⋯ , 𝛿8) for some 𝛿𝑖 ∈ 𝑆3, then 𝛿1 represents vertex position 1, and 𝛿2 represents 

vertex position 2, and so forth. 

 

 



Meanwhile, edge positions would technically be associated with 𝑆2 for a similar reason; however, we 

can stick with ℤ2 since 𝑆2 ≅ ℤ2. We shall let 0 ∈ ℤ2 represent that the edge in the edge position has not 

been flipped, and 1 ∈ ℤ2 represent that the edge in the edge position has been flipped. We also list 

these edge positions in order in ℤ2
12: if this looks like (𝛿9, 𝛿10, ⋯ , 𝛿20) for some 𝛿𝑖 ∈ ℤ2, then 𝛿9 

represents the state of edge position 9, and 𝛿10 represents the state of edge position 10, and so forth. 

We then have an isomorphism: 

Φ: 𝔾! → 𝑆𝒜𝑆ℬ ⋉𝜌 (𝑆3
8 × ℤ2

12) 

Where 𝜌 is the action of permuting the coordinates of 𝑆3
8 × ℤ2

12 by 𝑆𝒜𝑆ℬ  in the intended way: 

(∀𝜎 ∈ 𝑆𝒜𝑆ℬ) (∀(𝛿𝑖)𝑖=1
20 ∈ (𝑆3

20 × ℤ2
12))   𝜌(𝜎)((𝛿𝑖)𝑖=1

20 ) = (𝛿𝜎(𝑖))
𝑖=1

20
 

This will operate in a similar way to how 𝜙 operated in Chapter 2. We can consider 𝔾 as a subgroup of 

𝔾! by the injective map (Φ−1 ∘ 𝜋 ∘ 𝜏 ∘ 𝜙): 𝔾 → 𝔾!, where 𝜋: (𝐴20 ∩ 𝑆𝒜 𝑆ℬ) ⋉𝜌 (𝑆3
7 × {( )} × ℤ2

11 ×

{0}) → 𝑆𝒜𝑆ℬ ⋉𝜌 (𝑆3
8 × ℤ2

12) is the homomorphism created by projection and 𝜏 ≔ (𝐴20 ∩

𝑆𝒜𝑆ℬ) ⋉𝜌 (𝑆3
7 × ℤ2

11) → (𝐴20 ∩ 𝑆𝒜𝑆ℬ) ⋉𝜌 (𝑆3
7 × {( )} × ℤ2

11 × {0}) is a clear isomorphism. From now 

on, we will regard 𝔾 ⊆ 𝔾!. 

We shall define 𝜋ℍ: 𝑆𝒜𝑆ℬ ⋉𝜌 (𝑆3
8 × ℤ2

12) → 𝑆𝒜 𝑆ℬ and 𝜋𝕂: 𝑆𝒜 𝑆ℬ ⋉𝜌 (𝑆3
8 × ℤ2

12) → (𝑆3
8 × ℤ2

12) to be the 

projection functions. We then define: 

ℍ! = { ℎ ∈ 𝑆𝒜𝑆ℬ ⋉𝜌 (𝑆3
8 × ℤ2

12) ∣
∣ 𝜋𝕂(ℎ) = ((( ), ⋯ , ( )); (0, ⋯ ,0)) } 

𝕂! ≔ { ℎ ∈ 𝑆𝒜𝑆ℬ ⋉𝜌 (𝑆3
8 × ℤ2

12) ∣∣ 𝜋ℍ(ℎ) = ( ) } 

to be the “kernels” of 𝜋𝕂 and 𝜋ℍ respectively. 

4.1.1 Are Projections Homomorphisms? 
The prior discussion begs the question, are 𝜋ℍ and 𝜋𝕂 homomorphisms? While 𝜋ℍ is a group 

homomorphism, 𝜋𝕂 is not a group homomorphism. 

Let 𝛾, 𝛿 ∈ 𝑆𝒜𝑆ℬ ⋉𝜌 (𝑆3
8 × ℤ2

12) be arbitrary. Then there exist some 𝑎, ℎ ∈ 𝑆𝒜𝑆ℬ  and some 𝑏, 𝑘 ∈

(𝑆2
8 × ℤ2

12) such that 𝛾 = (𝑎, 𝑏) and 𝛿 = (ℎ, 𝑘). We can note that 𝛾𝛿 = (𝑎, 𝑏) ⋅ (ℎ, 𝑘) =

(𝑎ℎ, 𝜌(ℎ)(𝑏) ⋅ 𝑘). Then 𝜋ℍ(𝛾𝛿) = 𝑎ℎ, which happens to be equal to 𝜋ℍ(𝛾) ⋅ 𝜋ℍ(𝛿) = 𝑎 ⋅ ℎ. Therefore 

𝜋ℍ preserves the group operation of 𝔾!, so it is a homomorphism. ◩ 

Meanwhile we can let 𝛾 and 𝛿 be defined so that 𝑎 = ( ), ℎ = (9, 10), 𝑏 = ((( ), ⋯ , ( )); (1, 0, ⋯ ,0)), 

and 𝑘 = ((( ), ⋯ , ( )); (0, ⋯ ,0)). Then it follows that: 

𝜋ℍ(𝛾𝛿) = 𝜌(ℎ)(𝑏) ⋅ 𝑘   𝜋ℍ(𝛾) = 𝑏   𝜋ℍ(𝛿) = 𝑘 

But 𝜌(ℎ)(𝑏) = ((( ), ⋯ , ( )); (0, 1, 0, ⋯ ,0)) is not equal to 𝑏, so we can see that 𝜋ℍ(𝛾𝛿) ≠ 𝜋ℍ(𝛾) ⋅

𝜋ℍ(𝛿). Then 𝜋𝕂 cannot be a homomorphism. ∎ 

4.1.2 Definition of Homomorphism Φℍ and Lack of Homomorphism Φ𝕂 
We then define Φℍ: 𝔾! →  𝑆𝒜𝑆ℬ  via Φℍ ≔ 𝜋ℍ ∘ Φ; we can also define Φ𝕂 ≔ 𝜋𝕂 ∘ Φ. The prior 

theorem showed that Φℍ will be a homomorphism, and it suggests that Φ𝕂 is not a homomorphism. 



We can actually show that it is not: with Φ an isomorphism, we can find some Φ−1(𝛾) and Φ−1(𝛿) that 

will lead to the conclusion that Φ𝕂(𝛾𝛿) ≠ Φ𝕂(𝛾) ⋅ Φℍ(𝛿). 

We also receive the alternative definitions ℍ! ≔ { ℎ ∈ 𝔾! ∣
∣ Φ𝕂(ℎ) = ((( ), ⋯ , ( )); (0, ⋯ ,0)) } and 

𝕂! ≔ ker Φℍ, where only the second is an actual kernel. 

4.1.3 Defining 𝜓: 𝕊 → 𝔾! an Injection 
With these changes, we can then define the injection 𝜓: 𝕊 → 𝔾! in the obvious way. This will allow us to 

consider each 𝜎 ∈ 𝕊 as an element of 𝔾!. Instead of writing 𝜓(𝜎), we will write 𝜎 unless this causes 

clarity to suffer. This allows us to write 𝜎(𝑔) as 𝜎𝑔, which is a product of elements in 𝑆𝒜𝑆ℬ ⋉𝜌 (𝑆3
8 ×

ℤ2
12). 

Is this well-defined? Essentially, the elements of 𝔾! are any way to move the cubelets of a Rubik’s cube 

around, and each 𝜎 ∈ 𝕊 can be considered as a way to move the cubelets around: we just rotate them in 

a way that makes it look like the Rubik’s cube is rotating. For example, the WBO symmetry can be 

considered as an element of 𝔾! that moves the Red-Blue-White vertex to the position of the Red-Yellow-

Blue vertex, among other things. This will then allow us to write: 

WBO = 𝜎 ∼ (

{1, 2, 3, 4}{5, 6, 7, 8}{9, 10, 11, 12}{13, 14, 15, 16}{17, 18, 19, 20}

(( ),  ( ),  ( ),  ( ),  (123), (132), (123), (132))

(0,  0,  0,  0,  0,  0,  0,  0,  0,  0,  0,  0)

) 

Note that the first coordinate is the rotation set for WBO mentioned in the prior paragraph; while the 

rotation sets were used to introduce these symmetries before, they become important in this chapter. 

4.1.4 Finding The Element of 𝑆𝒜 𝑆ℬ ⋉𝜌 (𝑆3
8 × ℤ2

12) 

Determining the value of Φ(𝜎) for any 𝜎 ∈ 𝕊 is a lengthy process. Starting with a blank Rubik’s cube, we 

have to manually check the following steps: 

• Determining 𝑆𝒜𝑆ℬ  

o When we look at 𝜎, we need to look at how applying 𝜎 to a cube moves the cubelets 

around. 

o By tracking where each cubelet moves to, we can create this coordinate by converting 

this data into symmetry group notation. 

o We know that vertex cubelets cannot be moved to edge cubelet positions and vice 

versa. As long as each cubelet is numbered properly, we are then guaranteed to have an 

element of 𝑆𝒜𝑆ℬ  

• Determining 𝑆3
8 

o For each of the eight vertex positions, we need to see how the “X” marker of the cubelet 

relates to the “X” marker of the position. If these are in the same place, then 1 → 1. If 

the cubelet’s “X” is counterclockwise of the position’s “X,” we have 1 → 2. Otherwise 

1 → 3 since the “X” of the cubelet is clockwise from the position’s “X.” 

o We then repeat this for sides 2 and 3 for the vertex and position. 

o We then take these data 1 → 𝐴, 2 → 𝐵, and 3 → 𝐶 and write it as an element of 𝑆3. 

o This is repeated for the other vertex positions, and we list them in order starting with 

vertex position 1 and ending with vertex position 8. 



• Determining ℤ2
12 

o This step is nearly identical to the prior step. Instead of tracking where each “X” goes, 

we track whether the “O” of the cubelet in each position matches with the “O” of the 

position. If so, this cubelet position has a 0. Otherwise, it will be a 1. 

o We then list the coordinates in order, starting with edge position 9 and ending with 

edge position 20. 

During this process, it may be useful to have a copy of the diagonals and XO notation of the Rubik’s Cube 

on-hand, along with the numbers of each cubelet. The following is a combination of both that can be 

used for the checking process. 

4.2 Rewriting 𝜏𝜎(𝑔) 
We know that 𝜏𝜎  is a color map that recolors the Rubik’s cube so that 𝜎(𝑔) = 𝜏𝜎(𝑔) for some 𝑔 ∈ 𝔾. 

We can note that the center cubelets of the Rubik’s cube are unaffected by 𝑔, yet 𝜎 does affect these 

center cubelets. In order for this equality to be true, we need for 𝜏𝑔  to recolor these center cubelets in 

the same way. But this will fully determine the color map of 𝜏𝑔  since each color has one center cubelet, 

and the color map must be consistent across the whole cube. 

The thing is that we can apply the color map at any time: since 𝑔 is defined by moving cubelets around 

to specific positions, we could apply the color map before applying 𝑔 onto the cube. Since 𝑔 is not based 

on the colors of each cubelet but rather their positions, the recolored cubelets will be moved to the 

correct position regardless. This suggests that we can rewrite 𝜏𝜎(𝑔) as 𝑔 ⋅ 𝜏𝜎(𝑒), where 𝜏𝜎(𝑒) is just 

applying the color map to the Rubik’s cube prior to permuting the cubelets with 𝑔. 

With this in mind, consider 𝜎(𝑒). We can see that 𝜎 will permute the sides of the cube in some manner. 

For example, WBO moves the Red side to the position of the Yellow side. This will actually define a color 

map, which we can base this color map on how the center cubelets are moved around. This then implies 

that 𝜎(𝑒) should be the same as 𝜏𝜎(𝑒), since 𝜏𝜎  is known to be the color map that is defined by these 

center cubelets. As a result: 

𝜎𝑔 = 𝜎(𝑔) = 𝜏𝜎(𝑔) = 𝑔 ⋅ 𝜏𝜎(𝑒) = 𝑔 ⋅ 𝜎(𝑒) = 𝑔𝜎𝑒 = 𝑔𝜎 

In summary, we have that 𝜎(𝑔) = 𝜏𝜎(𝑔) is equivalent to 𝜎𝑔 = 𝑔𝜎, in the notation of the prior 

subsection. We can also rewrite this as 𝜎𝑔𝜎−1 = 𝑔. 

4.3 Major Consequence 
For any 𝜎 ∈ 𝕊 and any 𝑔 ∈ 𝔾 that “displays” 𝜎, the prior section argued that the desired property is for 

𝜎𝑔𝜎−1 = 𝑔 as elements of 𝔾!. We will let this be the requirement that we are looking for in order to say 

that some 𝑔 ∈ 𝔾 will “display” some symmetry 𝜎 ∈ 𝕊. 

  



4.4 The Symmetries for a Permutation of 𝔾 is a Group 
Let 𝑔 ∈ 𝔾 be fixed and let 𝕊𝑔 be the subset of 𝕊 consisting of all the symmetries that 𝑔 displays. It 

follows that 𝕊𝑔 is a subgroup. 

We can prove this by using the One Step Subgroup Test. Let 𝜎 ∈ 𝕊𝑔 and 𝜏 ∈ 𝑆𝑔  be two symmetries that 

𝑔 displays. We then have that 𝜎𝑔𝜎−1 = 𝑔 and 𝜏𝑔𝜏−1 = 𝑔. On the latter, we can multiply both sides by 

𝜏−1 on the left and 𝜏 on the right to show that 𝑔 = 𝜏−1𝑔𝜏. We can then combine these together to 

show: 

(𝜎𝜏−1)𝑔(𝜎𝜏−1)−1 = 𝜎(𝜏−1𝑔𝜏)𝜎−1 = 𝜎𝑔𝜎−1 = 𝑔 

As a result, 𝑔 will also display 𝜎𝜏−1; in other words, 𝜎𝜏−1 ∈ 𝕊𝑔. Therefore, by the One-Step Subgroup 

Test we know that 𝕊𝑔 is a subgroup. ∎ 

4.4.1 Plan of Action 
Because the set of displayed symmetries for any 𝑔 ∈ 𝔾 is a subgroup of 𝕊, we can categorize the 

elements of 𝑔 ∈ 𝔾 based on which ones have the same subgroup 𝕊𝑔 ⊆ 𝕊. So if we can find each 

possible subgroup of 𝕊, we can find all the possible elements of 𝔾 for each. 

But how should we go about finding these subgroups, and how do we find the elements of 𝔾 that are 

compatible with each subgroup? 

Each question will require a chapter to answer it. For the former, we need to find all the subgroups of 𝕊: 

the methodology of which is explained in Chapter 5. The latter will rely on this result to find all the 

elements of 𝔾 that match each symmetry group. Our plan is listed in this final sub-section: 

4.4.2 Plan In List Form 
So overall, our plan now looks like this: 

1. We find all possible subgroups 𝑀 ⊆ 𝕊. 

a. In particular, we will find some 𝜎𝑖 ∈ 𝕊 such that 𝑀 = ⟨𝜎1, ⋯ , 𝜎𝑛⟩ 

b. To help streamline the proof, we want to choose representatives that “overlap” with 

other subgroups, allowing for us to perform less calculations. 

2. For each 𝑀, we will use the ⟨𝜎𝑖⟩ presentation to find its commutators in 𝔾. 

a. We will show that we can simplify this process by breaking each 𝑔 ∈ 𝔾 into its ℍ and 𝕂 

parts, essentially allowing us to “mix and match” parts together. 

b. We may need to consider only a subset of all the possible patterns since otherwise there 

may be too many to consider. 

3. Once these steps are done, we need to write each into a presentable form. 

a. I plan to make colored diagrams, such as those shown previously when discussing the 

symmetry classes in Chapter 3, for example. 

Time to get things on the road! 

 



5 Super Special Symmetry Subgroups of 𝕊 
In this chapter, we will be looking at the subgroups of 𝕊. We will start with 𝑆4 since 𝕊 ≅ 𝑆4 × ℤ2, and we 

will extend this to subgroups of 𝑆4 × ℤ2. These then correspond to the subgroups of 𝕊 in a clear way. 

5.1 Subgroups of 𝑆4 
It is difficult to rigorously go through and determine with proof all the different subgroups of 𝑆4: without 

advanced tools, we would have to manually find all of them. Rather, we will appeal to prior results2 for 

the subgroups of 𝑆4: 

𝑆4 𝐴4 ⟨(1234), (13)⟩ ⟨(1243), (14)⟩ ⟨(1324), (12)⟩ 

⟨(123), (12)⟩ ⟨(124), (12)⟩ ⟨(134), (13)⟩ ⟨(234), (23)⟩ 

⟨(1234)⟩ ⟨(1243)⟩ ⟨(1324)⟩ ⟨(13), (24)⟩ ⟨(14), (23)⟩ ⟨(12), (34)⟩ 

⟨(12)(34), (13)(24)⟩ ⟨(123)⟩ ⟨(124)⟩ ⟨(134)⟩ ⟨(234)⟩ 

⟨(13)(24)⟩ ⟨(14)(23)⟩ ⟨(12)(34)⟩ 

⟨(12)⟩ ⟨(13)⟩ ⟨(23)⟩ ⟨(14)⟩ ⟨(24)⟩ ⟨(34)⟩ ⟨( )⟩ 

5.1.1 Subgroup Representatives 
We will focus on a few of these subgroups as representatives and extrapolate the others based off of 

these representatives. We can start with the following eleven subgroup representatives: 

𝑆4 𝐴4 
⟨(1234), (13)⟩ ⟨(234), (23)⟩ 

⟨(1234)⟩ ⟨(12), (34)⟩ 
⟨(12)(34), (13)(24)⟩ ⟨(234)⟩ 

⟨(13)(24)⟩ ⟨(12)⟩ 
⟨( )⟩ 

 
We can substitute for equivalent representations for some of the groups above: 

𝑆4  ⟶  ⟨(1234), (12)⟩ 

𝐴4  ⟶  ⟨(234), (13)(24)⟩ 

⟨(1234), (13)⟩  ⟶  ⟨(1234), (24)⟩ 

⟨(234), (23)⟩  ⟶  ⟨(234), (24)⟩ 

⟨(13), (24)⟩  ⟶  ⟨(13), (13)(24)⟩ 

This allows us to rewrite the eleven representative subgroups as follows: 

⟨(1234), (12)⟩ ⟨(234), (13)(24)⟩ 
⟨(1234), (24)⟩ ⟨(234), (24)⟩ 

 
2 Here are some links: 
http://faculty.smcm.edu/sgoldstine/Math321f09/S4subgroups.pdf 
http://www.math.hawaii.edu/~williamdemeo/groups/S4Subgroups.pdf  

http://faculty.smcm.edu/sgoldstine/Math321f09/S4subgroups.pdf
http://www.math.hawaii.edu/~williamdemeo/groups/S4Subgroups.pdf


⟨(1234)⟩ ⟨(12), (12)(34)⟩ 
⟨(12)(34), (13)(24)⟩ ⟨(234)⟩ 

⟨(13)(24)⟩ ⟨(12)⟩ 
⟨( )⟩ 

 
The reasoning behind this is that it allows us to represent all of the different subgroups with just a 

handful of elements in 𝑆4: 

( ) (12) (24) (234) (12)(34) (13)(24) (1234) 

Additionally, each subgroup is generated by at most two elements. We will use these seven elements to 

create representatives for the subgroups of 𝑆4 × ℤ2, and we will be able to expand each representative 

based on how these seven representatives can be used to expand the representative subgroups of 𝑆4, as 

provided in the following section. 

5.1.2 List of Subgroups Relating to 𝑆4 Representatives 
Since we changed the way in which we wrote some of the subgroup representatives, we should update 

the other subgroups to match. 

• Because ⟨(1234), (13)⟩ → ⟨(1234), (24)⟩, we then update the following subgroups as well: 
⟨(1243), (14)⟩ → ⟨(1243), (23)⟩  ⟨(1324), (12)⟩ → ⟨(1324), (34)⟩ 

 

• Because ⟨(234), (23)⟩ → ⟨(234), (24)⟩, we then update the following subgroups as well: 
⟨(123), (12)⟩ → ⟨(123), (23)⟩  ⟨(124), (12)⟩ → ⟨(124), (24)⟩ 

⟨(134), (13)⟩ → ⟨(134), (34)⟩ 

 

• Because ⟨(12), (34)⟩ → ⟨(12), (12)(34)⟩, we then update the following subgroups as well: 
⟨(13), (24)⟩ → ⟨(13), (13)(24)⟩  ⟨(14), (23)⟩ → ⟨(14), (14)(23)⟩ 

Then the following list contains all subgroups, categorized by their representatives: 

⟨(1234), (12)⟩ ⟨(234), (13)(24)⟩ 
⟨(1234), (24)⟩  ⟨(1243), (23)⟩ 

⟨(1324), (34)⟩ 
⟨(123), (23)⟩  ⟨(124), (24)⟩ 
⟨(134), (34)⟩  ⟨(234), (24)⟩ 

⟨(1234)⟩  ⟨(1243)⟩  ⟨(1324)⟩ 
⟨(13), (13)(24)⟩  ⟨(14), (14)(23)⟩ 

⟨(12), (12)(34)⟩ 
⟨(12)(34), (13)(24)⟩ ⟨(123)⟩ ⟨(124)⟩ ⟨(134)⟩ ⟨(234)⟩ 

⟨(13)(24)⟩ ⟨(14)(23)⟩ ⟨(12)(34)⟩ ⟨(12)⟩ ⟨(13)⟩ ⟨(23)⟩ ⟨(14)⟩ ⟨(24)⟩ ⟨(34)⟩ 
⟨( )⟩ 

 

5.2 Generators of a Subgroup Derived with 𝜋 
Suppose 𝐺 is a group, 𝑝 is a prime, and 𝜋: 𝐺 × ℤ𝑝 → 𝐺 is the projection homomorphism. Let 𝐻 be a 

subgroup of 𝐺 × ℤ𝑝 and let 𝐾 = 𝜋(𝐻) be its image: this is known to be a subgroup of 𝐺 because 𝜋 is a 

homomorphism. 

If {𝜋(𝑎𝑖)}𝑖∈𝐼 are generators of 𝐾 for some index set 𝐼 (as in 𝐾 = ⟨ 𝜋(𝑎𝑖) ∣∣ 𝑖 ∈ 𝐼 ⟩) and (𝑒𝐺 , 1) ∉ 𝐻, then 

𝐻 = ⟨ 𝑎𝑖 ∣∣ 𝑖 ∈ 𝐼 ⟩ will be generated by {𝑎𝑖}𝑖∈𝐼. 



Suppose that the conditions of 𝐺, 𝑝, and 𝜋 are as above, and define 𝐻 to be any subgroup of 𝐺 × ℤ𝑝 not 

containing (𝑒𝐺 , 1). Noting that 𝑧𝑝−1 = 1 for all 𝑧 ∈ ℤ𝑝
×, it follows that the sum 𝑧 + ⋯ + 𝑧 consisting of 

𝑧𝑝−2 copies of 𝑧 (where 𝑧𝑝−2 is interpreted as an integer in ℤ), it follows that (𝑒𝐺 , 𝑧)𝑧𝑝−2
= (𝑒𝐺 , 1). 

Because (𝑒𝐺 , 1) ∉ 𝐻, it follows that (𝑒𝐺 , 𝑧) ∉ 𝐻 for any 𝑧 ∈ ℤ𝑝 ∖ {0}. 

Let 𝐾 ≔ 𝜋(𝐻) and consider the restricted map 𝜋|𝐻
𝐾 : 𝐻 → 𝐾. Now suppose that 𝜋|𝐻

𝐾(𝑎1) = 𝜋|𝐻
𝐾(𝑎2) for 

any 𝑎1 = (𝑔1, 𝑧1) and 𝑎2 = (𝑔2, 𝑧2) in 𝐻. This then implies that 𝜋(𝑎1) = 𝑔1 must equal 𝜋(𝑎2) = 𝑔2; we 

can then conclude that 𝑎1𝑎2
−1 = (𝑔1𝑔2

−1, 𝑧1𝑧2
−1) will equal (𝑒𝐺 , 𝑧) for 𝑧 ≔ 𝑧1𝑧2

−1 in ℤ𝑝. But we 

previously proved that this is impossible for 𝑧 ∈ ℤ𝑝 ∖ {0}; we can then conclude that 𝑧 = 𝑧1𝑧2
−1 must be 

0 ∈ ℤ𝑝, so 𝑎1𝑎2
−1 = (𝑒𝑔 , 0). Since (𝑒𝐺 , 0) is the identity of 𝐺 × ℤ𝑝, it follows that 𝑎1 = 𝑎2 after 

multiplying both sides by 𝑎2 on the right. Because 𝑎1 and 𝑎2 were any two elements of 𝐻 such that 

𝜋|𝐻
𝐾(𝑎1) = 𝜋|𝐻

𝐾(𝑎2), this then implies that 𝜋|𝐻
𝐾  will be one-to-one. 

Let 𝐼 be an index set and let {𝑎𝑖}𝑖∈𝐼 be a set of elements in 𝐺 × ℤ𝑝 such that {𝜋(𝑎𝑖)}𝑖∈𝐼 generates the 

group 𝐾 ≔ 𝜋(𝐻)—namely that 𝐾 = ⟨ 𝜋(𝑎𝑖) ∣∣ 𝑖 ∈ 𝐼 ⟩. If 𝑏 ∈ 𝐻, it then follows that 𝜋(𝑏) ∈ 𝐾, so there 

exists some indexes 1 ≤ 𝑛𝑗 ≤ 𝑁 such that 𝜋(𝑏) = ∏ (𝜋 (𝑎𝑛𝑗
))𝑁

𝑗=1 , where 𝑁 ∈ ℕ is some upper bound. 

(An element of a group cannot be equal to a product of an infinite number of elements.) Using the fact 

that 𝜋 is a homomorphism, it follows that 𝜋(𝑏) = 𝜋 (∏ 𝑎𝑛𝑗𝑗∈𝐽 ). Because both 𝑏 and ∏ 𝑎𝑛𝑗𝑗∈𝐽  are 

elements in 𝐻, we can restrict 𝜋 to 𝜋|𝐻
𝐾  to find that 𝜋|𝐻

𝐾(𝑏) = 𝜋|𝐻
𝐾 (∏ 𝑎𝑛𝑗𝑗∈𝐽 ). In the prior paragraph, we 

showed that 𝜋|𝐻
𝐾  is one-to-one, so we can conclude that 𝑏 = ∏ 𝑎𝑛𝑗𝑗∈𝐽 . This implies that 𝑏 ∈ ⟨ 𝑎𝑖 ∣∣ 𝑖 ∈ 𝐼 ⟩ 

for all 𝑏 ∈ 𝐻. Since 𝑎𝑖 ∈ 𝐻 for all 𝑖 ∈ 𝐼, we can then conclude that 𝐻 = ⟨ 𝑎𝑖 ∣∣ 𝑖 ∈ 𝐼 ⟩. ∎ 

5.3 Subgroup Representatives of 𝑆4 × ℤ2 
The subgroups representatives of 𝑆4 × ℤ2 are as follows, where each 𝜙, 𝜓 ∈ ℤ2 are independent of each 

other and produces a new subgroup representative for each value: 

⟨((1234), 0); ((12), 0); (( ), 1)⟩ ⟨((234), 0); ((13)(24), 0); (( ), 1)⟩ 

⟨((1234), 0); ((24), 0); (( ), 1)⟩ ⟨((234), 0); ((24), 0); (( ), 1)⟩ 

⟨((1234), 0); (( ), 1)⟩ ⟨((12), 0); ((12)(34), 0); (( ), 1)⟩ 

⟨((12)(34), 0); ((13)(24), 0); (( ), 1)⟩ ⟨((234), 0); (( ), 1)⟩ 

⟨((13)(24), 0); (( ), 1)⟩ ⟨((12), 0); (( ), 1)⟩ 

⟨(( ), 1)⟩ 

⟨((1234), 𝜙); ((12), 0)⟩ ⟨((234), 0); ((13)(24), 0)⟩ 

⟨((1234), 𝜙); ((24), 𝜓)⟩ ⟨((234), 0); ((24), 𝜙)⟩ 

⟨((1234), 𝜙)⟩ ⟨((12), 𝜙); ((12)(34), 𝜓)⟩ 

⟨((12)(34), 𝜙); ((13)(24), 𝜓)⟩ ⟨((234), 0)⟩ 

⟨((13)(24), 𝜙)⟩ ⟨((12), 𝜙)⟩ 

⟨(( ), 0)⟩ 

 
We will start with the projection homomorphism 𝜋: 𝑆4 × ℤ2 → 𝑆4. We can observe that ker 𝜋 =

⟨(( ), 1)⟩. We will let 𝐻 be an arbitrary subgroup of 𝑆4 × ℤ2 and define 𝐾 ≔ 𝜋(𝐻). 



Suppose (( ), 1) ∈ 𝐻. We can then conclude that ker 𝜋 = ⟨(( ), 1)⟩ will be in 𝐻, so by the Lattice 

Isomorphism Theorem, we then have that 𝐻 will have the same index as 𝐾: namely, [𝑆4 × ℤ2: 𝐻] =

[𝑆4: 𝐾]. This then implies that 
|𝑆4×ℤ2|

|𝐻|
=

|𝑆4|

|𝐾|
, which will then show that 2|𝐾| = |𝐻|. Recalling that 𝜋 is a 

homomorphism that maps 𝐻 onto 𝐾 and that |ker 𝜋| = 2, we can conclude that 𝜋 will be a two-to-one 

map. This will then require for 𝐻 = { (𝑘, 0), (𝑘, 1) ∣ 𝑘 ∈ 𝐾 }. In other words, if 𝐾 = ⟨𝑘1, ⋯ , 𝑘𝑛⟩, it would 

follow that 𝐻 = ⟨(𝑘1, 0), ⋯ , (𝑘𝑛 , 0), (( ), 1)⟩. If we use the modified subgroup representatives of 𝑆4, we 

then get the first set of subgroup representatives provided above. 

Otherwise (( ), 1) ∉ 𝐻. We can then apply Section 5.2: for 𝑘𝑖  such that 𝐾 = ⟨𝑘1, ⋯ , 𝑘𝑛⟩, we define the 

values ℎ𝑖 ≔ (𝑘𝑖 , 𝑧𝑖) where 𝑧𝑖 ∈ ℤ2 are unknown. We then observe that 𝐻 = ⟨ℎ1, ⋯ , ℎ𝑛⟩. For this, we 

will use the modified forms of the subgroup representatives of 𝑆4: 

⟨(1234), (12)⟩ ⟨(234), (13)(24)⟩ 
⟨(1234), (24)⟩ ⟨(234), (24)⟩ 

⟨(1234)⟩ ⟨(12), (12)(34)⟩ 
⟨(12)(34), (13)(24)⟩ ⟨(234)⟩ 

⟨(13)(24)⟩ ⟨(12)⟩ 
⟨( )⟩ 

 
We can manually check the cases for the subgroups 𝐾 generated by one element: with the exceptions of 
⟨(234)⟩ and ⟨( )⟩, we can set 𝑧1 = 1 without issue. This addresses the following subgroups: 

⟨(1234)⟩ ⟨(234)⟩ ⟨(13)(24)⟩ ⟨(12)⟩ ⟨( )⟩ 

If 𝑘𝑖 ∈ 𝐾 has an odd order (i.e. |𝑘𝑖| is an odd integer), then its corresponding 𝑧𝑖  must be 0 since 

(𝑘𝑖 , 𝑧𝑖)|𝑘𝑖| = (𝑒𝐺 , |𝑘𝑖|𝑧𝑖) is in 𝐻, and we cannot have (𝑒𝐺 , 1) ∈ 𝐻. This can be used twice to show that 

the only option for ⟨(234), (143)⟩ is for 𝑧1 = 𝑧2 = 0. (Note that (234) ⋅ (13)(24) = (143).) This is 

precisely the subgroup ⟨(234), (13)(24)⟩, so it follows that the corresponding 𝐻 must be 

⟨((234), 0); ((23)(24), 0)⟩. 

Meanwhile, suppose that 𝐾 = ⟨𝑘1, 𝑘2⟩ where 𝑘1 ∈ 𝐴4 and 𝑘2 ∉ 𝐴4. Set 𝑧1 = 0 and 𝑧2 = 1; if (ℎ, 𝑧) ∈ 𝐻, 

then it follows that ℎ = ∏ 𝑘𝑛𝑖

𝑡
𝑖=1  for some 𝑛𝑖 ∈ {1, 2}. Then 𝑧 = ∑ 𝑧𝑛𝑖

𝑡
𝑖=1  will be 0 iff there is an even 

number of copies of 𝑧2 in the sum, and 1 otherwise. Hence, ℎ = ∏ 𝑘𝑛𝑖

𝑡
𝑖=1  will contain an even number 

of copies of 𝑘2 iff 𝑧 = 0. If we set ℎ = ( ) ∈ 𝐴4, then ∏ 𝑘𝑛𝑖

𝑡
𝑖=1  must contain an even number of copies of 

𝑘2 since 𝑘2 ∉ 𝐴𝑛, so by the prior statements, we can conclude 𝑧 = 0. Thus, any time where 𝐾 =
⟨𝑘1, 𝑘2⟩, we can set 𝑧1 = 0 and 𝑧2 = 1 and have a valid group 𝐻 = ⟨(𝑘1, 0); (𝑘2 , 1)⟩. 

These two considerations allow us to consider most of the cases above: for example, let 𝐾 =
⟨(234), (24)⟩. We set 𝑘1 = (234) and 𝑘2 = (24). By the first point, we know that 𝑧1 = 0 since |𝑘1| =

3. Meanwhile, 𝑘2 ∉ 𝐴4, so the second point implies that we can set 𝑧2 = 1 without issue; we can also 

set 𝑧2 = 0 since then every element of 𝐻 has 0 in the second coordinate. We can then use these to 

address ⟨(1234), (12)⟩ = ⟨(1234), (234)⟩ and ⟨(234), (24)⟩. (Note that (12)(1234) = (234).) 

We will now address 𝐾 = ⟨(1234), (24)⟩. We can take 𝐻 = ⟨((1234), 𝑧1); ((24), 𝑧2)⟩ for some 𝑧1, 𝑧2 ∈

ℤ2 and let 𝑀 = ⟨((1234), 𝑧1)⟩ and 𝑁 = ⟨((24), 𝑧2)⟩. Note that �̅� = ⟨(1234)⟩ has four elements and is 

a subgroup of 𝐾, which has 8 elements. Then [𝐾: �̅�] = 2, so �̅� ⊴ 𝐾; this shows that 𝑘�̅�𝑘−1 = �̅� for all 



𝑘 ∈ 𝐾. Now let ℎ = (𝑘, 𝑧) be an arbitrary element of 𝐻; we can then see that ℎ𝑀ℎ−1 =

(𝑘�̅�𝑘−1, 𝑧 + 𝑧1 − 𝑧). Using the prior fact, we then have ℎ𝑀ℎ−1 = (�̅�, 𝑧1) = 𝑀, so it follows that 𝑀 ⊴

𝐻. Meanwhile, 𝑁 is a subgroup of 𝐻; we can then conclude that 𝑀𝑁 is a subgroup of 𝐻. But also 

((1234), 𝑧1) and ((24), 𝑧2) are in 𝑀𝑁, so we can conclude that 𝐻 ⊆ 𝑀𝑁. Thus, 𝐻 = 𝑀𝑁. We can then 

conclude that |𝐻| = |𝑀𝑁| =
|𝑀||𝑁|

|𝑀∩𝑁|
=

4⋅2

1
= 8. But because 𝐾 has 8 elements as well, this means that 𝐻 

“does not have enough room” to contain (( ), 1): recall that 𝜋(𝐻) = 𝐾, where 𝜋: 𝑆4 × ℤ2 → 𝑆4 is the 

projection homomorphism, and that (( ), 0) ∈ 𝐻. Therefore, = ⟨((1234), 𝑧1); ((24), 𝑧2)⟩ is a subgroup 

of 𝑆4 × ℤ2 regardless of 𝑧1, 𝑧2 ∈ ℤ2. 

The remaining groups to address are ⟨(12), (12)(34)⟩ and ⟨(12)(34), (13)(24)⟩. These can also be 

addressed manually: note that both are isomorphic to ℤ2 × ℤ2. (We can alternatively use the methods 

of the prior paragraph if we wanted to make this more rigorous.) We find that 𝑧1 and 𝑧2 can be either 0 

or 1 independently. This concludes all of the possible groups of 𝐾, so we then have addressed all 

possible groups 𝐻 in 𝑆4 × ℤ2 that do not include (( ), 1). 

Since we have addressed all groups 𝐻 containing (( ), 1) and those not including (( ), 1), we have found 

all possible subgroups of 𝑆4 × ℤ2. ∎ 

5.3.1 Subgroups of 𝑆4 × ℤ2 
Each of the representatives presented in Section 5.3 is based on a subgroup representative of 𝑆4. Recall 

the following subgroups of 𝑆4, as grouped by their subgroup representatives defined in Section 5.1.1: 

⟨(1234), (12)⟩ ⟨(234), (13)(24)⟩ 
⟨(1234), (24)⟩  ⟨(1243), (23)⟩ 

⟨(1324), (34)⟩ 
⟨(123), (23)⟩  ⟨(124), (24)⟩ 
⟨(134), (34)⟩  ⟨(234), (24)⟩ 

⟨(1234)⟩  ⟨(1243)⟩  ⟨(1324)⟩ 
⟨(13), (13)(24)⟩  ⟨(14), (14)(23)⟩ 

⟨(12), (12)(34)⟩ 
⟨(12)(34), (13)(24)⟩ ⟨(123)⟩ ⟨(124)⟩ ⟨(134)⟩ ⟨(234)⟩ 

⟨(13)(24)⟩ ⟨(14)(23)⟩ ⟨(12)(34)⟩ ⟨(12)⟩ ⟨(13)⟩ ⟨(23)⟩ ⟨(14)⟩ ⟨(24)⟩ ⟨(34)⟩ 
⟨( )⟩ 

 
If we replace the appropriate values into the result of Section 5.3, we have a full list of all the subgroups 

of 𝑆4 × ℤ2, where each 𝜙, 𝜓 ∈ ℤ2 are independent of each other and produces a new subgroup for each 

value: 

⟨((1234), 0); ((12), 0); (( ), 1)⟩ ⟨((234), 0); ((13)(24), 0); (( ), 1)⟩ 

⟨((1234), 0); ((24), 0); (( ), 1)⟩ 

⟨((1243), 0); ((23), 0); (( ), 1)⟩ 

⟨((1324), 0); ((34), 0); (( ), 1)⟩ 

⟨((123), 0); ((23), 0); (( ), 1)⟩ 

⟨((124), 0); ((24), 0); (( ), 1)⟩ 

⟨((134), 0); ((34), 0); (( ), 1)⟩ 

⟨((234), 0); ((24), 0); (( ), 1)⟩ 

⟨((1234), 0); (( ), 1)⟩ 

⟨((1243), 0); (( ), 1)⟩ 

⟨((1324), 0); (( ), 1)⟩ 

⟨((13), 0); ((13)(24), 0); (( ), 1)⟩ 

⟨((14), 0); ((14)(23), 0); (( ), 1)⟩ 

⟨((12), 0); ((12)(34), 0); (( ), 1)⟩ 

⟨((12)(34), 0); ((13)(24), 0); (( ), 1)⟩ 
⟨((123), 0); (( ), 1)⟩ ⟨((124), 0); (( ), 1)⟩ 

⟨((134), 0); (( ), 1)⟩ ⟨((234), 0); (( ), 1)⟩ 



⟨((13)(24), 0); (( ), 1)⟩ 

⟨((14)(23), 0); (( ), 1)⟩ 

⟨((12)(34), 0); (( ), 1)⟩ 

⟨((12), 0); (( ), 1)⟩ ⟨((13), 0); (( ), 1)⟩ 

⟨((14), 0); (( ), 1)⟩ ⟨((23), 0); (( ), 1)⟩ 

⟨((24), 0); (( ), 1)⟩ ⟨((34), 0); (( ), 1)⟩ 

⟨(( ), 1)⟩ 

⟨((1234), 𝜙); ((12), 0)⟩ ⟨((234), 0); ((13)(24), 0)⟩ 

⟨((1234), 𝜙); ((24), 𝜓)⟩ 

⟨((1243), 𝜙); ((23), 𝜓)⟩ 

⟨((1324), 𝜙); ((34), 𝜓)⟩ 

⟨((123), 0); ((23), 𝜙)⟩ 

⟨((124), 0); ((24), 𝜙)⟩ 

⟨((134), 0); ((34), 𝜙)⟩ 

⟨((234), 0); ((24), 𝜙)⟩ 

⟨((1234), 𝜙)⟩ 

⟨((1243), 𝜙)⟩ 

⟨((1324), 𝜙)⟩ 

⟨((13), 𝜙); ((13)(24), 𝜓)⟩ 

⟨((14), 𝜙); ((14)(23), 𝜓)⟩ 

⟨((12), 𝜙); ((12)(34), 𝜓)⟩ 

⟨((12)(34), 𝜙); ((13)(24), 𝜓)⟩ 
⟨((123), 0)⟩ ⟨((124), 0)⟩ 

⟨((134), 0)⟩ ⟨((234), 0)⟩ 

⟨((13)(24), 𝜙)⟩ 

⟨((14)(23), 𝜙)⟩ 

⟨((12)(34), 𝜙)⟩ 

⟨((12), 𝜙)⟩ ⟨((13), 𝜙)⟩ 

⟨((14), 𝜙)⟩ ⟨((23), 𝜙)⟩ 

⟨((24), 𝜙)⟩ ⟨((34), 𝜙)⟩ 

⟨(( ), 0)⟩ 

 

5.3.2 Number of Subgroups of 𝑆4 × ℤ2 
There are 98 subgroups of 𝑆4 × ℤ2. 

We can come to this conclusion by counting the subgroups listed in Section 5.3.1. ∎ 

5.3.3 Verification of Results 
These subgroups are also listed online on Wikipedia3, but they do not have listed generators that are 
usable However, we can agree with it that there will be 98 subgroups, as shown in the prior section. 
Their subgroup representatives are nearly identical to those specified above with some exceptions. The 
following charts label the subgroup representatives of Section 5.3 (not the subgroups of Section 5.3.1) 
with the representatives given at (source here). The “#2” at the end of a label indicates it is the second 
group listed on the page; similar definitions hold for “#1” and “#3”. 

𝑂ℎ 𝑇ℎ  

𝐷4ℎ  𝐷2𝑑  

𝐶4ℎ  𝐷2ℎ#2 

𝐷2ℎ#1 𝑆6 

𝐶2ℎ#1 𝐶2ℎ#2 

𝑆2 

𝜙 = 0: 𝑇𝑑   𝜙 = 1: 𝑂 𝑇 

 
3 The precise link is: https://en.wikiversity.org/wiki/Full_octahedral_group  

https://en.wikiversity.org/wiki/Full_octahedral_group


𝜙 = 𝜓 = 0: 𝐷2𝑑#2  𝜙 = 1, 𝜓 = 0: 𝐶4𝑣  
𝜙 = 0, 𝜓 = 1: 𝐷2𝑑#1  𝜙 = 𝜓 = 1: 𝐷4 

𝜙 = 0: 𝐶3𝑣   𝜙 = 1: 𝐷3 

𝜙 = 0: 𝑆4  𝜙 = 1: 𝐶4 
𝜙 = 𝜓 = 0: 𝐶2𝑣#3  𝜙 = 0, 𝜓 = 1: 𝐷2#1 

𝜙 = 1, 𝜓 ∈ {0,1}: 𝐶2𝑣#1 

𝜙 = 𝜓 = 0: 𝐷2#2  otherwise: 𝐶2𝑣#2  𝐶3 

𝜙 = 0: 𝐶2#1  𝜙 = 1: 𝐶3#1 𝜙 = 0: 𝐶3#2  𝜙 = 1: 𝐶2#2 

𝐶1 

5.4 Theorem 5.3: Subgroup Representatives of 𝕊 
We know that 𝕊 ≅ 𝑆4 × ℤ2. Then due to the result of Section 5.3.2, there are 98 subgroups of 𝕊. 

Further, we can use Section 5.3 to find the subgroup representatives. We can observe the following 

comparisons: 

RBW ∼ (( ), 0) BRY ∼ ((12), 0) YGO ∼ ((24), 0) BWR ∼ ((234), 0) 

OGW ∼ ((12)(34), 0) OBY ∼ ((13)(24), 0) WBO ∼ ((1234), 0) 

OGY ∼ (( ), 1) GOW ∼ ((12), 1) WBR ∼ ((24), 1) GYO ∼ ((234), 1) 

RBY ∼ ((12)(34), 1) RGW ∼ ((13)(24), 1) YGR ∼ ((1234), 1) 

These then provide the following subgroup representatives of 𝕊: 

⟨WBO; BRY; OGY⟩ ⟨BWR; OBY; OGY⟩ 
⟨WBO; YGO; OGY⟩ ⟨BWR; YGO; OGY⟩ 

⟨WBO; OGY⟩ ⟨BRY; OGW; OGY⟩ 
⟨OGW; OBY; OGY⟩ ⟨BWR; OGY⟩ 

⟨OBY; OGY⟩ ⟨BRY; OGY⟩ 
⟨OGY⟩ 

⟨WBO; BRY⟩ ⟨YGR; BRY⟩ ⟨BWR; OBY⟩ 
⟨WBO; YGO⟩ ⟨YGR; YGO⟩ 

⟨WBO; WBR⟩ ⟨YGR; WBR⟩ 
⟨BWR; YGO⟩ ⟨BWR; WBR⟩ 

⟨WBO⟩ ⟨YGR⟩ 
⟨BRY; OGW⟩ ⟨GOW; OGW⟩ 
⟨BRY; RBY⟩ ⟨GOW; RBY⟩ 

⟨OGW; OBY⟩ ⟨RBY; OBY⟩ 
⟨OGW; RGW⟩ ⟨RBY; RGW⟩ 

⟨BWR⟩ 

⟨OBY⟩ ⟨RGW⟩ ⟨BRY⟩ ⟨GOW⟩ 
⟨RBW⟩ 
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5.5 Subgroups of 𝕊 
Recall that Section 3.1 provided a complete list of all the elements of 𝕊, categorized by “type.” We can 

use their names to create a list of all the subgroups of 𝕊 using the results provided in Section 5.3.1. We 

then have the following list of all the subgroups of 𝕊: 

⟨WBO; BRY; OGY⟩ ⟨BWR; OBY; OGY⟩ 

⟨WBO; YGO; OGY⟩ 
⟨RWG; OYG; OGY⟩ 
⟨BOW; GOY; OGY⟩ 

⟨YOB; OYG; OGY⟩ 
⟨GYR; YGO; OGY⟩ 
⟨YRG; GOY; OGY⟩ 
⟨BWR; YGO; OGY⟩ 

⟨WBO; OGY⟩ 
⟨RWG; OGY⟩ 
⟨BOW; OGY⟩ 

⟨WGR; OBY; OGY⟩ 
⟨OWB; RGY; OGY⟩ 
⟨BRY; OGW; OGY⟩ 

⟨OGW; OBY; OGY⟩ 
⟨YOB; OGY⟩ ⟨GYR; OGY⟩ 
⟨YRG; OGY⟩ ⟨BWR; OGY⟩ 

⟨OBY; OGY⟩ 
⟨RGY; OGY⟩ 
⟨OGW; OGY⟩ 

⟨BRY; OGY⟩ ⟨WGR; OGY⟩ 
⟨OWB; OGY⟩ ⟨OYG; OGY⟩ 
⟨YGO; OGY⟩ ⟨GOY; OGY⟩ 

⟨OGY⟩ 

⟨WBO; BRY⟩ ⟨YGR; BRY⟩ ⟨BWR; OBY⟩ 
⟨WBO; YGO⟩ ⟨YGR; YGO⟩ 

⟨WBO; WBR⟩ ⟨YGR; WBR⟩ 
⟨RWG; OYG⟩ ⟨OYB; OYG⟩ 

⟨RWG; RWB⟩ ⟨OYB; RWB⟩ 
⟨BOW; GOY⟩ ⟨GRY; GOY⟩ 

⟨BOW; BRW⟩ ⟨GRY; BRW⟩ 

⟨YOB; OYG⟩ ⟨YOB; RWB⟩ 
⟨GYR; YGO⟩ ⟨GYR; WBR⟩ 
⟨YRG; GOY⟩ ⟨YRG; BRW⟩ 

⟨BWR; YGO⟩ ⟨BWR; WBR⟩ 

⟨WBO⟩ ⟨YGR⟩ 
⟨RWG⟩ ⟨OYB⟩ 
⟨BOW⟩ ⟨GRY⟩ 

⟨WGR; OBY⟩ ⟨YBO; OBY⟩ 
⟨WGR; RGW⟩ ⟨YBO; RGW⟩ 
⟨OWB; RGY⟩ ⟨RYG; RGY⟩ 

⟨OWB; OBW⟩ ⟨RYG; OBW⟩ 
⟨BRY; OGW⟩ ⟨GOW; OGW⟩ 
⟨BRY; RBY⟩ ⟨GOW; RBY⟩ 

⟨OGW; OBY⟩ ⟨RBY; OBY⟩ 
⟨OGW; RGW⟩ ⟨RBY; RGW⟩ 

⟨YOB⟩ ⟨GYR⟩ 
⟨YRG⟩ ⟨BWR⟩ 

⟨OBY⟩ ⟨RGW⟩ 
⟨RGY⟩ ⟨OBW⟩ 
⟨OGW⟩ ⟨RBY⟩ 

⟨BRY⟩ ⟨GOW⟩ ⟨WGR⟩ ⟨YBO⟩ 
⟨OWB⟩ ⟨RYG⟩ ⟨OYG⟩ ⟨RWB⟩ 
⟨YGO⟩ ⟨WBR⟩ ⟨GOY⟩ ⟨BRW⟩ 

⟨RBW⟩ 

 



6 Call Your Representative 
Despite section 5.5 providing an excellent list of all the subgroups of 𝕊, it will be sufficient to find the 

values of ⟨𝜎⟩ℍ and ⟨𝜎⟩𝕂 of each representative 𝜎 listed in 5.4 since these can be “reoriented” to match 

the subgroups needed. Fortunately, there are only 13 unique representatives used in 5.4, so we only 

need to find 𝜓(𝜎) ∈ 𝔾! for these values. As a reminder, here are the diagrams used in section 4.1.4: 

 
Additionally, recall that, in 𝑆3, the 1 corresponds to the “X” side and the 2 corresponds to the side 120° 

counterclockwise from the “X” side. Then (123) is a 120° counterclockwise rotation of the vertex. 

6.1 Embedding 𝕊 into 𝔾! 
Our first course of action is finding how each 𝕊 is represented in 𝔾!. We can do this by considering how 

each 𝕊 maps into 𝑆𝒜𝑆ℬ ⋉𝜌 (𝑆3
8 × ℤ2

12) via Φ ∘ 𝜓 (the notation presented in Section 4.1); since this group 

is isomorphic to 𝔾!, this essentially tells us how the elements of 𝕊 are presented in 𝔾!. I decided to list 

these presentations in Appendix A in order to support a larger paper width. 

6.2 Commutator Notation 
For any subgroup 𝑀 ⊆ 𝕊, we will let C(𝑀) represent the set of commutators in 𝔾!. For the subsets 𝔾 

and ℍ, we introduce a subscript to give C𝔾(𝑀) and Cℍ(𝑀), respectively. 

6.2.1 Finding Commutators 
We have that C𝔾(𝑀) = 𝔾 ∩ C(𝑀) and Cℍ(𝑀) = ℍ ∩ C(𝑀). 

Essentially, these are the definitions of C𝔾(𝑀) and Cℍ(𝑀), so there is nothing to prove. ∎ 

6.2.2 Intersection of Commutators 
For any subgroups 𝑀, 𝑁 ⊆ 𝕊 we have that C(⟨𝑀, 𝑁⟩) = C(𝑀) ∩ C(𝑁). A similar statement applies to 

C𝔾(⟨𝑀, 𝑁⟩) and to Cℍ(⟨𝑀, 𝑁⟩). 

Suppose that 𝑔 ∈ C(⟨𝑀, 𝑁⟩). Then it follows that 𝑔𝑚 = 𝑚𝑔 for all 𝑚 ∈ 𝑀 = ⟨𝑀, 𝑁⟩, so then 𝑔 ∈ C(𝑀). 

Likewise, 𝑔𝑛 = 𝑛𝑔 for all 𝑛 ∈ 𝑁 ⊆ ⟨𝑀, 𝑁⟩, so we conclude that 𝑔 ∈ C(𝑁). Therefore 𝑔 ∈ C(𝑀) ∩ C(𝑁). 

With 𝑔 ∈ C(⟨𝑀, 𝑁⟩) being generic, we then have that C(⟨𝑀, 𝑁⟩) ⊆ C(𝑀) ∩ C(𝑁). 

Now suppose that 𝑔 ∈ C(𝑀) ∩ C(𝑁). Then it follows that 𝑔ℎ = ℎ𝑔 for all ℎ ∈ 𝑀 ∪ 𝑁. Let 𝑘 ∈ ⟨𝑀, 𝑁⟩. It 

then follows that 𝑘 = ∏ ℎ𝑖
𝑡
𝑖=1  for some ℎ𝑖 ∈ 𝑀 ∪ 𝑁. Then we have that: 

𝑔𝑘 = 𝑔ℎ1 ⋅ ℎ2ℎ3 ⋯ ℎ𝑡 = ℎ1𝑔 ⋅ ℎ2ℎ3 ⋯ ℎ𝑡 = ℎ1 ⋅ ℎ2𝑔 ⋅ ℎ3 ⋯ ℎ𝑡 =   ⋯   = ℎ1ℎ2 ⋯ ℎ𝑡−1 ⋅ 𝑔ℎ𝑡 = 𝑘𝑔 

This shows that 𝑔 commutes with 𝑘, but since 𝑘 ∈ ⟨𝑀, 𝑁⟩ was arbitrary, it follows that 𝑔 ∈ C(⟨𝑀, 𝑁⟩). 

But then this means that—because 𝑔 ∈ C(𝑀) ∩ C(𝑁) was arbitrary as well—that C(𝑀) ∩ C(𝑁) ⊆

C(⟨𝑀, 𝑁⟩). Therefore, the two sets are equal to one another. ∎ 

  



6.2.3 Generated by a Single Element 
The commutator of a single element, C(𝜎), is equal to the commutator of the subgroup it generates, 

C(⟨𝜎⟩). 

We have one direction that is clear: if 𝑔 ∈ C(⟨𝜎⟩), then in particular we have 𝑔𝜎 = 𝜎𝑔. Therefore 𝑔 ∈

C(𝑔), so we have C(⟨𝜎⟩) ⊆ C(𝜎). 

The opposite direction follows a proof similar to before: Suppose that 𝑔 ∈ C(𝜎). Then 𝑔𝜎 = 𝜎𝑔, which 

implies that 𝜎−1𝑔 = 𝑔𝜎−1. Then consider an arbitrary 𝑘 ∈ ⟨𝜎⟩. There are two cases: 𝑘 = 𝜎𝑛 or 𝑘 = 𝜎−𝑛 

for some 𝑛 ∈ ℕ0. In either case, we can use the facts that 𝑔𝜎 = 𝜎𝑔 or that 𝑔𝜎−1 = 𝜎−1𝑔 to conclude 

that 𝑔𝜎±𝑛 = 𝜎±1𝑔𝜎±(𝑛−1) = ⋯ = 𝜎±𝑛𝑔, so 𝑔 commutes with 𝑘. Since 𝑔 commutes with all possible 𝑘, 

we have that 𝑔 ∈ C(⟨𝜎⟩). Then C(𝜎) ⊆ C(⟨𝜎⟩), so C(𝜎) = C(⟨𝜎⟩) as described previously. ∎ 

6.2.4 Finding Cℍ(𝑀) for Arbitrary 𝑀 

Suppose 𝑀 = ⟨𝜎𝑖⟩𝑖=1
𝑡  is a subgroup of 𝕊 for some 𝜎𝑖 ∈ 𝕊. Then C(𝑀) = ⋂ C(𝜎𝑖)𝑡

𝑖=1 . 

With 𝑀 = ⟨𝜎𝑖⟩𝑖=1
𝑡 , we can use Theorem 6.2.2 to write C(𝑀) = ⋂ C(⟨𝜎𝑖⟩)𝑡

𝑖=1 . Then Theorem 6.2.3 allows 

us to write ⋂ C(⟨𝜎𝑖⟩)𝑡
𝑖=1 = ⋂ C(𝜎𝑖)𝑡

𝑖=1 . Therefore C(𝑀) = ⋂ C(𝜎𝑖)𝑡
𝑖=1  as desired. ∎ 

6.2.5 Defining 𝑀𝔾 and Determining its Values 
For every subgroup 𝑀 ⊆ 𝕊, define 𝑀𝔾 ≔ C𝔾(𝑀) and 𝑀ℍ ≔ Cℍ(𝑀). Then 𝑀𝔾 ⊆ 𝑀ℍ𝕂. 

Suppose that 𝑔 ∈ 𝑀𝔾. We then have that 𝑔𝜎 = 𝜎𝑔 for all 𝜎 ∈ 𝑀. Let us write 𝑔 = ℎ𝑘 and 𝜎 = 𝑎𝑏 for 

some ℎ ∈ ℍ, some 𝑎 ∈ ℍ!, some 𝑘 ∈ 𝕂, and some 𝑏 ∈ 𝕂!. We then have that: 

ℎ𝑎 ⋅ 𝜌(𝑎)(𝑘)𝑏 = 𝑔𝜎 = 𝜎𝑔 = 𝑎ℎ ⋅ 𝜌(ℎ)(𝑏)𝑘 

If we apply the homomorphism Φℍ to both sides (defined in Section 4.1.2), we then have: 

Φℍ(ℎ𝑎) ⋅ 𝟘ℍ! = Φℍ!(𝑎ℎ) ⋅ 𝟘ℍ! 

since 𝑏, 𝑘, 𝜌(𝑎)(𝑘), and 𝜌(ℎ)(𝑏) are elements of 𝕂!, the kernel of Φℍ!. Therefore Φℍ!(ℎ𝑎ℎ−1𝑎−1) =

𝟘ℍ!, which implies that (ℎ𝑎ℎ−1𝑎−1) ∈ 𝕂!, but with ℎ, 𝑎 ∈ ℍ!, we also know that (ℎ𝑎ℎ−1𝑎−1) ∈ ℍ!. 

Therefore we know that (ℎ𝑎ℎ−1𝑎−1) ∈ ℍ! ∩ 𝕂! = {𝟘𝔾!}, so that ℎ𝑎 = 𝑎ℎ in 𝔾!. Then it follows that ℎ ∈

𝑀ℍ. 

In summary we have that if 𝑔 = ℎ𝑘 is in 𝑀𝔾 for ℎ ∈ ℍ And 𝑘 ∈ 𝕂, then it follows that ℎ ∈ 𝑀ℍ. Then 

with 𝑘 ∈ 𝕂, it follows that 𝑔 ∈ 𝑀ℍ𝕂. With 𝑔 ∈ 𝑀𝔾 being arbitrary, it follows that 𝑀𝔾 ⊆ 𝑀ℍ𝕂. ∎ 

6.3 Plan for Finishing 
As the prior theorem shows, we must have that every 𝑔 ∈ 𝑀𝔾 will be in 𝑀ℍ𝕂!. This provides us with a 

strategy for calculating the symmetric permutations, but we first need to calculate 𝑀ℍ for every 

subgroup representative 𝑀 of the subgroup classes established in 5.1.1: these representatives can be 

expanded to the other subgroups later. Using Maple, we can find the elements in each ⟨𝜎⟩ℍ; these can 

then be intersected to find the subgroup representatives’ 𝑀ℍ. The results of the Maple calculations are 

shown in the following table, which shows how many elements are in each 𝑀ℍ. Note that the table was 

split into halves in order to reduce the amount of space used. 

If you wish to investigate the Maple calculations, they are attached in Appendix B. 

 



Subgroup Rep. 𝑴 # Centralizers in 𝑴ℍ Subgroup Rep. # Centralizers in 𝑴ℍ 

⟨WBO; BRY; OGY⟩ 4 
⟨WBO; BRY⟩ 
⟨YGR; BRY⟩ 

4 
4 

⟨BWR; OBY; OGY⟩ 8 ⟨BWR; OBY⟩ 24 

⟨WBO; YGO; OGY⟩ 32 

⟨WBO; YGO⟩ 
⟨YGR; YGO⟩ 

⟨WBO; WBR⟩ 
⟨YGR; WBR⟩ 

128 
128 
128 

1536 

⟨BWR; YGO; OGY⟩ 8 
⟨BWR; YGO⟩ 
⟨BWR; WBR⟩ 

72 
24 

⟨WBO; OGY⟩ 128 
⟨WBO⟩ 
⟨YGR⟩ 

6144 
6144 

⟨BRY; OGW; OGY⟩ 256 

⟨BRY; OGW⟩ 
⟨GOW; OGW⟩ 
⟨BRY; RBY⟩ 
⟨GOW; RBY⟩ 

2048 
4096 
2048 
2048 

⟨OGW; OBY; OGY⟩ 512 

⟨OGW; OBY⟩ 
⟨RBY; OBY⟩ 

⟨OGW; RGW⟩ 
⟨RBY; RGW⟩ 

12288 
1024 
4096 
4096 

⟨BWR; OGY⟩ 432 ⟨BWR⟩ 34992 

⟨OBY; OGY⟩ 737280 
⟨OBY⟩ 
⟨RGW⟩ 

8847360 
1769472 

⟨BRY; OGY⟩ 2048 
⟨BRY⟩ 
⟨GOW⟩ 

1474560 
737280 

⟨OGY⟩ 8847360 ⟨RBW⟩ 9656672256000 

 

6.3.1 Limiting the Results 
I developed an algorithm for finding the elements of 𝑀𝔾 that uses the elements ℎ ∈ 𝑀ℍ to find all the 

elements of 𝑘 ∈ 𝕂 such that ℎ𝑘 ∈ 𝑀𝔾. However, I have only been able to partially automate each case 

of ℎ ∈ ℍ. Therefore, I only did the cases where |𝑀ℍ| ≤ 8. I leave the other cases to the viewer to 

complete if they choose to do so. 

6.4 Commutators 𝑀𝕂 in 𝕂 
For each fixed ℎ ∈ 𝑀ℍ, we now need to find the 𝑘 ∈ 𝕂 such that ℎ𝑘 ∈ 𝑀𝔾. This is the same as finding 𝑘 

such that ℎ𝑘 ∈ C(𝜎𝑖) for all the generators 𝜎𝑖 of 𝑀. 

This is true due to Corollary 6.2.4: We have that 𝑔 = ℎ𝑘 is in 𝑀𝔾, iff it is in ⋂ C(𝜎𝑖)𝑡
𝑖=1 . ∎ 

6.4.1 Inverse of a 𝑔 ∈ 𝔾! 

Let 𝑔 ∈ 𝔾!. Then if 𝑔 = 𝑎𝑏 for 𝑎 ∈ ℍ! and 𝑏 ∈ 𝕂!, we have that 𝑔−1 = 𝑎−1𝑏′ for 𝑏′ ≔ 𝜌(𝑎−1)(𝑏−1). 

Writing 𝑔−1 = 𝑎′𝑏′ for some 𝑎′ ∈ ℍ! and 𝑏′ ∈ 𝕂!, we have that 𝑔−1𝑔 = 𝟘𝔾! implies that 𝑎′𝑏′𝑎𝑏 = 𝟘𝔾!. 

Then it follows that 𝑎′𝑎 ⋅ 𝜌(𝑎)(𝑏′) ⋅ 𝑏 = 𝟘𝔾!. With 𝑎′𝑎 ∈ ℍ! and 𝜌(𝑎)(𝑏′) ⋅ 𝑏 ∈ 𝕂!, we then have that 

𝑎′𝑎 = 𝟘𝔾! and 𝜌(𝑎)(𝑏′) ⋅ 𝑏 = 𝟘𝔾!. The former implies that 𝑎′ = 𝑎−1,and the latter implies that 

𝜌(𝑎)(𝑏′) = 𝑏−1. We can apply the inverse automorphism 𝜌(𝑎−1) to both sides to determine that 𝑏′ =

𝜌(𝑎−1)(𝑏−1) as expected. ∎ 



6.4.2 Criterion for Finding Elements 
Let 𝜎 ∈ 𝑀 and ℎ ∈ 𝑀ℍ be fixed. Write 𝜎 = 𝑎𝑏 for 𝑎 ∈ ℍ! and 𝑏 ∈ 𝕂!. Then ℎ𝑘 ∈ C(𝜎𝑖) for 𝑘 ∈ 𝕂 iff the 

following property is true in 𝕂!: 

𝜌(ℎ)(𝑏−1) ⋅ 𝜌(𝑎)(𝑘) ⋅ 𝑏 = 𝑘 

The following statements are designed to be bijections of one another. Therefore, we are proving both 

implications simultaneously. 

Let ℎ𝑘 ∈ 𝑀𝔾. Then it follows that 𝜎−1(ℎ𝑘)𝜎 = (ℎ𝑘). From the prior section, we know that 𝜎−1 = 𝑎−1 ⋅

𝜌(𝑎−1)(𝑏−1). We then calculate the left side to be: 

𝜎−1(ℎ𝑘)𝜎 = 𝑎−1 ⋅ 𝜌(𝑎−1)(𝑏−1) ⋅ (ℎ𝑘) ⋅ 𝑎𝑏 

= 𝑎−1ℎ ⋅ 𝜌(ℎ𝑎−1)(𝑏−1) ⋅ 𝑘 ⋅ 𝑎𝑏 
= 𝑎−1ℎ𝑎 ⋅ 𝜌(𝑎ℎ𝑎−1)(𝑏−1) ⋅ 𝜌(𝑎)(𝑘) ⋅ 𝑏 

We know that ℎ ∈ 𝑀ℍ, so it follows that 𝑎−1ℎ𝑎 = 𝑎ℎ𝑎−1 = ℎ. Therefore we have: 

ℎ ⋅ 𝜌(ℎ)(𝑏−1) ⋅ 𝜌(𝑎)(𝑘) ⋅ 𝑏 = 𝜎−1(ℎ𝑘)𝜎 = ℎ𝑘 

𝜌(ℎ)(𝑏−1) ⋅ 𝜌(𝑎)(𝑘) ⋅ 𝑏 = 𝑘 

This concludes the proof. ∎ 

6.5 Conclusion 
I then used the prior theorem repeatedly to calculate each possible 𝑘 using trial-and-error for each 

coordinate of 𝑘. I made these calculations in a spreadsheet which is attached as Appendix C. I then 

created a set of images that show all the Rubik’s cube permutations that I found, and I attached them as 

Appendix D. 

 

:(



7 Appendix A: Embedding 𝕊 into 𝔾! 
 𝑺𝟒 × ℤ𝟐 𝑺𝓐𝑺𝓑 𝟏 𝟐 𝟑 𝟒 𝟓 𝟔 𝟕 𝟖 𝟗 𝟏𝟎 𝟏𝟏 𝟏𝟐 𝟏𝟑 𝟏𝟒 𝟏𝟓 𝟏𝟔 𝟏𝟕 𝟏𝟖 𝟏𝟗 𝟐𝟎 

RBW (( ),0) 
{1}{2}{3}[4}{5}{6}{7}{8} 

{9}{10}{11}{12}{13}{14}{15} ⋯ {20} 
( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) 0 0 0 0 0 0 0 0 0 0 0 0 

BRY ((12), 0) 
{1, 2}{3, 5}{4, 6}{7, 8} 

{9}{10, 16}{11, 17}{12, 13}{14, 20}{15, 18}{19} 
(132) (123) (132) (132) (123) (123) (132) (123) 1 1 1 0 0 1 0 1 1 0 1 1 

YGO ((24), 0) 
{1, 7}{2, 6}{3, 5}{4, 8} 

{9, 18}{10, 17}{11, 20}{12, 19}{13}{14, 16}{15} 
( ) (123) ( ) (123) ( ) (132) ( ) (132) 0 0 0 0 1 1 1 1 0 0 0 0 

BWR ((234), 0) 
{1}{2, 5, 4}{3, 6, 8}{7} 

{9, 16, 12}{10, 17, 15}{11, 13, 20}{14, 18, 19} 
(132) (123) ( ) (123) (123) (123) (123) (132) 1 1 1 0 0 1 0 1 1 0 1 1 

OGW ((12)(34), 0) 
{1, 8}{2, 7}{3, 6]{4, 5} 

{9, 19}{10, 18}{11, 17}{12, 20}{13, 14}{15, 16} 
(123) ( ) (123) ( ) (132) ( ) ( ) (132) 0 0 0 0 1 1 1 1 0 0 0 0 

OBY ((13)(24), 0) 
{1, 3}{2, 4}{5, 7}{6, 8} 

{9, 11}{10, 12}{13, 15}{14, 16}{17, 19}{18, 20} 
( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) 0 0 0 0 0 0 0 0 0 0 0 0 

WBO ((1234), 0) 
{1, 2, 3, 4}{5, 6, 7, 8} 

{9, 10, 11, 12}{13, 14, 15, 16}{17, 18, 19, 20} 
( ) ( ) ( ) ( ) (123) (132) (123) (132) 0 0 0 0 0 0 0 0 0 0 0 0 

OGY (( ), 1) 
{1, 7}{2, 8}{3, 5}{4, 6} 

{9, 19}{10, 20}{11, 17}{12, 18}{13, 15}{14, 16} 
(12) (23) (12) (23) (12) (23) (12) (23) 0 0 0 0 0 0 0 0 0 0 0 0 

GOW ((12), 1) 
{1, 8}{2, 7}{3}{4}{5}{6} 

{9, 19}{10, 14}{11}{12, 15}{13, 18}{16, 20}{17} 
(13) (13) (23) (13) (13) (12) (13) (13) 1 1 1 0 0 1 0 1 1 0 1 1 

WBR ((24), 1) 
{1}{2, 4}{3}{5}{6, 8}{7} 

{9, 12}{10, 11}{13, 15}{14}{16}{17, 20}{18, 19} 
(12) (12) (12) (12) (12) (13) (12) (13) 0 0 0 0 1 1 1 1 0 0 0 0 

RBY ((12)(34), 1) 
{1, 2}{3, 4}{5, 6}{7, 8} 

{9}{10, 12}{11}{13, 16}{14, 15}{17}{18, 20}{19} 
(12) (12) (12) (12) (23) (23) (23) (23) 0 0 0 0 1 1 1 1 0 0 0 0 

RGW ((13)(24), 1) 
{1, 5}{2, 6}{3, 7}{4, 8} 

{9, 17}{10, 18}{11, 19}{12, 20}{13}{14}{15}{16} 
(12) (23) (12) (23) (12) (23) (12) (23) 0 0 0 0 0 0 0 0 0 0 0 0 

YGR ((1234), 1) 
{1, 8, 3, 6}{2, 5, 4, 7} 

{9, 20, 11, 18}{10, 17, 12, 19}{13, 16, 15, 14} 
(23) (12) (23) (12) (12) (23) (12) (23) 0 0 0 0 0 0 0 0 0 0 0 0 
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