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Abstract

Background: Robotic ankle-foot prostheses that provide net positive push-off work can reduce the metabolic rate
of walking for individuals with amputation, but benefits might be sensitive to push-off timing. Simple walking
models suggest that preemptive push-off reduces center-of-mass work, possibly reducing metabolic rate. Studies
with bilateral exoskeletons have found that push-off beginning before leading leg contact minimizes metabolic rate,
but timing was not varied independently from push-off work, and the effects of push-off timing on biomechanics
were not measured. Most lower-limb amputations are unilateral, which could also affect optimal timing. The goal of
this study was to vary the timing of positive prosthesis push-off work in isolation and measure the effects on energetics,
mechanics and muscle activity.

Methods: We tested 10 able-bodied participants walking on a treadmill at 1.25 m · s−1. Participants wore a tethered
ankle-foot prosthesis emulator on one leg using a rigid boot adapter. We programmed the prosthesis to apply torque
bursts that began between 46% and 56% of stride in different conditions. We iteratively adjusted torque magnitude to
maintain constant net positive push-off work.

Results: When push-off began at or after leading leg contact, metabolic rate was about 10% lower than in a condition
with Spring-like prosthesis behavior. When push-off began before leading leg contact, metabolic rate was not different
from the Spring-like condition. Early push-off led to increased prosthesis-side vastus medialis and biceps femoris activity
during push-off and increased variability in step length and prosthesis loading during push-off. Prosthesis push-off
timing had no influence on intact-side leg center-of-mass collision work.

Conclusions: Prosthesis push-off timing, isolated from push-off work, strongly affected metabolic rate, with optimal
timing at or after intact-side heel contact. Increased thigh muscle activation and increased human variability appear to
have caused the lack of reduction in metabolic rate when push-off was provided too early. Optimal timing with respect
to opposite heel contact was not different from normal walking, but the trends in metabolic rate and center-of-mass
mechanics were not consistent with simple model predictions. Optimal push-off timing should also be characterized
for individuals with amputation, since meaningful benefits might be realized with improved timing.
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Background
Ankle-foot prostheses have gone through an impressive
evolution over the last half century. In some areas of hu-
man performance such as running at sprinting speed,
prostheses have become so advanced that experts have de-
bated whether they restore [1] or augment [2] performance
beyond the biological limb. Counterintuitively, replacing
ankle function is more challenging in normal walking than
in sprinting. During steady sprint running the biological
ankle primarily behaves elastically, whereas in walking at
higher speeds the ankle provides net positive work during
push-off accounting for about half of the total mechanical
work that is performed by the joints of the lower limb
in the sagittal plane during a step [3,4]. This aspect of
ankle function cannot be entirely replaced by a passive
prosthesis.
Although amputation removes muscles that would other-

wise consume metabolic energy during walking, people
with transtibial amputation typically expend 20 to 30%
more metabolic energy than matched able-bodied subjects
when using a passive elastic prosthesis [5,6]. This is often
attributed to compensations for the lack of net positive
ankle push-off work [7]. Higher metabolic rate is typically
also accompanied by a lower walking speed and range, which
reduces quality of life [8]. Recently, labs and companies
have developed powered prostheses that provide net positive
work [9-12], which are now becoming commercially
available [13].
Robotic prostheses are often designed with the aim of

matching the kinematics and kinetics of non-amputee
gait [9,14]. Another possible aim would be minimizing
metabolic rate for the amputee. The first aim defines an
engineering task, in which known biological gait param-
eters are matched by a robot. The second aim implicitly
requires optimization, which could be accomplished
through numerical simulation, given a model with pre-
dictive validity [15,16], or through systematic exploration
of different modes of actuation in experiments [17]. In
such a process, it may be advantageous to disregard bio-
logical similarity and to explore extreme parameter
values, which might even allow amputees to outperform
unassisted non-amputees. We recently designed a uni-
versal ankle-foot prosthesis emulator [10] that enables
this kind of experimental research. The system allows
actuation parameters such as ankle push-off work to be
varied [18] over a much broader range than with existing
commercial prostheses.
Simple dynamic models of walking suggest that the tim-

ing of ankle push-off has a substantial effect on metabolic
rate. These models contain a step-to-step transition during
which the leading leg performs negative ‘collision’ work
while the trailing leg performs positive ‘push-off ’ work
[19-21]. Such models predict that pushing off with the
trailing leg starting before leading leg collision reduces

energy dissipation, thereby reducing overall mechanical
work requirements [19-21]. This prediction is consistent
with findings from a recent experiment with a bilateral
powered ankle exoskeleton, in which the greatest reduc-
tion in metabolic rate was found when exoskeleton push-
off started just before leading leg contact [22]. However, in
this experiment push-off work was not held constant as
timing was varied. We recently found that push-off work
affects metabolic rate during walking with prostheses [18]
and exoskeletons [23,24]. Another confounding factor was
that, because the exoskeleton fits over the biological ankle,
subjects were still able to control the timing and magni-
tude of push-off work of their own biological ankle in par-
allel with the exoskeleton [25].
The goal of the present study was to measure the

isolated effects of timing of total ankle push-off on the
energetics and mechanics of walking with a robotic
prosthesis. We used a universal ankle-foot prosthesis
emulator (Figure 1, Additional file 1: Movie 1) to maintain
precise control over total ankle push-off mechanics, and
varied the timing of the onset of positive ankle power
over a wide range while maintaining constant net pros-
thesis work. We measured the effects on metabolic rate,
center-of-mass mechanics, joint mechanics, and muscle
activity. We expected this study to lead to improved un-
derstanding of the predictive validity of simple models
for walking with a prosthesis, and to inform the design
of improved prosthetic limbs.

Methods
Participants
We tested 10 able-bodied subjects (60 ± 6 kg, 1.68 ±
0.09 m, 23 ± 2 yr., 6 female and 4 male). The experiment
was approved by the Carnegie Mellon University Institu-
tional Review Board, and written informed consent was
obtained from all subjects prior to participation.

Universal ankle-foot prosthesis emulator
Participants walked while wearing an ankle-foot pros-
thesis emulator [10] on one leg (the 'prosthesis-side
leg', Figure 1, Additional file 1: Movie 1). Subjects did not
have amputation, and the prosthesis was attached using a
rigid boot that immobilized the ankle and weighed
1.9 kg. To compensate for added leg length, subjects
wore a lift shoe with a 0.13 m-tall rounded sole weigh-
ing 0.9 ± 0.2 kg on their other leg (the “intact leg”).
The prosthesis had one degree of freedom in plantar-
flexion and weighed 1.2 kg. It sensed angle and torque
locally, and was tethered to an off-board motor and
control station. The emulator was programmed with
different behaviors, and had a maximum torque limit
of 170 N · m.
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Controller
In a Spring-like reference condition that mimicked a con-
ventional prosthesis, torque was programmed as a function
of prosthesis joint angle (Figure 2A), with stiffness scaled to
subject mass. This condition was similar to the zero-work
condition in [18].
In push-off timing conditions, the commanded torque

was the sum of the Spring-like torque and an additional
square wave in time, referred to here as 'Time-torque'
(Figure 2). The Time-torque component was programmed
to start at a desired percentage of the predicted stride
period and to last 10% of the stride period. The controller
detected the beginning of each new stride at initial pros-
thesis forefoot contact. Initial prosthesis heel contact was
estimated by subtracting an assumed delay of 10% of the
stride between prosthesis heel and forefoot contact (this
assumption was not used in post hoc analyses of timing).
The stride period of the current stride was predicted using
a low-pass filter of previous stride periods:

tsf nð Þ ¼ 1–αð Þ:tsf n–1ð Þ þ α:ts nð Þ ð1Þ

where tsf is filtered stride period, n is stride number, α is
a filter constant (in this case equal to 0.05), and ts is
measured stride period.

The amplitude of the Time-torque square wave was ad-
justed so as to deliver constant average net positive work
per stride per second. The prosthesis work per stride per
second was calculated online by multiplying prosthesis
torque by prosthesis ankle angular velocity, integrating in
time, and dividing by stride period. Filtered work per stride
per second was obtained using a similar low-pass filter as
with filtered stride time. Time-torque magnitude was ad-
justed on each stride using an iterative learning approach:

τt nþ 1ð Þ ¼ τt nð Þ þ ki:eW nð Þ ð2Þ

where τt is the amplitude of the commanded Time-torque
square wave, ki is the iterative learning gain, in this case set
to 0.005 N ·m · J−1 · s, and eW is the difference between the
filtered work per stride per seconda and the desired value of
14 J · s-1. This value of desired net work strikes a balance
between reducing metabolic rate, which decreases with
increasing push-off work [18], and increasing the range of
viable onset timings, which increases with decreasing push-
off work. This value allowed us to explore the timing range
where we expected to find an optimum [22].

Experimental conditions
For each subject we attempted to collect 6 conditions
with desired Time-torque onset at 46%, 48%, 50%, 52%,

Figure 1 Experimental setup. Participants wore a prosthesis attached to a rigid boot and tethered to an off-board motor and control station.
To compensate for the leg length difference, subjects wore a lift shoe on their other leg. Step frequency was maintained using a metronome.
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and 54% of the stride period, plus the latest achievable
setting between 56% and 60% of the stride period.
Some subjects were unable to adapt to some condi-

tions without the controller reaching torque or velocity
limits before achieving 14 J · s−1. In such cases, we tried
shifting the onset of Time-torque away from the extreme
values until we found settings that allowed desired work
production. Due to a combination of scheduling con-
straints and hardware failures, two of the ten subjects
walked in only five timing conditions.

Protocol
Before data collection, subjects completed two adapta-
tion sessions. In the first adaptation session, subjects
walked with the prosthesis in three, seven-minute trials.
Across trials, subjects were given different timing condi-
tions while treadmill speed was gradually increased to
1.25 m⋅s−1, and net push-off work was gradually in-
creased from 0 to 14 J⋅s−1.
The second adaptation session started with three mi-

nutes of Quiet Standing while resting metabolic rate was
measured. In the Normal Walking condition, subjects
walked five minutes with normal shoes. Normal Walking
was randomly applied either before or after prosthesis
conditions. The first prosthesis condition in this adapta-
tion session was the Spring-like condition, during which
step frequency was recorded. This frequency was im-
posed by means of a metronome in all the remaining
prosthesis conditions. The Time-torque conditions were
presented in random order. The prosthesis conditions
lasted seven minutes, and between all conditions sub-
jects were given at least three minutes to rest.

Data were collected in the third session. The protocol
of the third session was the same as the second session,
except that the order of all prosthesis conditions, includ-
ing the Spring-like condition, was randomized. All mea-
surements reported in this manuscript are from the
third session, except in one subject for whom we report
second-day data because the prosthesis malfunctioned at
the beginning of the third session. Subjects had at least
one full day of rest between sessions.

Measurements
We measured metabolic rate by means of indirect calor-
imetry (Oxycon Mobile) during the entirety of each trial.
Prosthesis sensor data were recorded for the last 2.5 mi-
nutes at a rate of 500 Hz using prosthesis control software.
All other measurements were taken over 30-second pe-
riods at the end of each trial. Ground reaction forces were
measured at a rate of 2000 Hz by force plates built into a
split-belt treadmill (Bertec). Muscle activity was measured
for the primary, accessible leg flexors and extensors (rectus
femoris, vastus medialis, and biceps femoris in both legs;
and gastrocnemius medialis and lateralis, soleus, and tibi-
alis anterior in the intact-side leg) at a rate of 2000 Hz
with wireless surface electromyography sensors (Delsys).
Joint kinematics were measured at a rate of 100 Hz by a
camera-based motion capture system (Vicon) tracking a
set of 17 reflective markers on the prosthesis, lower limbs,
and pelvis, and recorded in motion capture software along
with ground reaction forces and electromyography data.
At the end of each Time-torque condition, subjects scored
their perception of the condition compared to the Spring-

Figure 2 Prosthesis torque components in timing conditions. (A) Spring-like torque component, shown in torque-angle space, programmed
as a function of prosthesis joint angle (cf. zero-work condition [18]). Solid line is dorsiflexion phase, dashed line is plantarflexion phase. (B) Time-torque
component, shown in time, programmed as a square wave that started at the desired percent of predicted stride period and lasted 10% of stride period
or until toe off. Actual, measured torque increased and decreased gradually. Lines representing earlier torque bursts appear longer than 10% due to
averaging of bursts with temporal variation. Bars of later bins are shorter than 10% because the prosthesis leaves the ground. Curve colors correspond to
Time-torque onsets. Horizontal bars indicate Time-torque period, and error bars are standard deviation. Vertical dashed lines indicate mean timing of
intact-side heel contact and prosthesis toe off. (C) Total torque, shown in torque-angle space, was the sum of the Spring-like torque and Time-torque
components. Enclosed area is net prosthesis work, which was maintained across timing conditions. Colors are Time-torque bins. All lines and bars represent
population means.
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like condition on a scale of −10 to +10 where −10 was
‘cannot walk’ and +10 was ‘walking is effortless’.

Data processing

Metabolic rate was calculated from mean _V O2 and _V
CO2 values [26] of the last three minutes of each walk-
ing condition, and the last two minutes of the resting
condition.
Prosthesis mechanics were calculated from onboard

sensor data. Signals were filtered with a second-order
Butterworth low-pass filter with a cutoff frequency of
100 Hz. Prosthesis power was calculated for the 2.5 mi-
nute recording period. Net work per unit time was cal-
culated by integrating prosthesis power in time over the
whole stance phase and dividing by stride period.
Motion capture data were first gap-filled in Vicon

Nexus and then remaining gaps were reconstructed in
Visual3D based on other markers on the same segment.
For joint kinetic and kinematic analyses, marker and
ground reaction force signals were filtered with a
second-order Butterworth low-pass filter with a 15 Hz
cutoff frequency. Three-dimensional inverse dynamics
analysis was performed and sagittal plane joint angles,
torques and powers were calculated using a custom
script in Matlab.
In a separate analysis, we used ground reaction forces to

calculate center-of-mass work. Ground reaction force sig-
nals were low-pass filtered at 30 Hz with a second-order
Butterworth filter. Center-of-mass velocity was calculated
by dividing total ground reaction force by body mass and
integrating in time. Center-of-mass power for each leg
was calculated according to the individual limbs method
[27]. We calculated center-of-mass push-off work (positive
prosthesis-side work between approximately 45% and 65%
of prosthesis stride), collision work (negative intact-side
work between about 45% and 65% of prosthesis stride) and
rebound work (positive intact-side work between about
65% and 80% of prosthesis stride). We also analyzed the
maximum vertical ground reaction force during the first
half of stance phase as an indication of the potential effect
on the risk for overuse injuries in the intact limb [28-30].
Electromyography signals were filtered with a 50–

400 Hz band-pass filter, rectified, and filtered with a root
mean square filter with a 0.1 s moving window. Based on
visual inspection, 69 signals out of a total of 624 trial-
muscle combinations were identified as containing inaccur-
ate electromyography data and were removed from analysis.
Erroneous signals were characterized by uncorrelated, sat-
urating spikes, which were likely the result of electrodes be-
coming dislodged. We calculated maximum values during
periods of interest, such as prosthesis-side push-off.
Although the online prosthesis timing control was

based on prosthesis forefoot contact, during post hoc

analysis time series data were stride-normalized using
prosthesis heel contact detected from unfiltered ground
reaction forces. Step length was calculated by dividing
step time by the treadmill speed. Step width was calcu-
lated by means of the lateral distance between the posi-
tions of foot markers during subsequent stance phases.
In timing conditions, the actual onset of Time-torque
was determined by detecting the maximum, unfiltered
second derivative of the residual of Total-torque minus
Spring-like torque. The ending of push-off was detected
as the instant the measured prosthesis torque became
zero. All metrics were calculated on each stride before
averaging, except for joint kinetics which were calculated
based on an average stride.

Data organization
In order to allow visualization of population averages and
statistical comparisons despite inter-subject differences in
actual Time-torque onset, timing trials were grouped into
five Time-torque onset bins with borders at 45.1%, 47.6%,
50.1%, 52.6%, 55.2% and 57.7% of the stride cycle, referred
to as Earliest, Early, Middle, Late, and Latest respectively
(Figure 3). Despite careful choice of these bins, there were
four trials that fell outside the included ranges. These out-
liers occurred due to differences between online and post
hoc timing, and due to the limited capacity of the pros-
thesis to apply push-off very early or very late in stance
while maintaining desired work.

Statistics
We tested the effect of push-off timing by means of a
repeated-measures analysis of variance including only
the timing conditions. If the p-value was below 0.1, pair-
wise comparisons were made by means of paired t-tests.
To compare timing conditions to the Spring-like con-

dition, we first checked for an overall effect by means of
repeated-measures analysis of variance, this time includ-
ing the Spring-like condition. If the p-value was below
0.1, we checked for differences between timing condi-
tions and the Spring-like condition using paired t-tests.
In pairwise tests we corrected for multiple comparisons
with a Šídák-Holm correction [31].
Perception scores in the Time-torque conditions and

net prosthesis work in the Spring-like condition were
compared relative to zero with unpaired t-tests. We cal-
culated Pearson’s correlation between metabolic rate and
Time-torque onset. In all analyses we used a significance
level of α = 0.05.

Results
Prosthesis mechanics
Time-torque onsets ranged from 44.3 to 58.4% of stride
period (Figure 3A). The average onset timings of the
five Time-torque bins were 46.6 ± 0.7 (Earliest bin),
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49.0 ± 0.7 (Early), 51.4 ± 0.7 (Middle), 54.1 ± 0.7 (Late)
and 56.0 ± 0.7% (Latest) of stride (mean ± standard de-
viation; Figure 4B).
Although Time-torque was commanded as a square

wave, the resulting mean trajectory increased and de-
creased smoothly (Figure 2B). Recursive adjustment of
torque to maintain constant work led to progressively
lower peak Time-torque values with later Time-torque
onsets. Total prosthesis peak torque was lower with later
push-off timing (p = 1 · 10−5, ANOVA; Figure 5B). Later

Time-torque onset led to later prosthesis positive power
onset, as expected (p = 2 · 10−11, ANOVA; Figure 5).
Mean prosthesis power had two peaks in the Earliest to
Middle Time-torque bins, whereas there was only one
peak in the Late and Latest bin. Negative prosthesis
ankle work did not change across timing conditions (p =
0.6, ANOVA).
Mean net prosthesis work in Time-torque conditions

was 0.25 ± 0.03 J · kg−1 · s−1 (Figure 4A). Net prosthesis
work did not change significantly with timing (p = 0.2,
ANOVA). In the Spring-like condition, net push-off work
was lower than zero (−0.05 ± 0.02 J · kg−1 · s−1, p = 4 · 10−21,
unpaired t-test) characterized by hysteresis of 23 ± 5%.

Metabolics
Metabolic rate was inversely correlated with Time-
torque onset (R2 = 0.23, p = 1 · 10−4, Pearson’s correl-
ation; Figure 3A). Net metabolic rate in the Earliest
through Latest Time-torque bins was 4.60 ± 0.87, 4.32 ±
0.98, 4.04 ± 0.81, 4.11 ± 0.91 and 4.02 ± 1.04 W · kg−1, re-
spectively (Figure 3B). Net metabolic rate in the Spring-
like condition was 4.47 ± 0.73 W · kg−1. In the Earliest
Time-torque bin, metabolic rate appeared to be about
0.06 ± 0.24 W · kg−1 (1 ± 6%) higher than in the Spring-like
condition whereas in the Middle and Late Time-torque
bins metabolic rate was on average 0.41 ± 0.20 W · kg−1

(10 ± 7%) lowerb than the Spring-like condition (p = 1 · 10−4,

Figure 3 Change in metabolic rate versus Time-torque onset.
(A) Change in metabolic rate with respect to the Spring-like
condition versus Time-torque onset. Colors are different subjects.
Thin solid black line shows linear regression. Curly brackets indicate
borders of Time-torque bins. (B) Change in metabolic rate for each
Time-torque bin. Bar colors correspond to Time-torque onsets.
Horizontal black line is mean for Spring-like condition. Gray line is
mean for Normal Walking. Vertical dashed lines represent mean timing
of intact-side heel contact. Error bars are inter-subject standard
deviations. P-values are from repeated measures ANOVA on timing
bins. Symbols inside bars indicate significant differences versus Zero-
work estimate. Brackets with symbols represent pairwise differences
between timing conditions. ** = p ≤ 0.01, * = p ≤ 0.05, t = p ≤ 0.1.

Figure 4 Prosthesis push-off work and timing. (A) Net prosthesis
work did not vary across timing conditions. Horizontal black line is
Spring-like condition. P-value is from repeated measures ANOVA on
timing bins. (B) Double support and Time-torque periods. Bar colors
correspond to Time-torque onsets. Error bars are standard deviations.
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0.025, respectively, paired t-tests; Figure 3B). Metabolic rate
in the Latest Time-torque bin showed a trend towards being
lower than the Spring-like condition (p = 0.06, paired t-test).
Net metabolic rate during Normal Walking was 3.17 ±

0.50 W · kg−1. This was 0.87 ± 0.54 W · kg−1 (20 ± 10%)
lower than in the Middle Time-torque bin (p = 0.01,
paired t-test).

Center-of-mass mechanics
The onset of prosthesis-side positive center-of-mass push-
off work occurred later in the stride period with later on-
set of Time-torque (p = 0.005, ANOVA; Figure 6A). There
was also a trend towards higher prosthesis-side center-of-
mass push-off work with later Time-torque onset (p =
0.08, ANOVA; Figure 6B). Prosthesis-side center-of-mass
push-off work in the Middle to Latest Condition was
higher than the Spring-like condition (p < 5 · 10−4, paired
t-tests) which was in turn higher than in Normal Walking
(p = 2 · 10−5, paired t-test).

Time-torque onset appeared to influence the time
course of intact-side collision power (Figure 6C) but did
not have a significant effect on collision work (p = 0.8,
ANOVA; Figure 6D). The intact-side maximum ground
reaction force during the first half of stance decreased
with later push-off timing (p = 0.017, ANOVA), from
123 ± 13% of body weight in the Earliest Time-torque
bin to 111 ± 6% of body weight in the Latest Time-torque
bin (Additional file 2: Figure S1C). However, center-of-mass
velocity appeared to increase with later Time-torque on-
sets (Additional file 2: Figure S1E). There were no signifi-
cant differences in intact-side collision work between the
Time-torque bins and the Spring-like condition (p > 0.45,
paired t-tests) and there was no significant difference in
intact-side collision work between the Spring-like condi-
tion and Normal Walking (p = 0.41, paired t-test).
Time-torque onset did not affect intact-side rebound

work (p = 0.5, ANOVA), but in the Middle and Latest
Time-torque bins, rebound work was smaller than in the
Spring-like condition (p = 0.006 and p = 0.041, respect-
ively, paired t-tests, Figure 6E). Rebound-work in the
Spring-like condition was higher than in Normal Walking
(p = 2 · 10−4, paired t-test).

Electromyography
We observed activation bursts at around 45% of the
stride cycle in the vastus medialis (Figure 7A) and at
around 60% of the stride in the biceps femoris (Figure 7C)
in the prosthesis-side leg during Time-torque condi-
tions, but not during Normal Walking. Earlier Time-
torque onset led to higher peak values in this burst in
vastus medials activity (p = 0.007, ANOVA; Figure 7B)
and led to a trend towards higher peak values in the
burst in biceps femoris activity (p = 0.08 ANOVA;
Figure 7D). The biceps femoris peak activation in the
Earliest Time-torque bin was higher than in the Spring-
like condition (p = 0.008, paired t-test). Peak activation
in other muscles around the time of prosthesis push-off
did not show a clear relationship with Time-torque onset
(p > 0.106, ANOVA, Additional file 3: Figure S2).

Joint kinetics
Prosthesis-side ankle push-off work, calculated from in-
verse dynamics, was on average 1.7 times higher in the
Time-torque conditions than during Normal Walking
(p < 3 · 10−3, paired t-tests, Additional file 4: Figure S3).
Hip joint power in the prosthesis-side leg associated
with swing initiation [3] appeared to shift later with later
Time-torque onset (Figure 8A). Hip work during this
period did not differ across Time-torque bins (p = 0.7,
ANOVA), but work was lower than in the Spring-like
condition for all Time-torque onsets other than in the
Earliest bin (p < 0.047, paired t-tests; Figure 8B). There
were no clear effects of push-off timing on any other

Figure 5 Prosthesis sensor data versus stride time. (A) Prosthetic
joint angle in time (normalized to stride period). Stride period in this
and other time-series charts begins and ends at prosthesis heel
contact. (B) Total prosthesis torque (i.e. Spring-torque + Time-torque).
(C) Prosthetic ankle power. Curve colors correspond to Time-torque
onsets. Black curve is Spring-like condition. Horizontal bars indicate
Time-torque period. Vertical dashed lines indicate mean timing of
intact-side heel contact and prosthesis toe off.
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outcomes in joint work around the time of prosthesis
push-off (Additional file 4: Figure S3).

Spatiotemporal and variability measures
During prosthesis conditions, intact-side heel contact
occurred at 52.0 ± 1.9% of stride, whereas in Normal
Walking intact-side leg heel contact occurred at 49.6 ±
0.5% of stride (Figure 8A). There was no effect of Time-
torque onset on the timing of intact-leg contact (p = 0.3,
ANOVA), but later Time-torque onset led to longer
prosthesis-side stance duration (p = 1 · 10−9, ANOVA).
There were no differences in inter-stride variability of

Time-torque onset between the Time-torque bins (p =
0.7, ANOVA; Figure 9A). However, earlier Time-torque
onset led to increased inter-stride variability in net pros-
thesis work (p = 0.006, ANOVA; Figure 9B). For ex-
ample, prosthesis work variability was about twice as
high in the Early onset bin compared to the Late onset
bin (p = 0.04, paired t-test). In all Time-torque bins ex-
cept the Late bin, push-off work variability was higher
than in the Spring-like condition (p < 0.031, paired t-
tests). Earlier Time-torque onset also led to increased
inter-stride variability in step length (p = 0.003, ANOVA;
Figure 9C).

Perception
Time-torque onset had a significant effect on perception
score (p = 3 · 10−4, ANOVA; Additional file 5: Figure S4).
The Medium to Latest timing bins were perceived to be
more assistive than the Spring-like condition (p < 0.02,
unpaired t-tests) and the perception score in the Latest
Time-torque bin was better than in the Earliest Time-
torque bin (p = 2 · 10−4, paired-t test).

Discussion
The Timing of the onset of prosthetic ankle push-off
had a substantial effect on metabolic rate. In the Latest
push-off timing condition, metabolic rate was about 10%
lower than in the Earliest condition, a difference that is
equivalent to reductions that have been found when using
autonomous robotic prostheses compared to passive ones
[11]. The Spring-like condition approximated the stiffness
and hysteresis of typical passive prostheses [32]. When net
push-off work equivalent to almost twice the value in
Normal Walking was provided with the Earliest timing, it
did not reduce metabolic rate. Adding motors and batteries
to a passive prosthesis therefore might not benefit the
user if the timing of motor actuation is not appropriate. It
has been posited that reductions in metabolic rate with

Figure 6 Center-of-mass power and work. (A) Prosthesis-side center-of-mass power. (B) Prosthesis-side push-off work. (C) Intact-side center-of-
mass push-off power. (D) Intact-side collision work. (E) Intact-side rebound work. Bar and curve colors correspond to Time-torque onsets. Black
line is Spring-like condition. Gray line is Normal Walking. Horizontal bars indicate Time-torque periods. Vertical dashed lines indicate mean timing
of intact-side heel contact and prosthesis toe-off. Error bars are inter-subject standard deviation. P-values are from repeated measures ANOVA on
timing bins. Symbols inside bars indicate significant differences from Spring-like condition. ** = p ≤ 0.01, * = p ≤ 0.05, t = p ≤ 0.1.
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robotic devices are proportional to positive device work
and peripheral mass [33], but other factors, such as timing,
seem to play an important role as well.
During Normal Walking, the onset of positive bio-

logical ankle joint work occurred at 49.6% of the stride
cycle (Additional file 4: Figure S3 G,P). It is known that

during Normal Walking the onset of positive ankle joint
work depends on walking speed [14]. In this study, par-
ticipants’ legs were effectively lengthened from 0.92 m to
1.05 m by the lift shoe and prosthesis, lowering their
non-dimensional speed. In Normal Walking, the effect
of an equivalent decrease in non-dimensional walking

Figure 7 Electromyography. (A) Prosthesis-side average vastus medialis electromyograms (EMG). (B) Peak vastus medialis EMG during late stance
(30-60% stride). (C) Prosthesis-side average biceps femoris EMG. (D) Peak biceps femoris EMG during late stance. Bar and curve colors correspond
to Time-torque onsets. Black line is Spring-like condition. Gray line is Normal Walking. Horizontal bars indicate Time-torque period. Vertical dashed
lines represent mean timing of intact-side heel contact and prosthesis toe off. Error bars are inter-subject standard deviations. P-values are from
repeated measures ANOVA on timing bins. Symbols inside bars indicate significant differences versus Spring-like condition. ** = p ≤ 0.01,
* = p ≤ 0.05, t = p ≤ 0.1.

Figure 8 Hip joint power and work. (A) Prosthesis-side hip power. (B) Prosthesis-side hip positive work during swing initiation (H3, 50-90%
stride). Bar and curve colors correspond to Time-torque onsets. Black line is Spring-like condition. Gray line is Normal Walking. Horizontal bars
indicate Time-torque period. Vertical dashed lines represent mean timing of intact-side heel contact and prosthesis toe off. Error bars are
inter-subject standard deviations. P-values are from repeated measures ANOVA on timing bins. Symbols inside bars represent significant
differences versus Spring-like condition. ** = p ≤ 0.01, * = p ≤ 0.05, t = p ≤ 0.1.
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speed could explain about 1% later push-off timing [14].
During prosthesis walking, the intact-side heel strike oc-
curred at about 52% stride rather than 50% (an asym-
metry that could have been even more pronounced if
the subjects were not instructed to walk to the beat of a
metronome). The Middle timing condition, centered on
51.4% stride, is therefore consistent with push-off timing
in Normal Walking. In this sense, push-off that began at
or after the normal time led to reduced energy cost.
The simplest walking model predicts that impulsive

push-off just before leading leg contact minimizes mech-
anical work requirements [19]. However, in the simplest
model collision is an instantaneous event as opposed to

actual walking where collision is a phase with negative
center-of-mass work that is spread out in time. More re-
cent models with a double stance phase show that push-
off throughout double stance reduces collision losses
[20,21]. Still, these models predict that optimal push-off
should start before intact-side heel strike, and that as
push-off occurs earlier, center-of-mass collision work
should be reduced. These models sometimes do not in-
clude certain features of humans [34], such as multi-
segmented legs and biological muscle properties, which
could explain the differences between their predictions
and the present findings.
A recent study with ankle exoskeletons reported opti-

mal push-off onsets at around 45% of stride [22], and
another case study reported optimal onset at 30% of
stride [35]. However, exoskeletons operate in parallel
with the limb, rather than in series, and therefore do not
constrain total-joint push-off onset. Prior experiments
on exoskeleton push-off timing have also not maintained
constant work across conditions, and earlier actuator
onset may have resulted in more net work by the device.
Exoskeletons have typically also been applied bilaterally,
whereas the unilateral prosthesis used here resulted in
some asymmetry. It is therefore difficult to compare the
results of these studies.
Our finding is consistent, on the other hand, with an

anecdotal report by one subject with amputation in a
different study that stated that ‘the best timing for add-
ing power was when the heel of the adjacent foot had
initial contact’ [12]. Amputation may lead to changes in
morphology that interact with push-off timing, leading
to later optima.
The absence of a reduction in metabolic rate when

push-off work was provided early in stance may be ex-
plained by increased thigh muscle activity prior to and
during push-off. Increased prosthesis-side vastus EMG
at about 45% stride in conditions with early push-off
(Figure 7A,B) might have prevented undesirable knee
flexion during the ensuing push-off, resisting high limb
loads generated by the prosthesis to maintain desired
work (Figure 5B). A similar mechanism was suspected
for amputees using an energy recycling prosthesis [36].
Increased prosthesis-side biceps femoris EMG at about
60% stride in conditions with early push-off (Figure 7C,D)
might have acted to flex the knee during the ensuing
swing phase, providing an effect similar to that attributed
to the biarticular gastrocnemius during normal gait. This
increase might also have led to stabilizing co-activation at
the knee during the period of stance in which both biceps
femoris and vastus activity was increased. Thigh muscles
might also have acted to dissipate some of the work per-
formed by the prosthesis in early push-off conditions, al-
though measured absorption at the knee joint during this
period did not seem to change with timing. Taking in

A)

B)

C)

Figure 9 Variability of prosthesis timing, prosthesis work and
step length. (A) Inter-stride standard deviation in Time-torque onset
time. (B) Inter-stride standard deviation in prosthesis net work. (C)
Inter-stride standard deviation of step length. Colors correspond to
Time-torque bins. Horizontal black line is Spring-like condition. Gray
line is Normal Walking. Vertical dashed line indicates mean timing of
intact-side heel contact. Error bars are standard deviations of inter-stride
standard deviations. P-values are from repeated measures ANOVA on
timing bins. Symbols inside bars are significant differences versus
Spring-like condition. Brackets with symbols indicate pairwise differences
between timing conditions. ** = p ≤ 0.01, * = p ≤ 0.05, t = p ≤ 0.1.
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consideration the high muscle volume of the thigh mus-
cles it is possible that increased prosthesis-side thigh
muscle activity, perhaps in combination with apparent
trends in other muscle activity, may explain the differences
in metabolic rate between the Earliest and Latest push-off
onset conditions.
The effects of prosthesis behavior on gait stability may

also help explain the lack of a benefit with preemptive
push-off. With early push-off timing, we found increases
in inter-stride variability in both push-off work and step
length (Figure 9B,C). Since the prosthesis control algo-
rithm remained the same, the observed increases in vari-
ability must have come from changes in the human
walking with it. Some amount of variability is natural
during human gait [37,38], but these increases, without
any changes to subject physiology or environmental con-
ditions, likely indicate increases in step-by-step control
actions related to balance, which can be associated with
higher metabolic rate [38,39]. Increased variability might
stem from difficulty in controlling the effects of prosthesis
forces during early push-off conditions, consistent with
the observed increased activation of knee musculature. It
may have been easier to control the flow of work from the
trailing leg once the leading leg was placed on the ground,
affording, e.g., improved means for regulating net impulse
on the center of mass. This echoes anecdotes from two
simple walking robots [40,41], for which preemptive push-
off seemed to result in poorer stability. Longer double-
support periods, as were found with later push-off timing
(Figure 4B), would similarly increase the time during which
both limbs could be used to stabilize body motions.
Energy use associated with leg swing initiation did not

seem to explain the increased benefits of push-off work
with later timing. Some portion of late push-off work
may go towards acceleration of the swing leg [42], and
this requirement is likely greater with the added mass
of the simulator boot and prosthesis (2.9 kg). However,
although we observed later onset of H3 hip power with
later push-off, we did not observe a reduction in total
hip work (Figure 8B).
The observed relationships between push-off timing,

mechanical work and metabolic rate were not consistent
with predictions from simple dynamic models of walk-
ing. Such models predict that preemptive trailing leg
push-off will reduce collision dissipation in the leading
leg, which did not occur here (Figure 6D). With early
push-off work we also did not find reductions in the
intact-side maximum vertical ground reaction force dur-
ing the first half of stance. This could be due to a similar
mechanism as in another prosthesis study where in-
creased intact-side vertical ground reactions were found
with prostheses with shorter forefoot rockers [28]. Ac-
tive prosthesis push-off has previously been observed to
decrease the intact-side maximum vertical ground

reaction force during the first half of stance [18,29,30].
Intact-side maximum vertical ground reaction force dur-
ing the first halve of stance decreased with later onset of
push-off, the opposite of what one might expect from
simple models, but this change was offset by increases in
magnitude of the vertical component of center-of-mass
velocity, consistent with [18]. Joint work in the intact-
side leg during collision also did not appear to be af-
fected by push-off timing. Simple dynamic models of
walking also make predictions for energy use based on
the assumption that changes in metabolic rate will be
correlated to changes in center-of-mass work, which
was not the case here (Figure 3B vs. Additional file 6:
Figure S5B). Another study with a robotic prosthesis did
find a correlation between these outcomes [11], but made
comparisons across two prostheses with other mechanical
differences that could have affected center-of-mass work.
Our findings are limited by the way in which we

enforced push-off timing and the measurements we
made of human response. The higher-than-normal pros-
thesis work we imposed and the use of the simulator
boot prevent us from making strong claims about opti-
mal timing in Normal Walking. However, we do believe
that the experiment was appropriate as a test of simple
model predictions, since the normal phases in center-
off-mass power were all present including a phase with
net negative center-of-mass collision work in the intact-
side leg. Prosthesis parameters that were not held con-
stant across timing conditions might have had con-
founding effects, although we could not identify them.
For example, we observed higher peak torque and a
longer (less impulsive) double-peaked power in earlier
push-off conditions. Higher peak torque and double-
peaked power do not explain higher metabolic rate in
Earliest and Early timing conditions, however, since the
Middle timing condition also contained these features
(Figure 5) but substantially reduced metabolic rate
(Figure 3B). It also does not seem that prosthesis push-
off impulsiveness in the earlier Time-torque bin explains
the lack of reduction in metabolic rate, since the vertical
component of center-of-mass velocity was higher (more
re-directed) at the onset of leading leg contact with
earlier Time-torque onset (Additional file 2: Figure S1E).
Other aspects of the intervention might have affected
our results, of course. A more gradual Time-torque pro-
file, or other control technique, could have generated
smoother total prosthesis torque and power trajectories.
Perhaps this would have been easier for the user to
control, leading to less co-activation and less effort in
conditions with early push-off timing.
In statistical analyses of candidate metabolic cost

correlates we only looked at center-of-mass energetics,
work bursts of sagittal-plane joint kinetics and peak
activations of the main flexor and extensor muscles
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around the prosthesis push-off phase. It could be that
differences in metabolic rate could be better explained
with frontal-plane kinetics, translational work in the
hip joint [43] or muscle activations of mono-articular
hip muscles. Measurements were also not taken inside
the prosthesis boot, and it is possible that participants
compensated for device behavior by, e.g., using their
ankle to damp out some work during early-onset push-
off conditions. We also did not measure muscle fascicle
kinematics, which can explain changes in metabolic
rate that are not visible at the joint level, including
changes caused by external devices [44].
The timing of push-off can be defined with respect to

several events in the gait cycle. We chose to present our
results versus prosthetic heel contact because they were
more evenly distributed this way, likely because the online
controller timed push-off based on prosthesis forefoot
contact. We also prefer this reference point because it
is more relevant to prosthesis design, since prostheses
are typically controlled based on internal sensors. Simple
model predictions of the effects of push-off timing are
usually made with respect to the instant of collision of the
leading leg, which is modeled to occur instantaneously at
leading leg heel strike in such models. We also analyzed
metabolic data using timing with respect to heel strike
(and several other events) and found nearly identical mean
results.
These results might not translate to individuals with

amputation. Amputees have more experience walking
with (particular types of ) prostheses than our subjects
and may have more compliance at the socket interface
[36]. The effects of push-off timing might be influ-
enced by the added mass and leg length of the simula-
tor boot, which would not be present for amputees.
We have previously observed opposite effects of inter-
vention between these populations [36], and so tests
among participants with amputation must be performed
before implications for device design can be addressed
directly.

Conclusions
Prosthesis push-off timing, isolated from push-off work,
had a strong effect on metabolic rate, with optimal push-
off occurring at or after opposite-leg heel contact. Neither
the optimal timing nor the effects on collision work were
consistent with predictions from simple dynamic models
of walking. Optimal push-off timing in this unilateral pros-
thesis was also later than observed for bilateral exoskele-
tons, which may be related to asymmetry or differences in
regulation of net joint work. With early push-off, potential
benefits of net prosthesis work input seem to have
been offset by a combination of increased balance-related
effort and increased muscle activity in the prosthesis-side

knee flexors and extensors during push-off. With later
push-off, benefits compared to the Spring-like condition
seem to have been partially derived from reduced muscle
activity at the hip during swing initiation. It therefore
appears that push-off before intact-side heel strike may not
be advantageous in ankle-foot prostheses, although studies
among individuals with amputation are needed to verify
this idea.

Endnotes
aWork measurements are normalized versus stride

period in order to facilitate comparison with metabolic
rate measurements. While the J · s−1 could be converted
into W, we chose to present work measurements in J · s−1

in order to keep a clear distinction from measurements of
instantaneous power.

bSmall discrepancies between reported mean values of
Time-torque bins and mean differences between Time-
torque bins are due to missing trials due to unanticipated
differences in the controlled timing and actual timing,
hardware limitations in the extreme timing conditions and
scheduling constraints.

Additional files

Additional file 1: Movie 1. Walking with the robotic prosthesis.
Participant walking on a treadmill with the prosthesis in different timing
conditions. Prosthesis worn on the right leg and the lift shoe worn on
the left leg.

Additional file 2: Figure S1. Ground reaction forces and center-of-
mass-velocity. (A) Prosthesis-side vertical ground reaction force.
(B) Prosthesis-side anterior-posterior ground reaction force. (C) Intact-side
vertical ground reaction force. (D) Intact-side anterior-posterior ground
reaction force. (E) Vertical component of center-of-mass velocity. (F)
Anterior-posterior component of center-of-mass velocity. Bar and curve
colors correspond to Time-torque onsets. Black line is Spring-like condition.
Gray line is Normal Walking. Horizontal bars indicate Time-torque period.
Vertical dashed lines represent mean timing of intact-side heel contact and
prosthesis toe off.

Additional file 3: Figure S2. Electromyography. (A-C) Prosthesis-side
rectus femoris, vastus medialis and biceps femoris electromyograms. (D-K)
Intact-side rectus femoris, vastus medialis, biceps femoris, tibialis anterior,
gastrocnemius lateralis, gastrocnemius medialis, soleus lateralis, and soleus
medialis electromyograms. Bar and curve colors correspond to Time-
torque onsets. Black line is Spring-like condition. Gray line is Normal
Walking. Horizontal bars indicate Time-torque period. Vertical dashed
lines indicate mean timing of intact-side heel contact and prosthesis
toe off.

Additional file 4: Figure S3. Sagittal-plane joint kinematics and
kinetics. (A to C) Prosthesis-side joint angles. (D to F) Prosthesis-side joint
moments. (G to I) Prosthesis-side joint powers. (J to L) Intact-side joint
angles. (M to O) Intact-side moments. (P to R) Intact-side joint powers.
Bar and curve colors correspond to Time-torque onsets. Black line is
Spring-like condition. Gray line is Normal Walking. Horizontal bars indicate
Time-torque period. Vertical dashed lines indicate mean timing of
intact-side heel contact and prosthesis toe off.

Additional file 5: Figure S4. Perception scores. Mean perception scores
for each Time-torque bin compared to the Spring-like condition.
Preference was reported on a scale from −10 to +10, where −10 was
‘cannot walk’ and +10 was ‘walking is effortless’. Error bars are inter-subject
standard deviations. P-value is from a repeated measures ANOVA on timing
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bins. Symbols inside bars represent significant differences versus Spring-like
condition. Brackets represent pair-wise differences between conditions.
** = p ≤ 0.01, * = p ≤ 0.05, t = p ≤ 0.1.

Additional file 6: Figure S5. Metabolic rate estimates. (A) Estimated
metabolic rate based on center-of-mass power, which implicitly assumes
all work is performed by muscle fascicles. The biological component of
prosthesis-side center-of-mass power was obtained by subtracting prosthesis
power from prosthesis-side center-of-mass power. Positive and negative
power phases were then divided by their theoretical muscle efficiencies
(25% and −120%, respectively). The same process was applied to intact-side
center-of-mass power, and the two sides were then added together.
(B) Estimated average metabolic rate based on center-of-mass power,
assuming that all work is performed by muscle fascicles. (C) Estimated
metabolic rate based on total joint power, obtained by dividing positive and
negative joint power regions by their respective theoretical muscle efficiencies
(25% and −120%, respectively) and adding the resulting trajectories for all
human joints. (D) Average estimated metabolic rate based on total joint
power. Bar and curve colors correspond to Time-torque onsets. Black line is
Spring-like condition. Gray line is Normal Walking. Horizontal bars indicate
Time-torque periods. Vertical dashed lines indicate mean timing of intact-side
heel contact and prosthesis toe-off. Error bars are inter-subject standard
deviation. P-values are from repeated measures ANOVA on timing bins.
Symbols inside bars indicate significant differences from Spring-like condition.
** = p ≤ 0.01, * = p ≤ 0.05, t = p ≤ 0.1.
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