
University of Nebraska at Omaha University of Nebraska at Omaha

DigitalCommons@UNO DigitalCommons@UNO

Theses/Capstones/Creative Projects University Honors Program

8-2023

Form Auto Generation: An Analysis of GUI Generation Form Auto Generation: An Analysis of GUI Generation

Jedadiah McFarland

Follow this and additional works at: https://digitalcommons.unomaha.edu/university_honors_program

 Part of the Software Engineering Commons

Please take our feedback survey at: https://unomaha.az1.qualtrics.com/jfe/form/

SV_8cchtFmpDyGfBLE

http://www.unomaha.edu/
http://www.unomaha.edu/
https://digitalcommons.unomaha.edu/
https://digitalcommons.unomaha.edu/university_honors_program
https://digitalcommons.unomaha.edu/honors_community
https://digitalcommons.unomaha.edu/university_honors_program?utm_source=digitalcommons.unomaha.edu%2Funiversity_honors_program%2F243&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/150?utm_source=digitalcommons.unomaha.edu%2Funiversity_honors_program%2F243&utm_medium=PDF&utm_campaign=PDFCoverPages
https://unomaha.az1.qualtrics.com/jfe/form/SV_8cchtFmpDyGfBLE
https://unomaha.az1.qualtrics.com/jfe/form/SV_8cchtFmpDyGfBLE
http://library.unomaha.edu/
http://library.unomaha.edu/

University of Nebraska at Omaha
College of Information Science & Technology

Department of Computer Science
Supervisor: Dr. Harvey Siy

Honors Capstone Report
in partial fulfillment for the degree

Bachelor of Science in Computer Science (Honors Distinction)
in Spring 2023

Form Auto Generation

An Analysis of GUI Generation

Submitted by: Submission date: May 2023

Jedadiah McFarland
E-Mail: jedadiahmcfarland@unomaha.edu
B.S. Computer Science

mailto:jedadiahmcfarland@unomaha.edu

Abstract

Graphical User Interfaces (GUIs) have transformed how we interact with

computers, offering visually appealing and intuitive systems. This paper explores

the origins and evolution of GUIs, explicitly focusing on form auto-generation in

modern GUI-driven environments. Form auto-generation has emerged as a promi-

nent practice, enabling automatic form creation based on predefined models. To

better understand form auto-generation, I investigate SurveyJS, an open-source

form auto-generation library known for its active development and support. This

investigation aims to understand how SurveyJS recognizes and renders objects from

a JSON model. The methodology involves a trial and error examination of the

library, exploring its live demos and source code. Different approaches to form

auto-generation, including template-based methods, database-driven approaches,

web form builders, document automation platforms, and custom programming, are

explored. This research enhances our understanding of this crucial aspect of mod-

ern computing by delving into GUI origins, investigating SurveyJS, and examin-

ing various forms of auto-generation approaches. The findings suggest that form

auto-generation will likely grow in popularity due to its accessibility, productiv-

ity benefits, dynamic personalization, integration with emerging technologies, and

cross-platform compatibility. Organizations can leverage form auto-generation to

optimize form creation processes, improve user experiences, and boost productivity

across various domains.

Contents

List of Figures iii

1 Introduction 1

2 Background 3

2.1 Origins of GUI . 3

2.2 Middle era GUIs . 4

2.3 Present GUIs . 4

3 Synthesis and Discussion 6

3.1 Looking into a particular library . 6

3.2 Methodology . 6

3.3 Results . 7

3.4 Different form generation approaches . 8

3.4.1 Template-Based Method . 8

3.4.2 Database-Driven Approach . 8

3.4.3 Web Form Builders . 9

3.4.4 Document Automation Platforms 9

3.4.5 Custom Programming . 9

3.5 Prediction on where its headed and future usability 9

3.6 Best use case for each scenario . 10

4 Conclusion 11

References 13

ii

List of Figures

Figure 1: WordStar . 3

Figure 2: Xerox Alto GUI Display . 3

Figure 3: Mac OS X Aqua Theme . 4

Figure 4: SurveyJS JSON Model to Form 7

Figure 5: SurveyJS Sequence Diagram 8

iii

1 Introduction

Graphical User Interfaces (GUIs) have played a pivotal role in shaping how we

interact with computers. From the early days of text-based interfaces to the present era

of visually appealing and intuitive systems, GUIs have revolutionized the user experience

(UX). This paper delves into the origins and evolution of GUIs, specifically focusing on

generating forms in modern GUI-driven environments.

The journey of GUIs began with computers such as the Xerox Alto and Apple’s

Lisa, which introduced GUIs to the personal computer market. As technology progressed,

GUIs became the norm for personal computers, embodied by Apple’s release of Mac OS X

and its GUI-centric nature. GUIs have become essential for enhancing user understanding

and productivity, particularly in the information-driven era we live in today. In addition

to operating systems, the evolution of GUIs has extended to web development. Advanced

webpages now offer dynamic UX through the utilization of versatile languages such as

JavaScript (JS), Hyper Text Markup Language (HTML), and Cascading Style Sheets

(CSS). Within this context, form auto-generation has emerged as a prominent practice,

allowing for automatic form creation based on predefined models.

This paper focuses on exploring form auto-generation, with a particular emphasis

on SurveyJS—an open-source form auto-generation library known for its active develop-

ment community and strong developer support. The investigation of SurveyJS aims to

understand how the library recognizes an object in a JSON model and how it renders

that object while maintaining basic HTML functionality. The methodology employed in

this study involves a trial-and-error examination of the SurveyJS library, including its

provided examples and source code. A deeper understanding of form auto-generation

techniques can be learned by gaining insights into these mechanisms.

Furthermore, this paper explores different approaches to form auto-generation,

including template-based methods, database-driven approaches, web form builders, doc-

ument automation platforms, and custom programming. Each approach caters to spe-

2

cific use cases, offering distinct strengths and capabilities. By examining the origins

of GUIs, investigating the SurveyJS library, and exploring different approaches to form

auto-generation, this research seeks to enhance our understanding of this important as-

pect of modern computing.

3

2 Background

2.1 Origins of GUI

Figure 1: Text-based user
interface (WordStar)

Source: (Leggitt, 2022)

In the early age of computers, GUIs rarely ex-

isted; everything with a computer was done in a ter-

minal, either through a command line interface or a

text-based user interface (TUI). TUIs are fullscreen ap-

plications that allow some freedom for user navigation

via arrow keys. Such interfaces for applications emerged

ever since computer monitors became common modes of

display in the 1960s. Implementation details vary, but

by the 1970s, UNIX systems have developed portable

ways of displaying text user interfaces (Arnold and Amir, 1977). By the 1980s these were

the prevalent types of application interfaces on terminals. The availability of TUIs for

business applications contributed to the popularity of personal computers (Figure 1).

Figure 2: Xerox Alto GUI

Source: (Shirriff, 2017)

However, with the increasing capabilities of com-

puter and monitor hardware, graphical user interfaces

(GUIs) have emerged as the standard for new appli-

cation development. This research focuses on personal

computers and how their GUIs came to be. The Xe-

rox Alto and Apple’s Lisa are two of the first computers

that implemented a GUI design on a commercial com-

puter (Computer History Museum, 1983; Raymond and

Landley, 2004). Xerox Alto was coined as the first com-

mercial computer with a GUI as it was released in 1973,

and we can see an example of this GUI in Figure 2. It

created these GUIs using Basic Combined Programming

4

Language (BCPL) and Mesa programming languages,

with a new concept of bit block transfer (bit blit) operation which assisted greatly in

creating the GUIs (Xerox, 1976). While the languages are outdated and replaced, the

bit blit operations are still used throughout computer graphics today.

2.2 Middle era GUIs

Figure 3: Mac OS X Aqua
theme

Source: (Wikipedia, 2023)

The mid-2000s brought many new advancements

in GUIs and their generation. Video games are becom-

ing more common. Apple has released Mac OS X, which

only solidified the need and suitability for GUIs as the

default for operating systems (OS) and applications. At

this time, terminal-based personal computers are almost

completely gone but let us look at how Apple created

its operating system with GUIs in mind. Mac OS was

built from Unix and used common OS programming lan-

guages like C, C++, Swift, Assembly, and Objective-C. More interestingly, Mac OS uses

Aqua, shown in Figure 3, as the default user interface, which defines the design language

and visual theme of the OS, also written in C++.

2.3 Present GUIs

From the beginning of using the terminal to move files around, personal computers

have now evolved to allow the user to see all their files and where they are going, all with-

out commands. This evolution allows less experienced users to understand computers

much easier and use them more effectively, which is necessary in today’s information era.

Operating systems have become very advanced and exclude GUI based; these GUIs are

created using multiple languages but still most commonly C-based languages. Addition-

5

ally, there is tremendous support for third-party applications to run on the OS without

fail.

Webpages have also become highly advanced; some high-end websites will have

each object act dynamically to the user providing the best user experience (UX). The

generation of said webpages relies heavily on versatile languages such as JavaScript (JS),

Hyper Text Markup Language (HTML), and Cascading Style Sheets (CSS). These are

the most dominant languages in the web development market that can create extremely

simple or advanced web applications. In terms of automatically creating forms, multiple

libraries or plugins for the above languages will use a model to repeatedly create the

same form, which can then be modified in a defined manner. This process is known as

form auto-generation and will serve as the topic of this research.

6

3 Synthesis and Discussion

3.1 Looking into a particular library

SurveyJS is an open-source form auto-generation library with an active develop-

ment team and great support for developers using the library (Devsoft Baltic OÜ, 2020).

So, to better understand form auto-generation, I did a deep dive into SurveyJS to under-

stand how the library takes a JavaScript Object Notation (JSON) model and renders it

into a form. The two main goals of this venture are to understand how it recognizes an

object in a JSON model and how it renders that object while maintaining basic HTML

functionality. To do this, I used an intuitive trial-and-error methodology that allowed

me to understand each goal.

3.2 Methodology

Firstly, I went to the main website for SurveyJS to play around with the examples

they provide to demo their library. Understanding these demos gave me a baseline for

how the app worked and what specific codes or objects translated to in the resultant

form. Using this newfound knowledge, I went to the library’s source code, where after

some trial and error, I found a folder full of HTML component definitions. Here I was

able to understand how the objects read from the model were translated to fit the format

of an HTML element while retaining its functionality. These components define HTML

objects like buttons, panels, pages, images, etc. Now that I have found how the objects

are defined, I need to understand how the library interprets the model. To do this, I

returned to the demo applications to find the commonly defined structure among each.

The idea is that each demo passes the model through a specific entry point to the library.

I found this to be accurate and discovered that the Model constructor acted as the entry

point, with the Survey object normalizing and rendering the model before being passed

to the React renderer, creating the form on the HTML Document Object Model (DOM).

7

This process can be seen simply through the diagram in Figure 4 and the sequence

diagram in Figure 5.

Figure 4: High-level depiction of how a form is created from a JSON model
Source: Own Illustration

3.3 Results

Through the exploration of SurveyJS, it became evident that the library employs

keyword and object-matching techniques to interpret the JSON objects provided. This

finding aligns with the expected behavior of the library, as it defines a specific format that

the JSON file must adhere to for compatibility. Any unrecognized keywords or naming

conventions within the JSON file would throw an error. From the methodology described

earlier, it was observed that SurveyJS achieves the conversion of JSON objects to HTML

elements by utilizing multiple component files. Where within a specific component file,

multiple variables and functions would correspond to that of standard HTML elements.

8

Figure 5: Sequence diagram of SurveryJS rendering a form from JSON
model

Source: Dr. Harvey Siy

3.4 Different form generation approaches

Within form auto-generation, five main approaches offer distinct ways to create

and generate forms. These different approaches to form auto-generation provide options

for various scenarios and user preferences. Let us explore these approaches in more detail.

3.4.1 Template-Based Method

The template-based method relies on predefined templates that contain placehold-

ers. When the templates are loaded, the placeholders are automatically populated with

real data from a data source. This approach allows for efficient form creation by reusing

templates and dynamically filling them with the necessary information.

3.4.2 Database-Driven Approach

In the database-driven approach, the form structure and data are stored in a

database. The database holds the definitions of form fields and properties. When gener-

ating a form, the relevant data is queried from the database, and the form is dynamically

9

created based on the retrieved information (Rahman and Nandi, 2019). This approach is

advantageous when dealing with large volumes of data and dynamic form requirements.

3.4.3 Web Form Builders

Web form builders provide a visual interface that enables users to create forms

by dragging and dropping elements. These tools offer a user-friendly way to design

forms, allowing non-technical users to create forms without writing code. Many web

form builders also support the generation of forms based on predefined templates or

imported data, further simplifying the form creation process.

3.4.4 Document Automation Platforms

Document automation platforms facilitate the automatic generation of many doc-

uments or forms. These platforms typically provide a user interface that allows users to

create and customize forms and form templates (Memon et al., 2001). These templates

can be designed easily; once completed, the user can merge the template with provided

data to create a form.

3.4.5 Custom Programming

Custom programming allows for highly customized form generation to meet spe-

cific requirements. With custom programming, developers have full control and flexibility

over the form creation process. They can utilize programming languages, libraries, and

frameworks to build forms tailored to their unique needs. JavaScript libraries, like Sur-

veyJS, are often employed to generate forms programmatically.

3.5 Prediction on where its headed and future usability

Form auto-generation is bound to grow in popularity due to several key factors.

Firstly, it simplifies form creation by empowering non-technical users to create forms

10

without extensive programming knowledge. This accessibility opens form development

to a broader range of individuals and organizations. Secondly, it enhances productivity

by automating the form generation process, saving time and effort. Additionally, form

auto-generation allows for dynamic and personalized forms tailored to individual users

or specific data sources, improving the UX and data collection. Integrating emerging

technologies, such as artificial intelligence, further automates the process and increases

accuracy. Lastly, its cross-platform compatibility ensures consistent form generation

across different operating systems and devices. With these advantages in mind, form

auto-generation will likely continue gaining popularity as organizations seek efficient and

user-friendly solutions for form creation.

3.6 Best use case for each scenario

The five form auto-generation methods cater to different use cases based on their

strengths and capabilities. The template-based approach is valuable in industries like

HR, legal, or finance, where standardized forms with variable data must be generated.

The database-driven approach is suitable when there is a need for dynamically generating

forms based on large volumes of data stored in a database, commonly seen in CRM or

CMS applications. Web form builders are ideal for non-technical users who require quick

and easy form creation, making them useful in web development projects, surveys, and

event registrations. Document automation platforms excel in organizations dealing with

complex document generation, such as insurance companies or legal firms, offering ad-

vanced features for template design, data integration, and workflow automation. Lastly,

custom programming provides the utmost flexibility for unique requirements, system

integration, and fine-grained control over form generation.

11

4 Conclusion

Graphical User Interfaces (GUIs) have evolved significantly, shaping how we inter-

act with computers and enhancing UX. This paper explored the origins and evolution of

GUIs, specifically focusing on form auto-generation in modern GUI-driven environments.

We delved into the history of GUIs, highlighting key advancements from early computers

like the Xerox Alto to the widespread adoption of GUI-centric operating systems like

Mac OS X. The SurveyJS library was examined as an example of an open-source form

auto-generation tool. Through a trial-and-error methodology, the investigation uncov-

ered how SurveyJS recognizes and renders objects from a JSON model while maintaining

basic HTML functionality. It was observed that the library utilizes keyword and object-

matching techniques to interpret the provided JSON objects. While multiple component

files redefine standard HTML tags, facilitating the seamless conversion of JSON objects

into corresponding HTML elements.

Furthermore, we discussed the different approaches to form auto-generation, in-

cluding template-based methods, database-driven approaches, web form builders, docu-

ment automation platforms, and custom programming. Each approach is biased toward

specialized use cases and offers distinct strengths and capabilities, where organizations

can choose an approach to best fit their needs. The synthesis and discussion highlighted

the growth potential of form auto-generation. Accessibility, productivity gains, dynamic

personalization, integration with emerging technologies, and cross-platform compatibility

make form auto-generation an attractive solution for efficient and user-friendly form cre-

ation. As organizations seek streamlined and intuitive form development, the popularity

of form auto-generation is expected to rise.

In conclusion, exploring GUI origins, investigating the SurveyJS library, and ex-

amining different form generation approaches contribute to a deeper understanding of this

critical aspect of modern computing. By leveraging form auto-generation techniques and

12

selecting the appropriate approach, organizations can optimize form-creation processes,

improve user experiences, and enhance overall productivity in various domains.

13

References

Arnold, K. C. R. C. and Amir, E. (1977). Screen updating and cursor movement opti-

mization: A library package. Technical report, University of California, Berkeley.

Computer History Museum (1983). 1983 | Timeline of Computer History. https://www.

computerhistory.org/timeline/1983/.

Devsoft Baltic OÜ (2020). SurveyJS - JavaScript libraries for surveys and forms. https:

//surveyjs.io/.

Leggitt, B. (2022). Word processing software: Revolu-

tion pending? https://popzazzle.blogspot.com/2022/05/

word-processing-software-revolution-pending.html.

Memon, A., Pollack, M., and Soffa, M. (2001). Hierarchical GUI test case generation

using automated planning. IEEE Transactions on Software Engineering, 27(2):144–

155.

Rahman, P. and Nandi, A. (2019). Transformer: a database-driven approach to generat-

ing forms for constrained interaction. In Proceedings of the 24th International Confer-

ence on Intelligent User Interfaces, IUI ’19, pages 485–496. Association for Computing

Machinery.

Raymond, E. and Landley, R. W. (2004). The art of Unix usability: The first GUIs.

http://www.catb.org/~esr/writings/taouu/html/ch02s05.html.

Shirriff, K. (2017). The Xerox Alto, Smalltalk, and rewriting a running GUI. http:

//www.righto.com/2017/10/the-xerox-alto-smalltalk-and-rewriting.html.

Wikipedia (2023). Aqua (user interface). https://en.wikipedia.org/w/index.php?

title=Aqua_(user_interface)&oldid=1149287464. Page Version ID: 1149287464.

https://www.computerhistory.org/timeline/1983/
https://www.computerhistory.org/timeline/1983/
https://surveyjs.io/
https://surveyjs.io/
https://popzazzle.blogspot.com/2022/05/word-processing-software-revolution-pending.html
https://popzazzle.blogspot.com/2022/05/word-processing-software-revolution-pending.html
http://www.catb.org/~esr/writings/taouu/html/ch02s05.html
http://www.righto.com/2017/10/the-xerox-alto-smalltalk-and-rewriting.html
http://www.righto.com/2017/10/the-xerox-alto-smalltalk-and-rewriting.html
https://en.wikipedia.org/w/index.php?title=Aqua_(user_interface)&oldid=1149287464
https://en.wikipedia.org/w/index.php?title=Aqua_(user_interface)&oldid=1149287464

14

Xerox (1976). ALTO: A personal computer system hardware manual. https:

//web.archive.org/web/20170904111228/http://bitsavers.org/pdf/xerox/

alto/Alto_Hardware_Manual_Aug76.pdf.

https://web.archive.org/web/20170904111228/http://bitsavers.org/pdf/xerox/alto/Alto_Hardware_Manual_Aug76.pdf
https://web.archive.org/web/20170904111228/http://bitsavers.org/pdf/xerox/alto/Alto_Hardware_Manual_Aug76.pdf
https://web.archive.org/web/20170904111228/http://bitsavers.org/pdf/xerox/alto/Alto_Hardware_Manual_Aug76.pdf

	Form Auto Generation: An Analysis of GUI Generation
	List of Figures
	Introduction
	Background
	Origins of GUI
	Middle era GUIs
	Present GUIs

	Synthesis and Discussion
	Looking into a particular library
	Methodology
	Results
	Different form generation approaches
	Template-Based Method
	Database-Driven Approach
	Web Form Builders
	Document Automation Platforms
	Custom Programming

	Prediction on where its headed and future usability
	Best use case for each scenario

	Conclusion
	References

