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Abstract 

The chorda tympani is a gustatory nerve that fails to regenerate if sectioned in rats 10 days of age 

or younger. This early denervation causes an abnormally high preference for NH4Cl in adult rats, 

but the impact of neonatal chorda tympani transection on the development of the gustatory 

hindbrain is unclear. Here, we tested the effect of neonatal chorda tympani transection (CTX) on 

gustatory responses in the parabrachial nucleus (PbN). We recorded in vivo extracellular spikes 

in single PbN units of urethane-anesthetized adult rats following CTX at P5 (chronic CTX 

group) or immediately prior to recording (acute CTX group). Thus, all sampled PbN neurons 

received indirect input from taste nerves other than the CT. Compared to acute CTX rats, chronic 

CTX animals had significantly higher responses to stimulation with 0.1 and 0.5 M NH4Cl, 0.1 

NaCl, and 0.01 M citric acid. Activity to 0.5 M sucrose and 0.01 M quinine stimulation was not 

significantly different between groups. Neurons from chronic CTX animals also had larger 

interstimulus correlations and significantly higher entropy, suggesting that neurons in this group 

were more likely to be activated by stimulation with multiple tastants. Although neural responses 

were higher in the PbN of chronic CTX rats compared to acute-sectioned controls, taste-evoked 

activity was much lower than observed in previous reports, suggesting permanent deficits in taste 

signaling. These findings demonstrate that the developing gustatory hindbrain exhibits high 

functional plasticity following early nerve injury. 
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New and Noteworthy: 

 

Early and chronic loss of taste input from the chorda tympani is associated with abnormal taste 

behaviors. We found that compared to when the chorda tympani is sectioned acutely, chronic 

nerve loss leads to amplification of spared inputs in the gustatory pons, with higher response to 

salty and sour stimuli. Findings point to plasticity that may compensate for sensory loss, but 

permanent deficits in taste signaling also occur following early denervation. 
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Introduction 

The developing nervous system is highly plastic following injury. Damage to the brain at 

an early age is often associated with good recovery (1-5). Lost functions can be restored via the 

strengthening of secondary pathways prior to synaptic pruning (6-8) or the generation of new 

connections (9,10). Depending on the timing or type of damage, however, injury can be much 

more debilitating in younger animals (11,12) and plasticity following injury can sometimes be 

detrimental (13,14). In contrast to the central nervous system, injury to the peripheral nervous 

system is consistently more disruptive in developing animals (15-18).  

Taste-nerve lesions can profoundly alter the development of the gustatory system. 

Sectioning the glossopharyngeal or chorda tympani (CT) in adult rats causes a loss of taste buds 

that is largely reversed following regeneration (19-22). When nerve section occurs at younger 

ages, taste-bud induction following regeneration is reduced (19, 23, 24). Strikingly, if the CT is 

sectioned (CTX) at P10 or younger in rats, the nerve fails to regenerate and there is a permanent 

loss of taste input from the anterior tongue (25). Bilateral CTX at P10 disrupts the typical 

developmental of taste-guided behaviors toward ammonium chloride (NH4Cl) solutions (26). 

Neonatal rats prefer high concentrations of NH4Cl to water, but adult rats typically do not prefer 

NH4Cl at any concentration (26,27). Neonatal CTX causes adult rats to prefer hypotonic and 

isotonic concentrations of NH4Cl, but preferences for NaCl develop relatively normally (26). 

Section of the CT in adult rats does not alter NH4Cl preference (26,28), indicating a 

developmentally-dependent effect of nerve lesion. 

Apart from simply removing CT input, gustatory function in the nucleus of the solitary 

tract (NTS) is minimally altered by P10 CTX (29), and the cause of CT lesion-induced changes 

in behavioral maturation is unknown. Although CTX at P10 has little influence on the 

development of intact gustatory nerve terminal fields, the organization of these terminal fields is 

altered by CTX at P5 (30). The total size of the glossopharyngeal (GL) and greater superficial 

petrosal (GSP) nerve terminal fields is not altered by neonatal CTX, but these nerves tend to 

terminate more in the dorsal NTS after P5 CT. The impact of this injury-induced change in 

terminal field development on central gustatory coding is unclear. 

The parabrachial nucleus of the pons (PbN) receives input from the NTS and is important 

for stimulus identification and signaling palatability (31,32). Neurophysiological responses to 

NH4Cl increase in the PbN across development (33). This developmental change is not reflected 
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in altered peripheral input as NH4Cl responses are similar across development in both the CT and 

NTS (34,35). Perhaps not coincidentally, the shift from neonatal NH4Cl preference to aversion 

occurs at a similar time scale to the change in PbN responses (27). Neonatal CTX may disrupt 

the development of taste-guided behaviors toward NH4Cl by impacting the development of PbN 

signaling to this stimulus. 

 To determine the impact of neonatal CTX in the development of gustatory signaling, we 

recorded in vivo neurophysiological activity from single units within the PbN after early CTX. 

To ensure that gustatory responses within the PbN were devoid of CT input, we sectioned the CT 

in all animals prior to PbN recordings. PbN responses were compared between adult animals in 

which the CT was sectioned at either P5 (chronic CTX) or immediately prior to recording (acute 

CTX) to specifically assess neurons receiving indirect input from other gustatory nerves. We 

found that gustatory responses in the PbN to NH4Cl, NaCl, and citric acid were higher in the 

early sectioned CTX group compared to acutely sectioned controls. 

 

Materials and Methods 

 

Subjects 

 Male (n =18) and female (n = 10) Sprague-Dawley rats were used for this experiment. 

Rats were bred at the University of Nebraska at Omaha vivarium with date of birth designated as 

P0. Upon weaning at P25, rats were housed socially in clear Plexiglas cages with corncob 

bedding and provided with food (Teklad) and water ad libitum. The light cycle was 12:12. All 

procedures were approved by the University of Nebraska at Omaha/University of Nebraska 

Medical Center Institutional Animal Care and Use Committee (protocol 16-096-09).  

 

Neonatal Chorda Tympani Transection  

 At P5, rats were anesthetized with Brevital® (methohexital sodium; 50 mg/kg, i.p.) and 

the right CT was located via a small incision in the ventromedial neck. After visualization of the 

CT, the nerve was either cut (chronic CTX) or left intact. The incision was then closed with a 

single silk suture. Rats were given an injection of carprofen (5 mg/kg, s.c.) and placed on a 

heating pad until recovery from the anesthetic. 
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Parabrachial Nucleus Recordings 

 

 Surgery and Neurophysiology 

After 103-283 (M = 174) days post-surgery, rats (240-540 g) were anesthetized with 

urethane (1.5-2.0 g/kg, i.p.) given in two or three doses separated by 15 min. The right tympanic 

membrane was punctured, and the right CT was transected with fine forceps in all rats. Even 

though the CT does regenerate after neonatal transection, the nerve segment proximal to injury 

remains in the adult tympani bulla as we have noted previously (30). This transection prior to 

recording ensured that no neurons in either experimental group would receive input from the CT, 

allowing for sampled neurons to be as similar as possible between groups (Figure 1). Animals 

that received CTX at P5 and immediately before recording were in the chronic CTX group, and 

those who received CTX only immediately before recording were in the acute CTX condition 

(the control group).  

An incision was made in the ventral neck, and the hypoglossal and superior laryngeal 

nerves were transected bilaterally to prevent tongue movement and swallowing, respectively. A 

cannula was inserted into the trachea via an incision posterior to the larynx to facilitate breathing. 

A long piece of tubing (PE 205) was inserted into the esophagus via the mouth and exited an 

incision in the esophagus. The end of the tubing was blocked off and flanged to prevent solutions 

from entering the esophagus and to help open the back of the mouth, separating the posterior 

tongue and palate. 

Rats were placed in a stereotaxic apparatus with ear bars. The position of a toothbar was 

adjusted until bregma and lambda were aligned in the dorsal-ventral plane. A suture placed in the 

tongue between the right foliate papillae and the intermolar imminence was secured so that the 

tongue was pulled anteriorly, medially, and ventrally to stretch open the trenches of the foliate 

and circumvallate papillae (36). We have also used this method previously for glossopharyngeal 

nerve recordings (37). A suture was inserted into the right cheek to pull it posteriorly, allowing 

easier access to the oral cavity.  

A hole was drilled in the skull approximately 0.7 mm anterior and 1.8 mm lateral from 

lambda and the dura was removed. A epoxy-insulated search electrode (100-700 kΩ; FHC) was 

inserted into the cortex at a 20° angle with the tip pointing posteriorly to avoid the transverse 

sinus. A reference electrode was clamped onto nearby skin. The electrode was lowered by a 
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microdriver (Burleigh 6000 ULN) approximately 6-7 mm until gustatory neurons were 

encountered. A stimulus mixture (0.2 M NH4Cl, 0.2 M NaCl, 0.2 M Sucrose, 0.01 M citric acid, 

0.005 M quinine) was regularly applied between water rinses to identify taste-responsive cells. 

Neural responses to gentle stretching of the jaw via a suture around the lower incisors marked the 

transition from the PbN to the mesencephalic trigeminal nucleus (38). Once strong multiunit 

activity was identified to taste stimulation, the electrode was removed from the brain and 

replaced with a custom-made glass-insulated tungsten microelectrode (1-3 MΩ). Single neurons 

were identified by the consistency of action potential amplitude and the shape of the waveform 

as observed by oscilloscope and later assessed offline. In one case, responses to two neurons 

were recorded simultaneously. Experimenters were not blind to experimental condition during 

neural recordings. 

Neural activity was bandpass filtered (300-1000 Hz) and amplified 1000 x (A-M 

Systems, 1800). Noise from 60 Hz signals were dampened with a HumBug Noise Eliminator 

(Quest Scientific) and amplified activity was monitored on an oscilloscope and loudspeaker. 

Neural activity was sampled at 20 kHz and recorded using Powerlab Chart 4.1.1 (AD 

Instruments). Data were analyzed offline using LabChart 8 Pro (AD Instruments). 

 

Taste Stimuli and Stimulation  

 Taste stimuli were delivered through 205 PE tubing that was blocked off at the tip and 

punctured with holes to allow stimuli to contact taste buds in the entire oral cavity. This tubing 

was inserted into mouth from the anterior side so that it could be easily removed. Room 

temperature stimuli were delivered through the tubing by hand-operated syringe at a rate of 

approximately 3 ml/s over 4 s. In several rats, 0.1% methylene blue was delivered through the 

tubing system in this manner. In all cases, staining was observed in the circumvallate papillae, 

right foliate papillae, soft palate, geschmacksstreifen, nasoincisor duct, and the entire dorsal 

tongue surface. Although intense staining occurred in the circumvallate papillae, neurons with 

receptive fields in this region often exhibited delayed responses or activity that increased at the 

end of stimulation. This type of delay does not occur if a stimulus delivery pipette is placed 

directly in the circumvallate trench (39,40). Therefore, it is likely that the circumvallate papilla 

was not optimally stimulated by our delivery system, as has been noted in previous reports 

(41,42). 
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Taste stimuli were reagent grade and included 0.1 and 0.5 M NaCl, 0.1 and 0.5 M NH4Cl, 

0.5 M sucrose, 0.01 M citric acid, 0.01 M quinine. All stimuli were dissolved in distilled water. 

See Figure 2 for an example a taste-responsive neuron. Stimuli were presented in a random order 

with the exception that low concentration of tastants preceded high concentrations, and different 

concentration of the same stimulus were not given immediately after one another. Between 

stimulus presentations, the mouth was rinsed with distilled water for at least 40 s. Approximately 

90 s elapsed between the administration of each stimulus. After presenting all stimuli, room 

temperature distilled water was administered in the same manner as the taste stimuli to identify 

somatosensory responses. 

Stimulus onset was identified with a custom-made device modeled after that described by 

Chang and Scott (43). Taste stimuli were applied to the stimulus delivery tube through a 

connected metal needle that was electrically coupled with a NOR gate. When the stimulus 

contacted the animal, 11 nA of current flowed through the grounded rat, triggering a 5 V output 

from the NOR gate. This output was sampled at 1 kHz and detected via software (PowerLab 

Chart 4.1.1, AD Instruments), marking the beginning of stimulus contact. Because of the high 

flow rate, differences in onset based on oral cavity area would be minimal. 

 After delivery of all stimuli, the stimulus delivery tube was carefully removed from the 

mouth and the receptive field was identified. A small brush coated with the stimulus mixture or 

(occasionally) the neuron’s best stimulus was brushed against taste areas of the mouth to identify 

neurons responding to stimulation of three areas of the oral cavity: the nasoincisor duct (NID), 

posterior palate (PP, including the soft palate and geschmacksstreifen), and posterior tongue (PT, 

including the circumvallate and foliate papillae). In one animal, a large hole was made in the 

right cheek to determine whether the PT and PP could be stimulated independently. With the 

tongue suture pulling the tongue ventrally, the posterior tongue papillae and soft palate/ 

geschmacksstreifen were sufficiently distant that one could stimulate each field independently 

without risk of stimulating both. After identifying the neuron’s receptive field, the stimulus 

delivery tube was replaced and, whenever possible, responses were again recorded to all stimuli.  

Histology 

 Once the last recording was completed, negative current was injected through the 

electrode (-6-10 µA/7 s) to make a small lesion. The rat was then overdosed with urethane and 

transcardially perfused with a modified Krebs solution followed by 8% paraformaldehyde. 
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Brains were post-fixed in 8% paraformaldehyde for at least a week and then cryoprotected with 

30% sucrose. Using a cryostat, 50 µm coronal sections were obtained of the PbN. Sections were 

mounted on gelatin-coated slides and coverslipped with DPX. An experimenter blind to 

experimental condition identified the location of lesions using darkfield microscopy. 

Assessment of Surgical Success 

 Following neonatal CTX, approximately 2/3rds of fungiform papillae are lost and ~80% 

of remaining papillae display an abnormal conical and highly keratinized morphology (24,25, 

44). These effects persist up to two years after neonatal CT denervation (30). An assessment of 

the dorsal tongue surface is, thus, an easy and reliable way to determine that the CT was 

sectioned properly at P5. The dorsal surface of each tongue was stained with 0.1% methylene 

blue and inspected under a microscope. Based on papillae morphology, the success of surgery 

was verified for all rats. 

Data Analysis 

Statistical analyses were performed either with JASP (version 0.13.1.0) or R (version 

4.0.2 with packages “effsize” and “Hmisc”). Graphs were made with GraphPad Prism, Excel, or 

eulerAPE (45). Data are presented as median  95% confidence interval (CI). For all tests, the 

alpha level was .05. 

 

 Spike Frequency 

For each cell, the standard deviation (SD) of spontaneous activity was determined using 

the 10 s period prior to stimulation with each stimulus. Neurons were identified as taste-

responsive if the net firing to at least one stimulus was ≥ 2.5 SD and greater than 1 spike / s 

(42,46). Only neurons that met this criterion were included in analyses.  

The number of spikes before and after stimulus onset was divided by the number of 

seconds measured (10) to obtain spikes per second (sps). To measure taste-evoked activity for 

each neuron, the sps before the start of stimulus administration were subtracted from the sps after 

the beginning of taste stimulation. We included spikes recorded after tastant stimulation 

stimulation (which occurred over ~4 s) because firing occasionally increased after stimulus 

administration when neurons had a receptive field that included the circumvallate papilla. 

Because NaCl-elicited activity in the GL decreases in adult rats after CTX at P10 (37), we 
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wanted to ensure that neurons with posterior tongue input were sampled whenever possible. If 

the stimulus series was presented twice, net responses were averaged. 

Many sampled neurons exhibited responses to all stimuli, including distilled water. 

Because a portion of neurons in the PbN exhibit somatosensory responses to mechanical 

stimulation of the oral cavity (47) or changes in temperature (48), these somatosensory responses 

could bias our results. For instance, a neuron that responds only to one taste stimulus, but 

responds to mechanical stimulation of the oral cavity would appear to be broadly tuned to tastes 

when in fact it is narrowly tuned if mechanical stimulation was eliminated. To limit the impact of 

somatosensory responses, we first identified whether neurons responded significantly to 

stimulation with distilled water. Stimulation with water occurred in the same mater as other 

tastants (~3 ml/s for 4 s) and neurons were considered water-responsive if the net firing (evoked 

spikes/s – baseline spikes/s) for the 5 s period after water stimulation onset was ≥ 2.5 SD of 

baseline activity and greater than 1 spike / s. We used the first 5 s of stimulation to measure 

water responsiveness to capture any potential somatosensory-related firing during stimulus 

administration. If a neuron was identified as water-responsive, the net activity (sps) from 0-10 s 

after water onset was subtracted from the net activity for each taste stimulus. Although there is 

some evidence that PbN respond to the taste of water (47), these cells represent a small portion 

of neurons in the PbN and taste responses in the periphery have only been identified in the 

superior laryngeal (49,50), a nerve we sectioned prior to recording. 

To test whether data were normally distributed, Shapiro-Wilk tests were performed for 

each experimental group (acute CTX or chronic CTX) for each spike frequency comparison 

(spontaneous activity and all seven taste solutions). For 15/16 comparisons, the p values were 

less than .05, indicating insufficient evidence for a normal distribution for most groups. We used 

nonparametric Mann-Whitney U tests to compare firing rates between as a function of sex or 

experimental condition (acute CTX vs. chronic CTX). Because assessing the impact of sex or 

experimental condition on tastant-evoked firing rates required seven tests (one for each 

stimulus), the p values for these tests were adjusted using the Holm-Bonferroni method (51,52) 

for each independent variable. Cliff’s delta (d), a non-parametric measure of effect size (53), was 

also calculated for each comparison. Values of d vary between -1 and 1, with 0 indicating that 

the distribution of data for each group are completely overlapping, and -1 or 1 indicating no 
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overlap between group distributions (54). Effect sizes may be considered small at .11, medium 

and .28, and large at .43 (55).  

Bayes Factor (BF) was calculated for each comparison as well. BF values provide a way 

to help distinguish between two types of statically non-significant results: those that suggest the 

independent variable has no effect (evidence of absence), and those that suggest there is 

insufficient data to determine the efficacy of the independent variable (absence of evidence; 56). 

In other words, BF values indicate the strength of evidence in favor of the alternative hypothesis 

(experimental groups are different), the null hypothesis (no difference between groups), or 

situations where there is insufficient evidence to favor either hypothesis. BF values above 3 

indicate a moderate evidence for the alternative hypothesis (experimental groups are different) 

and values above 10 suggest strong evidence for this outcome (57). BF values under 1/3 indicate 

moderate evidence for the null hypothesis and values between 1/3 and 3 suggest that the null and 

alternative hypotheses are similarly probable. Two-tailed Bayesian Mann-Whitney tests were run 

with JASP to determine BF values. 

Identical statistical tests were performed using a subset of data that only included neurons 

from animals where the recording location was verified with a lesion. 

 

Effects of Age on Neural Responses 

Animal ages fit the criteria for normal distribution as assessed by Shapiro-Wilk tests. The 

age of animals in each experimental group was compared with a Welch’s t test. To determine if 

the age of an animal was related to its neural responses, seven Pearson correlations were run 

between age of the animal for each neuron and the neuron’s net response to each taste solution. 

The Holm-Bonferroni method was used to correct the p values for seven comparisons.  

 

Receptive Fields 

 The receptive field for each neuron was identified as one or more of the following: NID, 

PP, or PT. Because some receptive field combinations (e.g. PP/PT) occurred in a small number 

of cells, receptive field organization was compared between neurons from chronic CTX and 

acute CTX rats by identifying the number of times each receptive field was observed. That is, if 

a cell from a rat in the acute CTX group responded to stimulation of all receptive fields, then 
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NID, PP, and PT were each listed under the acute CTX condition. Receptive field distribution 

was compared between experimental groups with a chi-squared test. 

 

Entropy 

To determine if a neuron’s breadth of tuning was affected by neonatal CTX, we identified 

entropy (H) for each cell (58) using the following equation: 

H = -K Σ pi log pi 

Where K is a scaling constant and pi is the response for each stimulus as a proportion to 

responses for all stimuli.  K was set to 1.431 for five stimuli: 0.1 M NH4Cl, 0.1 M NaCl, 0.5 M 

Sucrose, 0.01 M citric acid, and 0.01 M quinine. An H value of 0 would indicate that a neuron 

responded to one and only one stimulus, whereas a value of 1 means a neuron responded equally 

to all stimuli. Because this equation cannot handle negative responses, absolute values were 

used. To be consistent with previous reports that did not assess responses to NH4Cl, we also 

calculated entropy using four stimuli: 0.1 M NaCl, 0.5 M Sucrose, 0.01 M citric acid, and 0.01 M 

quinine. For this analysis, a K value of 1.661 was used. Shapiro-Wilk tests indicated that entropy 

data from neurons in the chronic CTX condition were not normally distributed (when calculated 

with four or five stimuli, each p < .001). Entropy was compared between experimental 

conditions with Mann-Whitney U tests. Cliff’s d effect sizes and BF10 values are reported. 

 

Inter-Stimulus Correlations 

Pearson correlations were performed for each stimulus pair to determine if the similarity 

of responses between stimuli was affected by timing of CTX. Separate correlations were 

performed for chronic CTX and acute CTX animals. Given the large number of interstimulus 

correlations for each group (n = 21), we adjusted each p value using the Holm-Bonferroni 

method (51,52).  

 

Results 

 

General Characteristics 

 Gustatory responses were recorded from 25 neurons in acute CTX rats and 25 neurons in 

chronic CTX animals. See Figure 2 for an example of a gustatory neuron recording from a 
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chronic CTX rat. Information about the animals from which neural recordings occurred is shown 

in Table 1. From each rat, activity from one to four neurons (M = 1.8) was recorded. The age of 

acute CTX rats (M ± SEM = P179.1 ± 14.9) was not significantly different from chronic CTX 

rats (167.5 ± 12.8; Welch’s t test, t(25.86) = 0.588, p = .562, Cohen’s d = .221 , BF10 = 0.401).  

Correlations between age and neural responses for each stimulus were not significant (all p 

values > .363), suggesting the time after neonatal surgery did not impact neural activity. Animal 

weights at the time of recording were not significantly different between groups (Welch’s t test, 

t(23.14) = 0.455, p = .653, Cohen’s d = .177, BF10 = 0.391), suggesting eating behavior was 

similar for all rats. 

Significant, excitatory neural responses to water occurred during stimulation (0-5 s after 

stimulus onset) for 7/25 (28%) neurons in chronic CTX rats and 7/25 (28%) cells from acute 

CTX animals. Neural activity during water stimulation could be a somatosensory response: 

either the result of oral cavity mechanical stimulation (59) or changes in temperature (48). In 

these cases, somatosensory responses would be expected to occur for all stimuli since they were 

the same temperature and presented at the same flow rate. Another possibility is that water-

elicited activity actually represents a taste response (47). When we tested whether neural 

responses to water occured after stimulus cessation (5-10 s after stimulus onset), only one neuron 

(cell #34) showed a significant response which was inhibitory and followed an excitatory 

response during stimulation. The majority of responses to water appear somatosensory and 

subtracting this response from taste-evoked activity creates a more accurate reflection of how the 

neurons respond to taste stimuli.   

 

Spontaneous Activity  

There was a non-significant tendency for male rats to have higher spontaneous activity 

than female rats (W = 220.5, p = .089, Cliff’s d = .28, BF10 = 1.004). There was no significant 

difference in spontaneous activity between chronic CTX and acute CTX rats (W = 385.5, p = 

.159, Cliff’s d = .23; BF10 = 0.597; Figure 3). Spontaneous activity was very low for many 

neurons, with six cells exhibiting no firing at all in the absence of stimulation. 

 

The Effects of CTX on Taste-Evoked Activity 
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Neural activity in response to taste stimulation was not significantly different for male 

and female rats (for each taste stimulus, p > .60). BF10 values for each comparison ran between 

.313 and .858 (M = .462), suggesting insufficient evidence to determine an effect of sex on taste 

responses. Taste-elicited activity was higher in chronic CTX rats, but not for all stimuli. 

Compared to acute CTX animals, rats receiving CTX at P5 had significantly higher firing rates to 

stimulation with 0.1 M NH4Cl (W = 458, p = .025, Cliff’s d = .47; BF10 = 7.662), 0.5 M NH4Cl 

(W = 469, p = .013, Cliff’s d = .50, BF10 = 12.788), 0.1 M NaCl (U = 444, p = .044, Cliff’s d = 

.42, BF10 = 2.874), 0.5 M NaCl (W = 441.5, p = .039, Cliff’s d = .41, BF10 = 3.053), and 0.01 M 

citric acid (W = 470, p = .013, Cliff’s d = .50, BF10 = 6.309; Figure 4). There were no significant 

differences in neural responses to stimulation with 0.5 M sucrose (W = 330.5, p = 1.000, Cliff’s d 

= .06, BF10 = .306) or 0.01 M quinine (W = 322.5, p = .854, Cliff’s d = .03; BF10 = 0.293) 

between experimental groups. The BF10 values for quinine and sucrose are less than 1/3, 

suggesting moderate evidence for a lack of effect of surgical condition of responses evoked by 

these stimuli.   Evoked responses and animal information for each cell are shown in Figure 5. 

 

Receptive Fields 

 The receptive field could be determined in 21/25 (84%) neurons from chronic CTX rats 

and 18/25 (72%) of cells from acute CTX rats. In some cases, the cell was lost before the 

receptive field could be identified and, for others, the evoked response to brush stimulation was 

not clearly distinguishable from baseline activity. The receptive field information for each 

surgical group is displayed in Figure 6. The occurrence of each receptive field (NID, PP, PT) 

was not significantly different between surgical groups (χ2 (2, N = 64) = 1.559, p = .459). No 

responses to anterior tongue stimulation were observed.  

 

Entropy 

 Entropy could not be calculated for one neuron from a chronic CTX rat (cell 50) because 

the cell had no spontaneous activity an no evoked activity for any stimulus except 0.5 M NH4Cl. 

This cell was excluded from the entropy analysis. When entropy was calculated using the 

responses to five stimuli (including 0.1 M NH4Cl), neurons from rats receiving CTX at P5 has 

significantly higher entropy compared to neurons from acute CTX rats (W = 410, p = .028, BF10 

= 1.344; Figure 7A). Similar results were found when four stimuli were used to assess entropy 
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(Figure 7B). Neurons from chronic CTX rats had significantly higher entropy than those from 

acute CTX rats (W = 411.5, p = .026, BF10 = 1.721). These findings suggest that compared to 

adult rats in which the CT was lesioned acutely, rats given CTX at P5 has more broadly tuned 

gustatory PbN neurons. However, these findings should be interpreted cautiously given the low 

Bayes Factor values (BF10 between 1/3 and 3) indicating weak evidence for the alternative 

hypothesis (56,57).  

 

Correlations Across Stimuli 

 Inter-stimulus correlations are displayed for acute CTX and chronic CTX animals in 

Table 2. Compared to acute CTX animals, rats given CTX at P5 had higher correlations between 

stimuli, and 18 out of 21 stimulus pairs were significantly correlated. This higher correlation 

between stimuli for experimental animals is consistent with the larger breadth of tuning 

following chronic CTX but may also reflect the low evoked responses to many stimuli in acute 

CTX rats. 

 

Histology 

 The location of neural recordings could be identified via a lesion in the majority of 

animals (17/28, 61%). In two brains from the P5 CTX group, the lesion was not identifiable in 

the sectioned tissue. In other cases, a lesion was not made because additional neural recordings 

were attempted, but not successful. Six lesions were reconstructed from chronic CTX rats and 11 

were identified in acute CTX animals (Figure 8). The majority of recording sites were inside or 

adjacent to the brachium conjunctivum. Although the brachium conjunctivum is not actually part 

of the PbN, it is very common to encounter gustatory neurons in this region (33,38,42,60-62), 

and we refer to these as PbN neurons to be consistent with the literature.  Lesions from acute 

CTX rats, but not from chronic CTX animals, were found in the rostral-most gustatory PbN. 

Given the smaller sample of lesions from CTX rats, it is unclear whether this difference was 

consistent between groups. There is some anatomical organization by taste quality in the PbN 

(48,63), but not in the rostral-caudal axis. We found no lesions in the medial PbN, despite this 

region containing many taste-responsive neurons (31,64). A majority of neurons in the medial 

PbN respond best to stimulation of the anterior oral cavity, including the anterior tongue (59). 

Since the CT was transected prior to recording in all animals, it is possible that activity in the 
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medial PbN was greatly diminished, making it harder to find taste-responsive neurons in that 

region.  

Because recordings were historically verified less often in chronic CTX rats and 

recording locations did not overlap completely between groups, we sought to determine whether 

tastant-evoked responses in rats with a verified lesion were representative of data from all rats. 

To accomplish this, we performed statistical analysis like those described for the entire data set 

using data only from animals in which the recording location was verified with a lesion. 

Comparisons were made using data from 21 neurons recorded from 11 acute CTX rats and 12 

neurons recorded from six chronic CTX animals. Spontaneous activity was significantly higher 

in cells from chronic CTX animals compared to acute CTX rats (W = 182.5, p = .036, Cliff’s d = 

.45, BF10 = 1.617). Compared to neurons from animals with acute CTX, cells from chronic CTX 

rats had significantly higher responses to 0.1 M NH4Cl (W = 199.5, p = .033, Cliff’s d = .58, 

BF10 = 4.498), 0.5 M NH4Cl (W = 219, p = .002, Cliff’s d = .74, BF10 = 20.761), 0.1 M NaCl (W 

= 195.5, p = .040, Cliff’s d = .55, BF10 = 3.691), and 0.5 M NaCl (W = 199.5, p = .033, Cliff’s d 

= .58, BF10 = 5.929). There was a non-significant tendency for responses to 0.01 M citric acid to 

be higher in acute CTX rats compared to those in the chronic CTX condition (W = 189.5, p = 

.054, Cliff’s d = .50, BF10 = 1.816). There was no significant difference between experimental 

groups in neural responses to 0.5 M sucrose (W = 156.5, p = .522, Cliff’s d = .24, BF10 = 0.506) 

or 0.01 M quinine (W = 140.5, p = .600, Cliff’s d = .12, BF10 = 0.381). There was a non-

significant tendency for Entropy to be higher in chronic CTX rats compared to acute CTX 

animals when assessed with either five stimuli (W = 175, p = .069, Cliff’s d = .39, BF10 = 0.886) 

or four stimuli (W = 174, p = .075, Cliff’s d = .38, BF10 = 1.059). These findings are very similar 

to those using the entire data set, suggesting that the observed differences in neural responses 

between groups are related to differences in PbN activity. See Figure 5 for gustatory responses 

for all neurons with or without a verified lesion. 

  

Discussion 

 Early CTX alters the development of gustatory responses in the PbN. Compared to adult 

animals in which the CT was transected immediately prior to recording, adult rats given CTX at 

P5 had higher tastant-evoked firing rates to NH4Cl, NaCl, and citric acid. There was no 

significant difference in PbN activity to sucrose or quinine stimulation, suggesting that altered 
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responses are stimulus specific. After CTX at P5, PbN cells had higher breadth of tuning and 

larger across-neuron correlations. Together, these results suggest that the developing taste system 

is highly plastic and may respond to early sensory loss by amplifying spared inputs. 

 Apart from simply removing CT input, CTX at P10 has little effect on gustatory 

responses in the NTS (29), suggesting that neonatal CTX has minimal impact on gustatory 

responses in PbN-projecting NTS neurons. One possible explanation for the present results is 

that early, chronic CTX alters the structure of ascending inputs from the NTS. Similar to our 

findings, there is higher tastant-evoked firing, inter-stimulus correlations, and breadth of tuning 

in the NTS compared to peripheral nerves (34,35,65-71, reviewed in 72). These changes appear 

to be caused by convergence of peripheral nerve fibers onto NTS neurons (29,36,73,74). A 

similar increase in convergent afferents could occur from PbN-projecting NTS neurons 

following a chronic loss of CT input. This hypothesis could be tested by injecting small numbers 

of palatal taste buds (75) with a transsynaptic neural tracer such as pseudorabies virus (76) after 

P5 CTX. If this model is correct, one would expect that the ratio of labeled PbN neurons to 

labeled NTS neurons would be higher in neonatally transected animals compared to controls.  

Another potential cause of the differences we observed between surgical groups is 

changes in top-down inputs to the PbN following chronic CTX. The majority of PbN neurons 

receive input from the lateral hypothalamus, amygdala, or gustatory cortex (77-79). Activation of 

these forebrain regions typically leads to inhibition of gustatory responses in a way that reduces 

“side band” interference and leads to a reduced breadth of tuning (77,78). Removal of signals 

from the central amygdala via bilateral lesion increases PbN responses to some taste stimuli (80). 

It is possible that a reduction in top-down signals could occur after chronic CTX, facilitating 

gustatory responses in the PbN. Although stimulating the amygdala decreases entropy and 

interstimulus correlations in gustatory PbN neurons (77,80), lesioning the amygdala does not 

alter breadth of tuning or correlations between stimuli (80). Additional experiments would be 

needed to determine how afferent and efferent inputs to the PbN change following chronic CTX.  

 In the current study, we decided to use acute CTX rats as controls rather than intact 

animals. If we wanted to directly compare the responses of neurons without CT input using intact 

rats, we would need to sample a large portion of neurons without a receptive field on the anterior 

tongue or foliate papillae, both regions innervated by the CT (81). Roughly 15% of NTS neurons 

meet this strict criterion (29,82) and a similar amount would be expected in the PbN (59). Using 
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control rats in which the CT was cut immediately before recording allowed us to sample neurons 

that receive input from taste buds innervated by the GL and GSP, ensuring that neurons were as 

similar as possible between groups. One potential concern with our control group is that cutting 

the CT in acute CTX rats prior to recording could have possibly altered gustatory responses 

beyond simply removing CT input. Anesthetizing the CT decreases taste responses from NTS 

neurons not innervated by the CT (82), but this change is small in magnitude (~17%) and only 

noted when the whole mouth is stimulated; no effect of CT anesthesia was found when the 

foliate papillae, nasoincisor duct, or circumvallate papilla were stimulated individually. Thus, 

removing signals from the CT is unlikely to have much impact on afferent signals from the NTS. 

Immune responses following CTX reduce amiloride-sensitive NaCl responses in the contralateral 

CT one day post-surgery (83,84), raising the possibility of functional changes related to immune 

responses after acute CTX. However, taste buds innervated by the GL have little to no amiloride-

sensitive NaCl responses (37,85,86) and immune responses in the NTS after CTX do not occur 

until two days after surgery (87). The few hours between acute CTX and neural recordings are 

unlikely to be of sufficient duration for the injury-induced immune response to impact PbN 

function. We believe the time between acute CTX and neural recordings was too brief for 

changes in neural function other than CT removal to occur.  

Developing rats shift from preferring high concentrations of NH4Cl and NaCl as neonates 

to avoiding NH4Cl and hypertonic NaCl concentrations as adults (27). Neonatal CTX disrupts 

the development of NH4Cl aversion but has minimal impact on how NaCl preferences develop 

(26). Despite the profound difference in behavioral development between these stimuli following 

early CTX, we found that responses to NH4Cl and NaCl were both enhanced after P5 CTX. 

However, unlike rats with an intact CT (33), PbN responses to NH4Cl were consistently higher 

than activity to NaCl. The PbN typically contains a large number of sodium-best neurons that 

respond well to hypotonic NaCl (77, 79) at concentrations that are highly palatable to rats 

(26,88). Because PbN neurons are important for signaling palatability (31,32), it is possible that 

neurons that would normally signal preferred concentrations of NaCl are repurposed for NH4Cl 

signaling following early CTX. It would be informative to assess whether similar changes in 

PbN function occur after chronic CTX in adult rats. Although changes in NH4Cl preference do 

not occur after adult CTX (26,28), we cannot know with certainty that the plasticity we observed 

in the current study is developmentally related. 
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Differences in neural responses between acute CTX and chronic CTX conditions open 

the possibility that the brain compensates for early CT loss. However, the increase in tastant-

evoked responses following chronic CTX that we observed in the present study does not appear 

to restore normal gustatory signaling. Compared to PbN responses from controls rats from 

previous studies (33,61,89), the mean responses to NaCl, NH4Cl, and sucrose are lower in rats 

given chronic CTX. Responses to NaCl after chronic CTX are particularly low, with 0.1 M NaCl 

eliciting an of average 2.9 spikes/s in the present study vs. ~24 spikes/s in urethane-anesthetized, 

intact rats (89). Furthermore, the ability of the PbN to discriminate between stimuli appears to be 

impaired in chronic CTX rats. Adult CTX impairs detection and discrimination of salts (90-93). 

This impairment is consistent with our finding that NH4Cl and NaCl responses were significantly 

correlated in acute CTX rats, suggesting the PbN responds similarly to these salts. If changes to 

PbN function after chronic CTX were compensatory, one would expect interstimulus correlations 

to reduce, allowing the PbN to better distinguish between taste stimuli. However, correlations 

between NaCl and NH4Cl are higher in the chronic CTX group and the responses to 18/21 

stimulus pairs are significantly correlated. Although partial compensation for CT loss may occur, 

chronic CTX rats appear to have permanent deficits in gustatory signaling. Given our findings, a 

more systematic study of taste-guided behavior following early CTX would be revealing. 
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Figure 1. Diagram of the experimental design showing a rat’s head as viewed from the side. At 

P5 the CT was accessed through the neck and either cut (chronic CTX group) or left intact (acute 

CTX group). The location of this surgery is shown with scissors. After 100+ days, PbN 

recordings were performed. Prior to recording the superior laryngeal nerve was transected, and 

the CT was cut in the middle ear of all animals (each cut shown with a red X). A microelectrode 

was then inserted into the PbN to perform extracellular recordings. 

 

Figure 2. Gustatory activity from a single PbN neuron from a male chronic CTX rat. This 

neuron’s receptive field was in the nasoincisor duct (NID) only. The dashed blue line indicates 

stimulus onset. This neuron did not exhibit a significant somatosensory response to water 

stimulation.  

 

Figure 3. Spontaneous activity 10 s prior to taste stimulation. Each dot represents the baseline 

activity from a single neuron. Bars indicate median  95% CI. The number of neurons is noted 

for each group (n). Spontaneous activity was compared between experimental groups using a 

Mann-Whitney U test. There was no significant difference between surgical groups. 

 

Figure 4. Net spikes over 10 s following taste stimulation for all sampled PbN neurons. All rats 

received CTX immediately before recording. Those in the chronic CTX group received CTX at 

P5 as well. Each dot represents the response of a single neuron and the number of neurons is 

shown (n). Bars display median  95% CI. Net spikes were compared between experimental 

groups for each stimulus using Mann-Whitney U tests with Holm-Bonferroni corrections for 

seven comparisons. 

* p < .05 

 

Figure 5. Net activity evoked by all stimuli for neurons from acute CTX rats (top) and Chronic 

CTX rats bottom. Cells are ordered by their response to 0.5 M NH4Cl. Below the cell number, 

one can find the sex of the rat, whether the recording location was verified with a lesion (Y = 

yes, N = No), and the postnatal age (in days) of the rat at the time of recording. The cell numbers 

displayed here correspond to those referenced in text.  
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Figure 6. Venn diagram displaying receptive field information for neurons from Chronic CTX 

rats (n = 21) or Acute CTX rats (n = 18). The number of neurons is indicated for each receptive 

field. Cells for which the receptive field could not be identified are not shown. NID, nasoincisor 

duct; PP, posterior palate; PT, posterior tongue. This diagram was made with eulerAPE (Micallef 

& Rodgers, 2014). The distribution of receptive fields was compared with a chi-squared test. 

There was no significant difference in receptive field distribution between experimental groups. 

 

Figure 7. Entropy for neurons from acute CTX rats and chronic CTX rats. (A) Entropy values 

(median  95% CI) calculated using responses to five stimuli: 0.1 M NH4Cl, 0.1 M NaCl, 0.5 M 

sucrose, 0.01 M citric acid, and 0.01 M quinine. Each dot represents the entropy value from a 

single neuron (B) Entropy values (median  95% CI) calculated using responses to four stimuli: 

0.1 M NaCl, 0.5 M sucrose, 0.01 M citric acid, and 0.01 M quinine. Entropy values were 

compared between experimental groups using Mann-Whitney U tests. 

* p < .05 

 

Figure 8. PbN lesions used to mark the location of neural recordings. Coronal sections after a 

lesion are show for the right PbN under brightfield (A) and darkfield (B) illumination. (C) 

Reconstruction of lesion sites in six rats from the chronic CTX group (red squares) and 11 from 

the acute CTX condition (blue circles) for three different locations in the PbN. The top image is 

the most rostral and the bottom image is most caudal. Numbers on the right refer to approximate 

distance from bregma in mm. BC, brachium conjunctivum; Me5, mesencephalic trigeminal 

nucleus; MPB, medial parabrachial nucleus; LPB, lateral parabrachial nucleus 
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