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Motion capture laboratories can measure multiple variables at high frame rates, but we can only measure the average metabolic
rate of a stride using respiratory measurements. Biomechanical simulations with equations for calculating metabolic rate can
estimate the time profile of metabolic rate within the stride cycle. A variety of methods and metabolic equations have been
proposed, including metabolic time profile estimations based on joint parameters. It is unclear whether differences in estimations
are due to differences in experimental data or due to methodological differences. This study aimed to compare two methods for
estimating the time profile of metabolic rate, within a single dataset. Knowledge about the consistency of different methods could be
useful for applications such as detecting which part of the gait cycle causes increased metabolic cost in patients. Here we compare
estimations of metabolic rate time profiles using a musculoskeletal and a joint-space method. The musculoskeletal method was
driven by kinematics and electromyography data and used muscle metabolic rate equations, whereas the joint-space method used
metabolic rate equations based on joint parameters. Both estimations of changes in stride average metabolic rate correlated
significantly with large changes in indirect calorimetry from walking on different grades showing that both methods accurately track
changes. However, estimations of changes in stride average metabolic rate did not correlate significantly with more subtle changes
in indirect calorimetry due to walking with different shoe inclinations, and both the musculoskeletal and joint-space time profile
estimations did not correlate significantly with each other except in the most downward shoe inclination. Estimations of the relative
cost of stance and swing matched well with previous simulations with similar methods and estimations from experimental
perturbations. Rich experimental datasets could further advance time profile estimations. This knowledge could be useful to
develop therapies and assistive devices that target the least metabolically economic part of the gait cycle.

Author summary
Respiratory oxygen consumption measurements allow recording of the average metabolic cost of walking, but the slow rate of
these measurements prevents assessing which part of the gait cycle has the highest metabolic cost. Simulation methods allow
estimation of the time profile of metabolic cost within the gait cycle. We compared estimations of the metabolic cost of walking using
a method that is based on kinematic and electromyography recordings from participants in conjunction with muscle metabolic rate
equations and a method based on joint kinematics and kinetics. While both methods are able to accurately estimate large changes
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in the average metabolic cost from walking on different inclinations, the time profiles estimated by the two methods are different,
indicating that estimations of the time profile of metabolic cost are dependent on the estimation method. Both estimation methods
matched well with the results from experimental perturbation studies that suggest that the metabolic cost of the swing phase is
approximately 10% to 20% of the metabolic cost of the entire gait cycle. Advances in estimations of the time profile of metabolic
cost could lead to practical applications such as designing rehabilitation robots that assist specifically during the phase with the
highest metabolic cost.
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Introduction
Would we be able to detect and understand the effects of gait impairments if we could capture only average metrics instead of time
series? Motion capture laboratories can currently perform measurements of a person's movements (kinematics), forces (kinetics),
and muscle electromyography (EMG) at hundreds of frames per second, which allows us to analyze the time profiles of these
variables within the stride cycle. Energy from food is supplied to the human body in the form of chemical energy in the muscles
(metabolic energy expenditure). This metabolic energy expenditure is one of the main determinants of the way we walk [1–5], and
indirect calorimetry measurements are an important tool for understanding how increases in metabolic cost restrict the mobility of
clinical populations [6–8]. In contrast to EMG and kinematic measurements, the metabolic cost can be measured only once per
breath, and one needs to average several minutes of data to obtain a reliable average measurement [9]. As a result, we cannot

View PDF



http://creativecommons.org/licenses/by/4.0/


1/13/2021 Differences between joint-space and musculoskeletal estimations of metabolic rate time profiles

https://journals.plos.org/ploscompbiol/article?id=10.1371/journal.pcbi.1008280 3/31

directly measure which phases of the stride cycle have an increased metabolic cost in patient populations. Knowing such
information would allow the design of assistive devices or therapies that specifically target phases of gait with increased metabolic
cost.

The cost of walking can also be estimated using simulations with muscle metabolic rate equations [10–17]. These equations allow
the time profile of the metabolic rate within the stride cycle to be computed. Umberger et al., [17] developed muscle metabolic rate
equations that have been widely used [12,16,18–20], which divide muscle metabolic rate into components due to energy loss from
heat production during activation and maintenance of activation of muscle fibers (activation-maintenance heat-rate), energy loss
from heat production during shortening and lengthening of muscle fibers (shortening-lengthening heat-rate), and mechanical fiber
work. A follow-up study from Umberger [20] applied muscle metabolic rate equations in a 2D model with 12 muscles per side that
are each composed of a contractile, series elastic element, and parallel element (Hill-type muscles [21]). Umberger [20] used
forward dynamics simulation to predict the effect of muscle excitations in a rigid body model. Initial conditions were based on
motion capture data, and optimization was used to solve the redundancy problem where different muscle excitations can produce a
possible gait pattern. The optimization identified the muscle excitation patterns that produced a cyclic gait, and that minimized a
cost function based on the muscle metabolic rate equations [17] according to the assumption that humans move in a way that
minimizes metabolic cost. Using the resulting muscle behaviors, Umberger [20] obtained the first detailed estimation of the time
profile of metabolic rate during the walking stride cycle. Kim et al., [22] and Roberts et al., [23] argue that there are specific
challenges associated with muscle models because they simulate only a subset of muscles and because complicated interactions
between muscles and other tissues are difficult to simulate. They developed equations to estimate the time profile of metabolic rate
as a function of joint parameters of a 3D full-body model [22,23]. Their equations also divide metabolic rate into subcomponents
due to activation-maintenance, shortening-lengthening, and mechanical work. Finally, their model only uses joint moments and joint
angular velocities as inputs in combination with coefficients that have been optimized based on experimental data from walking at
different speeds.

Certain experimental studies have aimed to partition metabolic cost into functional roles, such as body weight support and center-
of-mass acceleration [24,25], yet others have aimed to partition metabolic cost into different temporal phases including stance,
step-to-step transition, and swing [26–29]. More specifically, the metabolic cost of the swing phase was estimated to range from
10% to 20% of the cost of the entire stride cycle based on experiments that involved assisting swing initiation with bungee cords
[29] and increasing the body mass [27]. Another study measured that the metabolic cost of swinging one leg backward and forward
while standing on the other leg is 35% of the total metabolic cost of walking [28]. By assuming that the cost of swinging the legs
forward is one-half of the cost of swinging the legs in both directions, one could estimate that the cost of the swing phase is 17% of
the metabolic rate of walking. It was estimated that the cost of the step-to-step transitions is 45% of the entire stride cycle by
independently manipulating body mass and body weight with a weight vest and a body weight support harness [26]. Estimations of
the temporal distribution of metabolic rate are not always consistent. Estimations of the relative cost of the swing phase derived
from experimental studies (no more than 20% [27], 10% [29], ~17% [28]) are lower than estimations from simulation studies (29%
[20] and 26% [19]). Estimations of the total cost of both double support phases (approximately 45%) from experiments with added
mass and body weight support [26] are higher than those from certain simulation studies (27% [19,20]). The forward simulation
from Umberger [20] predicts a higher cost for the weight-acceptance phase and a lower cost for the push-off phase compared to
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the joint-space estimation method from Roberts et al., [23]. These inconsistencies could be due to differences in the estimation
methods [12,14,30] or differences in measurement data due to participant selection, walking conditions (e.g., speed, shoes),
measurement errors (e.g., soft tissue artifacts, [31]), and marker placement artifacts [32].

In the present study, we compared the following two methods for estimating the time profile of metabolic cost: an EMG-driven
musculoskeletal simulation with muscle metabolic rate equations from Umberger et al., [17], and a joint-space method [23] (Fig 1).
We applied both methods to the same experimental data to exclude the possibility that differences in metabolic rate estimations are
due to differences in underlying measurement data. Knowledge about the level of confidence in estimations of the time profile of
metabolic cost could be useful for practical applications. For example, in a study that highlights an elastic exoskeleton that reduced
the metabolic cost of walking, the authors speculated that one of the conditions with a high spring stiffness reduced the metabolic
rate associated with mechanical work during single support, but it increased the metabolic rate associated with muscle activation
rate during push-off [33]. Improved metabolic rate time profile estimation methods could be used to verify such hypotheses and to
inspire novel assistance strategies to reduce metabolic rate over the entire gait cycle. Improved estimations of the time profile of
metabolic cost could also be used to inform which predictive methods realistically simulate walking. Finally, improved knowledge on
whether the cost of the swing phase is negligible or not can help justify choices between simulation methods that assume that leg
swing is ballistic [34] and simulation methods that include a nonzero leg swing cost [35]. Such knowledge has the potential to
advance the study of the energetic determination of human behavior and applications of such methods.

Fig 1. Flow chart of both metabolic rate time profile estimation methods.
The musculoskeletal estimation method uses a musculoskeletal model driven by joint kinematics and EMG signals in
conjunction with the muscle metabolic cost equations [17]. This method also used joint moment data for optimizing the
participant-specific muscle parameters but not for the metabolic rate estimation. The joint-space estimation method uses only
the joint kinematics and joint moments as inputs [23].
https://doi.org/10.1371/journal.pcbi.1008280.g001

We selected the Umberger metabolic cost equations and the joint-space method because both methods have been introduced
specifically for estimating the time profile of metabolic rate in their respective studies [20,23]. Since our goal was not to predict
future experimental conditions but instead to use experimental data to estimate a physiological time series (i.e., the time profile of
metabolic cost), we used the available EMG data from a recent experiment [36] to drive the musculoskeletal method. This offers the
advantage of capturing the neural drive of the participants more realistically than musculoskeletal simulations that estimate the
muscle activation through an optimization [37]. We chose to use the Umberger metabolic rate equations since these are currently
the most frequently used equations, and because they have proven to correlate well with indirect calorimetry measurements [12].
An earlier version of the joint-space method also showed acceptable correlations in this comparison [12]. The musculoskeletal
method and the joint-space method are fundamentally different. In the musculoskeletal method, we used the EMG and kinematics
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as input, whereas in the joint-space method, we used only joint moments and joint angular velocities (Fig 1). The musculoskeletal
method is more tied to theories about the metabolic cost. In contrast, the joint-space method is based on empirical data that was
used to estimate relationships between joint behavior and metabolic cost [23].

Hicks et al., [38] propose a validation strategy where estimations are made for multiple movement conditions and the relative
change in estimations are compared to the relative change in the reference measurements. We conducted such a trend-validation
study by comparing the changes in estimated stride average metabolic rate to the changes from indirect calorimetry measurements
during walking at different treadmill grades (downhill, level, and uphill) and walking with different shoe inclinations (downward, level,
and upward). The treadmill grade conditions are of interest because they lead to substantial changes in metabolic rate, and the
results can be compared to other metabolic rate estimation studies [12,39]. Downhill walking can cause increases in muscle
activation [40] required to perform negative joint work [41] and thereby can be used to evaluate how well both methods estimate the
changes in metabolic rate due to negative work. Furthermore, walking with different shoe inclinations is of interest since it mimics
the effects of suboptimal muscle lengths (e.g., in cerebral palsy patients [8]). As suggested by Koelewijn et al. [12], different walking
conditions can serve as a test case of whether estimation methods could be useful in estimating the effects of clinical interventions.
Estimations of the time profile of metabolic rate, which is the main focus of the present study, can be improved by scaling the
estimated time profile such that the stride average corresponds to the absolute metabolic rate from indirect calorimetry. Therefore,
we did not evaluate how accurately the estimation methods tracked changes in absolute units (W kg ). Instead, we focused on
how well they tracked changes in relative units (% of reference condition). We evaluated the correlations between changes in costs
of different phases of the gait cycle between both estimation methods, and we further compared the estimations to values reported
in the literature. There is no direct measurement of the time profile of metabolic rate; thus, this comparison between estimations of
the cost of different phases provides an initial view of the variability between estimations from different methods, but it is not an
absolute validation.

Materials and methods
Ethics statement

The study was approved by the University of Nebraska Medical Center Institutional Review Board. Prior to the experiment all
participants provided written consent for data collection, analysis, and publication.

Experimental dataset

We conducted analyses on data from a previous experiment that involved walking with different types of modular shoes and at
different grades during multiple five-minute conditions [36] (Fig 2A). The metabolic rate was recorded using indirect calorimetry (K5,
Cosmed, Rome, Italy). We recorded 3D kinematics using motion capture (VICON Vero, Oxford Metrics, Yarnton, UK; 2000 Hz) from
41 reflective markers placed on anatomical landmarks on the skin or tight-fitting suit and on the exterior of the shoes according to a
modified Helen Hayes marker set [42]. We recorded ground reaction forces using a treadmill with separate belts that measure the
separate ground reaction forces of each leg (Bertec, Columbus, OH, USA; 2000 Hz), and muscle activation using EMG (Trigno TM,
Delsys, USA; 2000 Hz). Motion capture and EMG measurements lasted 30 seconds during the last minute of each condition (Fig
2B). Resting metabolic rate was also recorded during a five-minute standing condition before the walking conditions. Since
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metabolic cost estimation methods require data from all the recorded muscles and joints, we selected data from a subset of 6
participants (age 23.5 ± 2.1 years, mass 79.9 ± 13.8 kg, height 175.7 ± 7.0 cm; mean ± SD) that included trials only where the EMG
recordings from all muscles were free from artifacts and had no marker trajectory gaps. We recorded EMG of the muscles of the
right leg that represent the different primary functions required for sagittal plane movement during walking: soleus (uni-articular
plantarflexion), gastrocnemius medialis (bi-articular plantarflexion), tibialis anterior (dorsiflexion), vastus medialis (uni-articular knee
extensor), rectus femoris (knee extension and hip flexion), biceps femoris (knee flexion and hip extension) and gluteus maximus
(uni-articular hip extension). The conditions included walking at 1 m∙s  with level shoes at three treadmill grades (6° downhill, level,
and 6° uphill) and walking on a level treadmill with five shoe inclinations (- 7°, - 3°, 0°, 3°, 7°). The treadmill grade conditions are of
interest because they lead to large changes in metabolic rate and have been used as a paradigm for evaluating metabolic rate
estimation methods [30,39]. The shoe inclination conditions allow us to evaluate whether metabolic time profile estimations are
sensitive enough to measure more subtle changes in metabolic cost for the stance phase due to the altered muscle configurations.
Additional details on the experimental procedure that were used in the present study can be found in the study by Antonellis et al.,
[36].

Fig 2. Experimental procedures.
(a) Conditions. We analyzed previously collected data from walking with level shoes at downhill, level and uphill treadmill
grades (-6, 0 and +6°), and walking on a level treadmill with shoes with different outsole inclinations (from -7 to +7°) [36]. The
red lines indicate the treadmill grades and shoe inclinations. (b) Measurements. We measured metabolic rate using indirect
calorimetry, 3D kinematics using motion capture, ground reaction forces using a force treadmill, and muscle activation using
surface EMG sensors.
https://doi.org/10.1371/journal.pcbi.1008280.g002

Data processing

Breath-by-breath metabolic cost was calculated based on oxygen consumption and carbon dioxide production across the last two
minutes of each condition using a standard formula [43]. The net metabolic rate of walking was calculated by subtracting the
metabolic rate of standing at rest from that under each walking condition (S1 Table). EMG data were high-pass filtered with a 20 Hz
cut-off, then rectified and low pass filtered with a 6 Hz cut-off. Processed EMG signals were normalized based on maximum
voluntary contraction (MVC) measurements for each joint. We verified that the magnitudes of the normalized EMG signals were
within similar ranges as normative data for EMGs normalized to MVC measurements [44]. In one participant for whom the
normalized EMG signals of the soleus and gastrocnemius medialis during the uphill walking trial exceeded the MVC value, we re-
normalized those EMGs to the maximum value of this trial [19]. We filtered the ground reaction forces with a low pass Butterworth
filter with a 6 Hz cut-off [36,45]. Motion capture data were processed using OpenSim (version 4.0, SimTK, Santa Clara County,
California; [46,47]) with the model from Rajagopal et al., [48] (Fig 3A). We chose this model since it is based on detailed
morphological data from cadavers and magnetic resonance imaging. The arms were removed from the original model since we did
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not record their kinematics. We scaled the model using the scaling tool based on motion capture data from a static pose with the
“adjust model markers” and “preserve mass distribution” options. The calculated mass distribution was adjusted to account for the
mass of the shoes. The inverse kinematics tool was used to estimate the joint kinematics and muscle paths from the marker data
(Fig 4). In this procedure, we restricted the ankle and knee motion to one degree of freedom (flexion and extension), which should
be a reasonable approximation for walking, but we used all three degrees of freedom for the hip, to realistically simulate the hip
movement of walking. We used the inverse dynamics tool with a 6 Hz cut-off filter setting for the marker coordinates to calculate the
joint moments. Furthermore, the joint moments were used as inputs for the joint-space estimation method of the metabolic rate time
profile [23] (Fig 3B) and as inputs for an optimization of the muscle parameters in the musculoskeletal method. The analysis tool
was applied with a 6 Hz cut-off filter to calculate 3D kinematics, which were also used for estimating the metabolic rate with the
joint-space method [23] as well as for driving the musculoskeletal simulation. We segmented all data into strides that start at the
ipsilateral heel strike and end with the next ipsilateral heel strike based on foot contact detection from ground reaction force data
(S1 File).

Fig 3. Models for musculoskeletal and joint-space methods.
Kinematic, kinetic, and musculoskeletal analyses were performed in OpenSim using a model based on Rajagopal et al., [48].
(a) Musculoskeletal method. Schematic of the model that was used to estimate muscle-tendon paths and calculate the
muscle metabolic rate, and the degrees of freedom that were used for each joint. The muscles shown were simulated based
on EMG recordings. (b) Joint-space method. Schematic of the joints that were used to estimate the metabolic rate time profile
using the method from Roberts et al., [23] and the sign conventions for joint angular velocity and joint moment.
https://doi.org/10.1371/journal.pcbi.1008280.g003

Fig 4. Processing methods.
Flowchart describing the steps that were used to process the recorded data for the inverse kinematics, inverse dynamics, and
forward dynamics muscle state estimation. The default muscle parameters from the scaling step (tendon slack length and
optimal fiber length) were optimized with a generalized pattern search algorithm to maximize the agreement with the moments
from the inverse dynamics. The optimized muscle parameters were used as inputs for the musculoskeletal simulation that
was used for the estimation of metabolic rate with muscle metabolic rate equations. The data from the kinematic and inverse
dynamic analyses were used as inputs for the joint-space metabolic rate estimation.
https://doi.org/10.1371/journal.pcbi.1008280.g004
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Musculoskeletal simulation

We removed all muscles from the original model of Rajagopal et al., [48] except for those from which we recorded EMG signals
[18]. Similar to a previous study [49], we drove the lateral gastrocnemius based on EMG data from the medial gastrocnemius since
EMG signals were only recorded for the medial gastrocnemius. Muscles were simulated as Hill-type muscles using the Millard
muscle model in OpenSim [50]. The standard muscle parameters that were provided with the model were used as the initial
settings, similar to other studies [50–53] (Table 1). For the maximum isometric force, we used the sums of muscle groups that were
represented by the muscles from which we measured the EMG signals. All length-dependent muscle parameters were initially
adjusted for each participant by running the scale tool in OpenSim on the motion capture measurement of the standing position (Fig
4). The software calculates a scale factor for how much the length of each muscle-tendon actuator needs to be adjusted for the
model to match the experimental marker positions while maintaining the relative geometry. This scale factor for each muscle is then
applied to all length-dependent muscle parameters (e.g., tendon slack length, optimal fiber length). We prescribed the motion from
the kinematic analysis to the musculoskeletal model using a MATLAB function [54]. Finally, we used the forward dynamics tool in
OpenSim with the prescribed motion, the processed EMG signals as controls, and the default actuator settings to simulate the
behavior of the different components of the muscle-tendon unit (e.g., fiber length, tendon force). This is different from studies where
forward simulation was used to estimate full-body movement from muscle forces and musculoskeletal dynamics that begin from an
initial pose and velocity (e.g., [20]). We used the fifth order Runge-Kutta-Merson integrator in OpenSim to solve the dynamic
equations for the muscle states in the forward dynamics tool. We did not specify an initial state, which makes the software start
from the default muscle states as the initial states.

Table 1. Muscle parameters in musculoskeletal simulation and muscle metabolic rate estimation.
https://doi.org/10.1371/journal.pcbi.1008280.t001

Muscle-parameter optimization and validation

Different studies use optimization methods to improve the scaling of the muscle-parameters to maximize the agreement between
muscle-generated and inverse dynamics moments [19,56–58]. We chose to optimize the tendon slack length and optimal fiber
length for each muscle of each participant (Fig 4) since it is expected that joint moments are most sensitive to these two
parameters [56,59–62] and several studies that involved an optimization step had used these muscle-parameters [19,56,61]. Our
optimization cost function was based on the mean squared errors (MSEs) between the net sagittal plane joint moments generated
by the simulated muscles and the net sagittal plane joint moments measured through inverse dynamics. The muscle-generated net
joint moments were calculated by multiplying the tendon force of each muscle by its moment arm and by calculating the net result
from all the extensors and flexors around each joint. For the hip joint, we only evaluated the mean squared error of the phase
where the hip extension moment from inverse dynamics is in the sagittal plane extension direction since our model did not include
uni-articular hip extensor muscles. Hip flexion during walking appears to come mostly from stretch and recoil of ligaments instead of
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muscles [19,63], and not modeling metabolic cost from uni-articular hip flexors, therefore, appears to be a reasonable
approximation. In the cost function, we included a number of penalty terms that, through trial-and-error, were found to be useful to
avoid unrealistic solutions [20,64,65]. One term was designed to avoid solutions where a muscle did not apply force. Another
penalty term was designed to avoid solutions where the tendon force of the soleus was lower than the mean tendon force of the
medial and lateral gastrocnemii [66,67]. Similar to Markowitz and Herr, [19], we also used a penalty term to constrain tendon slack
lengths and optimal fiber lengths to stay within physiologically realistic operating conditions. In summary, the cost function was as
follows:

(1)

where c , c , and c  were all set to 10 . These coefficients were chosen to be much larger than the mean squared errors, such that
the optimization quickly moves to regions where all the penalty terms are zero. ZeroForcePenalty is equal to the number of muscles
for which the tendon force stays zero over the entire stride. ZeroForcePenalty is zero if all the tendon forces are greater than zero
for at least a part of the stride. PlantarflexorDistributionPenalty is equal to one if the tendon force of the soleus is lower than the
mean tendon force of the medial and lateral gastrocnemii. Otherwise, PlantarflexorDistributionPenalty is zero.
PhysiologicalRangePenalty is equal to the number of muscles for which the following boundary criteria are not satisfied:

(2)

and

(3)

where fiber length is the adjusted fiber length of each simulation iteration, optimal fiber length is the adjusted optimal fiber length of
each simulation iteration, and width is the width of the force-length curve [20]. If the fiber length stays between the boundaries for
all muscles, then PhysiologicalRangePenalty is zero.

For each participant and muscle group, we searched for the tendon slack lengths and the optimal fiber lengths that minimized the
cost function using the generalized pattern search function in MATLAB. The algorithm was programmed to identify the optimal
muscle parameters starting from the initial output from the scale tool, within a range from 50 to 150% [56]. The algorithm terminated
when all the penalty terms were zero, and the improvements in the cost function were smaller than 10  or 300 iterations had been
completed. The optimized muscle parameters (Table 2) were used in the simulations for the metabolic rate estimations. To evaluate
the final result of the optimization, we reported the root mean square error of the muscle-generated moments compared to the joint
moments from inverse dynamics.

1 2 3
6

−6
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Table 2. Optimized muscle parameters.
Optimal fiber lengths and tendon slack lengths that minimize the cost function and were used for calibrating the muscle
parameters (mean ± inter-participant s.e.m.).
https://doi.org/10.1371/journal.pcbi.1008280.t002

Musculoskeletal metabolic rate estimation

Metabolic rate was estimated from the musculoskeletal simulation using a version of muscle metabolic rate model [17] with
additional modifications [16,20,68]. The muscle density in the simulation is set to 1059.7 kg m  [69] (Table 3). The ratio of isometric
force divided by the physiological cross-sectional area (i.e., specific tension) is set to 600,000 N m  [48] and is used to obtain the
muscle masses. We used the default slow-twitch ratios in OpenSim [55]. Metabolic energy consumption is the result of muscle fiber
mechanical work and energy loss from heat production. Consequently, the metabolic cost equations partitioned metabolic rate into
fiber mechanical work and two heat rates: activation-maintenance heat rate and shortening-lengthening heat rate. A scaling factor
that depends on whether the effort is primarily aerobic or anaerobic in nature (i.e., aerobic factor) was set to the default value for
aerobic activities of 1.5 [17,70]. We used the orderly fiber recruitment model from Bhargava et al., [10]. Mechanical work adsorption
from muscle fibers (i.e., negative mechanical work) was included, as proposed in the original model from Umberger et al., [17], and
implemented in recent simulation studies [18]. The total metabolic rate per muscle was enforced to be no less than zero based on
the concept that negative mechanical work cannot lead to ATP synthesis [14].

Table 3. Estimated metabolic rate (% mean ± s.e.m.) of different phases of the gait cycle during level walking from the current work and other
studies.
We segmented the strides into double support phases, single support phase, and swing phase based on our ground reaction
force data from both legs. Strides are segmented from the ipsilateral heel strike to the next ipsilateral heel strike such that the
first double support phase starts with an ipsilateral heel strike and ends with contralateral toe-off, and the second double
support phase starts with contralateral heel strike and ends with ipsilateral toe-off. The metabolic rate time profile in the
normal walking condition from the Jackson et al., [18] study was obtained by applying the modified Umberger [20] estimation
code from [68]. The data from Roberts et al., [23] were obtained from their supplementary data file for walking at 70% of the
preferred walking speed. We selected this trial from their supplementary data because the walking speed is most similar to
the walking speed from our study (1 m∙s ). We obtained the unilateral metabolic rate from the right ankle knee and hip joints
by entering the data from the right ankle knee and hip as inputs to their MATLAB code and entering signals with zeros for all
non-lower limb joints and all joints on the left side of the body.
https://doi.org/10.1371/journal.pcbi.1008280.t003
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Joint-space metabolic rate estimation

Joint angular velocities and joint moments were used as inputs. The MATLAB script from Roberts et al., [23] was modified to
calculate metabolic rate from only the lower limb joints and report metabolic rate from the right side of the body by entering values
of zero for the angular velocities and moments of the joints on the other side. We reasoned that reporting the time profile of the
metabolic rate of one side of the body for each phase of the gait cycle is more informative than reporting the bilateral average. For
example, a plot of the bilateral sum of the time profiles of both sides of the body does not allow us to distinguish which part of the
metabolic rate can be attributed to the first and second double support phase. Our modified MATLAB code estimated the joint-
space activation-maintenance and shortening-lengthening heat rates and mechanical power that were used towards obtaining the
joint-space estimations of metabolic rate.

Simulation validation

To validate the accuracy of the musculoskeletal simulation, we verified if the muscle-generated moments from the optimized
simulation stayed within two times of the standard deviation of the moments from the inverse dynamics as suggested in validation
guidelines from Hicks et al., [38]. Additionally, we calculated the root mean squares of the errors between muscle-generated and
inverse dynamics moments. Muscle fiber length and force time series were compared to time series from in vivo imaging and force
sensing studies for muscles for which literature data was available [71–74]. To verify how similar our estimations are to the
literature, we plotted all the EMG, muscle fiber, and joint parameters and metabolic cost components of each muscle and joint
versus available supplementary data from the literature (S1 and S2 Figs). The musculoskeletal estimation results were plotted
versus the dataset from Jackson et al., [18], which used a similar EMG-driven musculoskeletal simulation approach. The metabolic
cost estimation code based on Umberger et al., [17] with modifications from Uchida was used to obtain the heat rates from that
dataset [68]. For the joint-space estimation method, we plotted the angular velocity, moment, and estimated metabolic rate of each
joint versus data from one of the trials that were published in their supplementary data [23] with the speed that was most similar to
our experiment.

Analysis

Since the musculoskeletal estimation method was based on only eight muscles and the joint-space estimation did not include the
angular velocities and moments of the upper body, we did not expect the estimated metabolic rates to match the absolute value of
the measured metabolic rate. As such, we evaluated the relative changes in percent. The estimations were converted to
percentages of the stride average under the baseline condition (walking with level shoes on a level grade). It is known that indirect
calorimetry measurements and biomechanical measurements that affect the estimation methods (EMG) can sometimes have high
variability due to measurement noise. Before the analysis, we eliminated data with extreme outliers in stride-average metabolic
rates that fell outside a range of the median plus-minus three times the interquartile range [75]. The estimations were performed for
all 42 conditions except for one downward shoe condition due to faulty signals from the EMG sensors.
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To evaluate how well both methods estimated the relative changes in stride-average metabolic rate, we conducted a repeated
measures correlation (R ) analysis [76] of the percent change of the estimation compared to indirect calorimetry. This statistical
test takes into account that there is within- and between-subject variation in the data. The tests provide a correlation coefficient and
P-value that expresses how strongly and consistently the estimation correlates with indirect calorimetry. Moreover, the repeated
measures correlation test provides a slope coefficient that describes whether the estimation underestimates or overestimates the
indirect calorimetry measurement depending on whether the slope is smaller or greater than one, respectively. To evaluate the
mutual consistency of the time profiles of both estimation methods, we used the repeated measures correlation to compare the two
estimation methods on the averages of the different phases of the gait cycle (first and second double support, single support, and
swing phase) during each walking condition. A Bonferroni correction was used to adjust for comparisons of multiple conditions. All
statistical analyses were performed in MATLAB (MathWorks, Natick, MA, USA), and the ANCOVA function was used to conduct the
repeated measures correlation analysis [76]. For all the statistical tests, we set the significance threshold at 0.05.

Results
Simulation validation: Muscle-generated moments approximate inverse dynamics

The time profile of metabolic rate was estimated with an EMG-driven musculoskeletal method and a joint-space method that used
joint moments from inverse dynamics analyses. To evaluate the validity of the musculoskeletal simulation, we compared the
muscle-generated joint moments with the joint moments from inverse dynamics analysis. The mean muscle-generated moments of
the ankle and knee stayed within a range of two times the standard deviation from the inverse dynamics moments for the majority
of the stride cycle and had root mean square errors of 0.17 ± 0.02 and 0.19 ± 0.03 Nm kg  (Fig 5). The muscle generated moment
of the hip had a higher root mean square error of 0.30 ± 0.02 Nm kg , mainly because the muscle-generated moments did not
track the hip flexion portion of the inverse dynamics moment. This result was expected because we programmed the optimization
algorithm only to minimize the error from the portion of the stride cycle where the inverse dynamics moments are in the extension
direction. We chose this option as it is challenging to record surface EMG of the primary hip flexor muscles, and literature suggests
that hip flexion during walking mostly comes from tendon stretch instead of muscle contraction [77]. Overall, the errors appear of a
similar magnitude as in other metabolic cost estimation studies that evaluate muscle-generated moments [18,19].

Fig 5. Musculoskeletal method validation.
(a) Hip moments, (b) Knee moments, (c) Ankle moments. Red lines represent the net joint moments from the simulated
muscles in the normal walking condition. The shaded area is s.e.m. The black line represents the net joint moments from
inverse dynamic analyses. Dashed lines represent the mean inverse dynamics joint moments ± two times the standard
deviation, which is suggested as a validation threshold [38]. Values in the plots represent mean ± inter-subject s.e.m. of root
mean square errors of the difference between muscle-generated and inverse dynamics moments. The muscle-generated hip
moments followed the inverse dynamics moments in the extension direction but not in the flexion direction since the
optimization algorithm was programmed only to minimize the error during hip extension moment generation.
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https://doi.org/10.1371/journal.pcbi.1008280.g005

Effects of conditions: Treadmill grade affects total leg work rate, and shoe inclination affects metabolic rate at the ankle

Less downhill and more uphill grades resulted in increasing magnitudes of positive work of the entire leg (i.e., individual leg COM
power), average plantarflexion moment, average EMG of the soleus, gastrocnemius medialis and tibialis anterior, and decreasing
magnitudes of negative work of the entire leg [36]. The muscle analysis suggests that more uphill grades led to increasing
metabolic rate during the entire stance phase, primarily at the ankle followed by the hip and knee, increasing activation-
maintenance heat rate and positive fiber work, and decreasing shortening-lengthening heat rate and negative fiber work (S3 Fig).
Less downward and more upward shoe inclinations lead to increasing magnitudes of average plantarflexion moment, positive and
negative ankle work, and average tibialis anterior EMG. The muscle analysis suggests that downward shoe inclinations led to
increasing metabolic rate at the ankle due to increased fiber work during the second double support phase (i.e., from contralateral
heel strike to ipsilateral toe-off). Upward shoe inclinations led to increasing metabolic rate at the ankle, which is related to an earlier
increase in activation-maintenance heat rate during single support (S4C and S4E Fig). More detailed information about the effects
of the conditions on joint moments, powers, and muscle activations are provided in the study that reports the experimental dataset
[36].

Stride-average metabolic rate: Estimations correlate with large indirect calorimetry changes from grade walking but not subtle changes from footwear

To investigate the accuracy of both methods in estimating the changes in the stride-average metabolic rate, we compared the
estimations of both methods to changes in average metabolic rate measured with indirect calorimetry. Compared to the metabolic
rate for walking on a level treadmill, the metabolic rate for downhill walking on a 6° grade was reduced by 17 ± 2, 27 ± 2, and 36 ±
2% (mean ± standard error of the mean [s.e.m.]), and the metabolic rate for uphill walking on a 6° grade increased by 83 ± 4, 49 ±
10, and 111 ± 12% using estimations from the musculoskeletal simulation method, the joint-space method, and indirect calorimetry,
respectively (Fig 6A, S2 Table). For walking on a level treadmill with shoes with a 7° downward inclination, we estimated increases
in metabolic rate of 4 ± 3 and 12 ± 6% compared to that for walking with level shoes using the musculoskeletal estimation method
and indirect calorimetry, respectively (Fig 7A). In contrast, the joint-space method estimated a reduction in metabolic rate of 2 ± 2%.
For walking with shoes with a 7° upward inclination, we estimated increases in metabolic rate of 10 ± 4, 4 ± 2, and 6 ± 5% using the
musculoskeletal estimation method, the joint-space estimation method, and indirect calorimetry, respectively.

Fig 6. Estimations of the stride average metabolic rate and the time profile of metabolic rate during downhill, level, and uphill walking with level
shoes.
(a) Stride average metabolic rate. Red triangles, blue circles, and black diamonds indicate the results from the
musculoskeletal estimation, the joint-space estimation method, and indirect calorimetry, respectively. Error bars indicate
s.e.m. The average trends across conditions from the same method are shown as a solid line from a second-order polynomial
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curve fit. (b) Individual stride averages. Symbols are individual trials. Lines are individual fits from the repeated measures
correlation test. Slopes that are less or more steep than a slope of 1/1 indicate overestimation or underestimation,
respectively. R -values indicate the repeated measures correlation. ** indicate that the P-value of the repeated measures
correlation is ≤ 0.01. (c) Time profiles under different treadmill conditions. Red and blue lines indicate the results from the
musculoskeletal estimation and joint-space estimation methods, respectively. Strides are segmented from the ipsilateral heel
strike to the next ipsilateral heel strike. The shaded area indicates s.e.m. (d) Individual phase averages. Symbols are
averages of the phases during the level walking condition separated by vertical lines: first double support (from ipsilateral heel
strike to contralateral toe-off), single support, second double support (from contralateral heel strike to ipsilateral toe-off), and
swing phase. R -values indicate mean ± s.e.m. of the repeated measures correlations of the different walking conditions.
https://doi.org/10.1371/journal.pcbi.1008280.g006

Fig 7. Estimations of the stride average metabolic rate and the time profile of metabolic rate during walking on a level grade with different shoe
inclinations.
(a) Stride average metabolic rate. Red triangles, blue circles, and black diamonds indicate the results from the
musculoskeletal estimation method, the joint-space estimation method, and indirect calorimetry, respectively. Error bars
indicate s.e.m. The average trends across conditions from the same method are shown as a solid line from a second-order
polynomial curve fit. (b) Individual stride averages. Symbols are individual trials. Lines are individual fits from the repeated
measures correlation test. Slopes that are less or more steep than a slope of 1/1 indicate overestimation or underestimation,
respectively. R -values indicate the repeated measures correlation. (c) Time profiles under different shoe inclination
conditions. Red and blue lines indicate the results from the musculoskeletal estimation and joint-space estimation methods,
respectively. Strides are segmented from the ipsilateral heel strike to the next ipsilateral heel strike. The shaded area
indicates s.e.m. (d) Individual phase averages. Symbols are averages of the phases during the level walking condition
separated by vertical lines: first double support (from ipsilateral heel strike to contralateral toe-off), single support, second
double support (from contralateral heel strike to ipsilateral toe-off), and swing phase. R -values indicate mean ± s.e.m. of the
repeated measures correlations of the different walking conditions.
https://doi.org/10.1371/journal.pcbi.1008280.g007

The estimations of the stride average metabolic rate from the musculoskeletal and joint-space estimation method showed strong
positive correlations with changes in indirect calorimetry measurements from walking on different grades (R  = 0.98, P < 0.01 for
musculoskeletal method versus indirect calorimetry; R  = 0.92, P < 0.01 for joint-space method versus indirect calorimetry; Fig
6B). Indirect calorimetry changes followed a slope greater than one for both methods, which indicates that both methods
underestimated indirect calorimetry measurements (slopes were 1.51 and 1.72 respectively for the musculoskeletal method and
joint-space method versus indirect calorimetry). Correlations of both estimation methods versus the subtle changes in indirect
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calorimetry from walking with different shoe inclinations were weak and not significant (R  of musculoskeletal method versus
indirect calorimetry is 0.24, P = 0.29; R  of joint-space method versus indirect calorimetry is 0.06, P = 0.80, Fig 7B). Inspection of
the spatial distribution of the average metabolic rate over different muscle groups reveals that the musculoskeletal method resulted
in the largest estimation of the metabolic rate for the plantarflexors (57 ± 3.1% of stride average, Table 4), followed by the knee
extensors and hip extensors, and with the lowest estimation for the knee flexors and dorsiflexors (both 5 ± 1.4%). According to the
joint-space method, the highest portion of metabolic cost also came from the plantarflexors (41 ± 3.5%) and the lowest portion also
came from the dorsiflexors (1 ± 0.2%). However, the order of the muscle groups in between was slightly different with the second
and third highest portions for the hip extensors and hip flexors followed by the knee extensors and knee flexors.

Metabolic rate time profile estimations show moderate to weak correlations

To evaluate the mutual agreement between the metabolic rate time profile estimations of the musculoskeletal method and the joint-
space method, we evaluated the correlation in the estimations of metabolic rates of different phases. According to the
musculoskeletal method, the majority of the metabolic cost of level walking comes from the single support phase (41 ± 3%),
followed by from the swing phase (22 ± 2%), the second double support phase (19 ± 4%, from contralateral heel strike to ipsilateral
toe-off), and the first double support phase (17 ± 1%, from ipsilateral heel strike to contralateral toe-off) has the lowest metabolic
cost (Table 3, Fig 6C, Fig 7C). According to the joint-space method, the majority of the metabolic cost of level walking does not
come from the single support phase but the second double-support phase (49 ± 3%), followed by the single support phase (26 ±
2%), the swing phase (15 ± 1%) and the first single support phase also comes last, similar to the musculoskeletal method (10 ±
1%). Estimations of the metabolic cost of different phases showed weak positive correlations between both methods that were not
significant, except for the most downward shoe inclination (R  = 0.67, P = 0.020 for 7° downward shoe condition, R  = 0.35 ±
0.16, P ≥ 0.243 for all other shoe conditions, Fig 7D; R  = 0.22 ± 0.25 and P ≥ 0.146 for all treadmill grades, Fig 6D). The slopes of
estimations of the costs of phases from the musculoskeletal method versus the joint-space method were smaller than one, which
indicates that the musculoskeletal method estimated smaller fluctuations in metabolic rate within the stride cycle than the joint-
space method.

Discussion
The aim of this study was to evaluate two methods that allow for the estimation of the time profile of metabolic cost within the gait
cycle within the same dataset. The time profiles of the musculoskeletal and joint-space methods showed weak positive correlations
with each other that were mostly not significant, which highlights that both methods provide different time profile estimations. Both
estimations of stride average metabolic rate were sufficiently accurate to correlate significantly with changes in indirect calorimetry
measurements from walking on different grades, but not from walking with different shoe inclinations. Since it is not possible to
validate the time profile estimations against direct measurements of metabolic rate time profiles, these evaluations of stride-
average estimations can provide insights into the potential accuracy: If a method could accurately estimate the time profile of
metabolic rate, it would also likely be able to estimate changes in stride average metabolic rate. Our results suggest that both
methods were accurate enough to estimate large but not subtle changes in metabolic rate, such as changes from shoe inclinations.
The correlations of changes in stride average metabolic rate versus indirect calorimetry were slightly higher for the musculoskeletal
method than for the joint-space method. Compared to the musculoskeletal method, the joint-space estimation method could be
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expected to have a weaker correlation to indirect calorimetry because it was developed based on a dataset from walking at different
speeds [23] and not from walking at different grades or with different types of shoes [36]. The changes from the footwear conditions
were not always estimated in the correct direction, possibly due to counterintuitive effects on muscle-tendon dynamics, which are
not always captured in joint biomechanics. The joint-space method might not be sufficiently accurate for estimating the effects of
devices with complex interactions, such as with exoskeletons.

The first double support phase had the lowest metabolic cost according to both estimation methods (respectively 17 and 10%
according to the musculoskeletal and joint-space method), but according to the musculoskeletal method, the single support phase
was the phase with the highest metabolic cost (41%) whereas the joint-space method estimated the highest metabolic cost during
the second double support phase (49%, Table 3). While there are no direct measurements of the time profile of metabolic rate, our
results can be compared to estimates from the literature. Our estimations of the relative cost during the swing phase (~22%
according to the musculoskeletal method and 15% according to the joint-space method) are within the range from studies with
experimental perturbations (1 to 24% based on added mass experiments [27]; 17% based on experiments with isolated leg
swinging [28] and 10% based on an experiment with elastic swing leg assistance [29]). Our musculoskeletal estimation of the total
cost of the double support phases is close to the estimation based on added mass and body weight support experiments (37% in
our data versus 45% in [26]). We also compared our data to the results for individual muscles and joints from supplementary
datasets from previous musculoskeletal and joint-space estimation studies. We found that the costs of different phases (first and
second double support, single support, and swing phases) from our musculoskeletal method were less than 10% of the mean
values derived from the normal walking condition data in the study from Jackson et al., [18] (Table 3, S1 and S2 Figs). This
agreement with the results from Jackson et al., [18] makes sense because our study also used an EMG-driven approach. The main
differences of our study compared to Jackson et al., [18] are that we did not rely on optimization to scale the EMG measurements
since we had MVC measurements and that we included a hip extensor muscle. The metabolic rates of the different phases from the
joint-space estimations are also within 10% of values derived from data from the Roberts et al., [23] study, which used similar
methods to the joint-space estimation in our study. One main difference of our analysis compared to their study is that we did not
have motion capture data of the joints in the upper body. Therefore, we did not include contributions of the upper body joints to
metabolic rate.

The costs of phases appear to be similar to those from studies that used similar methods as our study (when comparing the
musculoskeletal estimation method to data derived from [18] and when comparing the joint-space estimation to data derived from
[23]). However, our estimations of the cost of the second double support phase are more than two times greater than that of
Umberger (respectively 19 and 49% with the musculoskeletal and joint-space methods, compared to only 8% in Umberger [20]).
Our estimations of the cost of the sum of the double support phases are greater than that of Markowitz and Herr (respectively 37
and 60% with the musculoskeletal and joint-space method compared to 27% in Markowitz and Herr, [19]). While we do not know
the exact causes of these differences, it is known that the choice of methods to estimate the change of Hill-type muscles and
metabolic-rate equations can have vast influences on the resulting estimations [12,14]. The study from Umberger [20] used forward
simulation to predict the kinematics and muscle behavior of a 2D model with 12 muscles per side. The metabolic rate was then
estimated with the equations from Umberger et al. [17], with the modification where the metabolic rate from negative work was not
included. Markowitz and Herr, [19] used joint kinematic measurements and EMG measurements (supplemented by EMG
measurements of deeper muscle layers from the literature) to drive a 2D model with 14 muscles per leg in a similar EMG-driven
method as our study. One major difference compared to our study is that they used a multi-objective optimization to optimize
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muscle parameters (e.g., tendon slack length) for minimizing metabolic rate estimated with the original equations from Umberger et
al., [17] and maximizing the correlation between estimated and measured joint moments. We chose to use recent modifications that
are designed to represent the human body more realistically, such as a 3D model [48] with muscles that wrap over curved surfaces
(e.g., epicondyles) instead of 2D models with straight-line muscles [19,20]. To realistically capture the neural drive, we used EMG
measurements to drive the simulation instead of estimating the activation through optimization [20], and we used the updated
muscle metabolic cost equations [16] rather than the original equations [17,19]. These methodological differences could explain the
different results in our study compared to the studies from Umberger [20] and Markowitz and Herr, [19].

If we had conducted an experiment with a hip exoskeleton [78] or an ankle tether that pulls on the leg during the swing phase [29],
it could be expected that effects on metabolic rate can exist during the swing phase. In contrast, the inclined treadmill and inclined
shoe conditions do not apply any forces to the leg during the swing phase. Therefore, we expected that most of the effects of the
conditions on the metabolic rate would likely occur during the stance phase. The results of both metabolic time profile estimations
confirm that the changes in metabolic rate occur almost entirely during the stance phase (S3D and S4D Figs). Further analyzing the
distribution of the costs over different muscle groups reveals that our estimations of the metabolic rate of the plantar flexors (57±
3% of the sum of all muscles with the musculoskeletal method and 41 ± 4% of the sum of all joints with the joint-space estimation
method) were larger than the results from Umberger [20] (26 ± 10%, Table 4). Our estimations of the metabolic rate of the hip
extensors (11 ± 1% with the musculoskeletal method and 24 ± 4% with the joint-space estimation) were lower than the results from
Umberger (39 ± 6%). Other studies that used the Umberger estimation method appear to confirm the finding of a greater metabolic
cost for the hip muscles than the ankle muscles [12,14], although the difference appears to be less pronounced in those works than
in the study from Umberger [20]. These differences in the relative contributions of muscle groups likely contributed to the
differences in the estimations of the time profile of metabolic rate during walking between studies.

Table 4. Estimated metabolic rate (% mean ± s.e.m.) of different muscle groups during level walking in our own analyses and other studies.
For the musculoskeletal estimation method, we grouped the metabolic costs of different functions similar to [20] as follows:
soleus, gastrocnemius medialis and gastrocnemius lateralis for the plantarflexors, vastus medialis for the knee extensors,
gluteus maximus for the hip extensors, tibialis anterior for the dorsiflexors, and biceps femoris for the knee flexors. For the
joint-space estimation method, we partitioned the metabolic costs for the ankle plantar flexors/dorsiflexors, knee
extensors/flexors, and hip extensors/flexors based on when the joint moments were in the corresponding direction. The
metabolic rate of muscle groups in the normal walking condition from the study by Jackson et al., [18] was obtained by
applying the modified Umberger [20] estimation code from [68]. The data from Roberts et al., [23] were obtained from their
supplementary data file for walking at 70% of the preferred walking speed. We selected this trial from their supplementary
data because the walking speed is most similar to the walking speed from our study (1 m∙s . We obtained the unilateral
metabolic rate from the right ankle knee and hip joints by entering the data from the right ankle knee and hip as inputs to their
MATLAB code and entering signals with zeros for all non-lower limb joints and all joints on the left side of the body.
https://doi.org/10.1371/journal.pcbi.1008280.t004
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A limitation of studies that estimate the metabolic rate time profile is that there is no direct measurement of the time profile to which
the estimations can be compared, and the results depend on the chosen methods. Our data show that the estimations of the time
profile can be different when using two different methods on the same data (i.e., an EMG-driven method in conjunction with muscle
metabolic rate equations compared to a joint-space method). Overall, there are three main categories of methods to estimate the
muscle states: forward simulations, inverse approaches, and EMG-driven approaches. Forward simulations predict the muscle
behavior, joint kinematics, and kinetics that result from muscle excitations using a forward dynamics analysis of a multi-segment
model with a foot-ground interaction model that estimates the ground reaction forces. These simulations can be designed to track
human experimental data [79], or they can determine muscle excitations that optimize a specific objective (e.g., metabolic cost
minimization in combination with a number of constraints, such as enforcing cyclic gait [20]). An advantage of this approach is that it
can be used for predictive simulations of assistive devices that have not yet been tested. A disadvantage could be that the
predicted activations, kinematics, and kinetics can sometimes be different from experimental data. Inverse approaches estimate the
muscle state by distributing the moment from inverse dynamics over the muscles in a way that optimizes a physiologically realistic
objective [12,16,58,80] such as minimizing the sum of squared activations [81]. Again, it is not known how universally valid this
approach is, and other candidate objectives for computed muscle control have been proposed [82,83]. An advantage of this type of
approach is that it can be used when specific EMG data are not available, for example, for specific deeper muscle layers that are
hard to measure with surface EMG. Furthermore, EMG-driven approaches use recorded EMG in combination with prescribed
kinematics to estimate the muscle states [18,56,57]. EMG-driven approaches offer the advantage of capturing the neural drive of
the participants more realistically [37], but they require the most extensive experimental data (kinematics, EMG). Overall, it is likely
that all three methods could result in different estimations. A case study was performed to evaluate to which extent using the same
metabolic rate equations but with a different overall approach could affect metabolic time profile estimations. We compared a
computed muscle control-based estimation to our EMG-driven estimation in one trial and found two different time profiles (S5 Fig).
The metabolic rate equations can also have a substantial effect on the resulting metabolic rate estimations. A recent study from
Koelewijn et al., [12] compared estimations with five different versions of metabolic equations on walking at downhill, level, and
uphill grades with muscle-state estimations that were kept consistent across the different comparisons. Moreover, they included the
equations from Umberger et al. [17], which are very similar to the equations used in our musculoskeletal method and the equations
from Kim and Roberts, [22], which are similar to the joint-space method from [23]. They found a wide range of correlations of the
different estimation methods compared to indirect calorimetry measurements, which confirms that muscle metabolic rate equations
or joint-space-metabolic rate equations can have a considerable influence on estimated metabolic rates. Additionally, they found a
slightly higher correlation and a regression slope closer to 1/1 for the Umberger et al., [17] equations compared to the joint-space
equations. These findings are consistent with our results for the treadmill grade conditions that also show a higher correlation and
regression slope closer to one with the muscle metabolic rate equations compared to the joint-space equations.

Although using EMG measurements for EMG-driven simulation ensured realistic activation, the fact that we did not model data from
muscles that act predominantly outside the sagittal plane and the fact that we did not calibrate the muscle parameters to match the
non-sagittal components of the hip moment could be limitations. Muscles that act in the frontal plane could contribute substantially
to metabolic rate; for example, a study that models the effects of different exoskeleton configurations shows the potential benefits of
assisting hip abduction [18]. To obtain a sense of how realistic our simulations were in addition to optimizing the agreement of the
muscle-generated moments with the inverse dynamics moments, we plotted the muscle parameters, joint parameters, heat rates
and metabolic rates for each muscle and joint in the condition with the level shoes on the level grade. Then, we compared these
values versus those from similar metabolic estimation datasets [18,23] and literature from EMG, imaging, and tendon force
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measurement studies (S1 and S2 Figs). Our peak activations of the gastrocnemius (54%) were higher than those in the
musculoskeletal simulation from Jackson et al. [18], but this appears to be closer to reference data of MVC-normalized
gastrocnemius EMG (~80% [44]). The fiber length of the gastrocnemius shows a plateau during midstance before shortening at
push-off, similar to data from ultrasound measurements [84]. The average time series of the fiber length of the soleus was slightly
different from the Jackson et al., [18] simulation since it lengthens during the midstance phase. However, this behavior appears to
be realistic based on a comparison with ultrasound data [71]. For more proximal muscles, there is less data on fiber kinematics,
except the vastus medialis, for which the values from one experimental study show satisfactory agreement with our fiber length
estimations [19,72,73]. The muscle activations for other muscles, joint angles and joint moments match well with the results from
Jackson et al., [18] and Roberts et al., [23] studies.

Although there is no direct measurement of the time profile of metabolic rate during walking, we believe there could be
opportunities to obtain additional information by conducting perturbation studies with devices such as exoskeletons [18,85,86] or
tethers [87,88] that can be programmed to act during specific phases of the gait cycle. Optimizing coefficients in simulation models
so that the estimations of the stride average metabolic rate match trends from “rich” datasets with perturbations to different parts of
the gait cycle could potentially provide more confidence in estimations of the metabolic rate time profile. The ability to estimate the
metabolic rate time profile with improved confidence levels could have a similar impact as transitions from average to dynamic
measurements in other fields. For example, after dynamic plantar pressure measurement was developed [89], many clinical studies
started to appear in the literature [90]. This technique is now used for various applications, such as foot-type classification [91],
insole design [92], and physical therapy [93]. Estimating the metabolic rate time profile could have applications within the same
categories (diagnosis [94], targeted exercise therapy [95], and assistive device optimization [96,97]).

This research demonstrated that new methods for estimating the metabolic rate time profile can match experimental estimations of
the relative cost for the stance and swing phase, but the exact shape of the time profile is highly sensitive to the estimation method.
Further improved estimations based on rich experimental datasets could lead to clinical applications and improve our
understanding of the energetics of gait.

Supporting information
S1 Fig. Muscle-parameters, joint parameters, and metabolic rate estimations of the lower leg muscles and joints.
Solid lines are the population average of our own data in the condition with level shoes on a level treadmill. Red dashed lines are
the average results under normal walking conditions from the dataset from Jackson et al., [18]. The metabolic rate time profile in the
normal walking condition was obtained from the study by Jackson et al., [18] by applying the modified Umberger [20] estimation
code from [68]. Dashed blue lines are supplementary data from walking at 70% of the preferred walking speed from Roberts et al.,
[23]. We selected this trial from their supplementary data because the walking speed is most similar to the walking speed from our
study (1 m∙s ).
https://doi.org/10.1371/journal.pcbi.1008280.s001
(TIFF)

S2 Fig. Muscle parameters, joint parameters, and metabolic rate estimations of the upper leg muscles and joints.
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Full lines are the population average of our own data in the condition with level shoes on a level treadmill. Red dashed lines are the
average results in the normal walking condition from the dataset from Jackson et al., [18]. The metabolic rate time profile in the
normal walking condition was obtained from the study by Jackson et al. by applying the modified Umberger [20] estimation code
from [68]. Dashed blue lines are supplementary data from walking at 70% of the preferred walking speed from Roberts et al., [23].
We selected this trial from their supplementary data because the walking speed is most similar to the walking speed from our study
(1 m∙s ).
https://doi.org/10.1371/journal.pcbi.1008280.s002
(TIFF)

S3 Fig. Effects of treadmill conditions on muscle parameters.
(a) Hip metabolic rate. (b) Knee metabolic rate. (c) Ankle metabolic rate. (d) Total right side metabolic rate. (e) Total activation-
maintenance heat rate. (f) Total shortening-lengthening heat rate. (g) Total fiber work. Lines represent subcomponents of the total
metabolic rate estimated with the musculoskeletal method. Colors represent treadmill conditions. 100% on the vertical axis
represents the stride average of the total metabolic rate of the right side.
https://doi.org/10.1371/journal.pcbi.1008280.s003
(TIFF)

S4 Fig. Effects of footwear conditions on muscle parameters.
(a) Hip metabolic rate. (b) Knee metabolic rate. (c) Ankle metabolic rate. (d) Total right side metabolic rate. (e) Total activation-
maintenance heat rate. (f) Total shortening-lengthening heat rate. (g) Total fiber work. Lines represent subcomponents of the total
metabolic rate estimated with the musculoskeletal method. Colors represent treadmill conditions. 100% on the vertical axis
represents the stride average of the total metabolic rate of the right side.
https://doi.org/10.1371/journal.pcbi.1008280.s004
(TIFF)

S5 Fig. Supplementary computed muscle control comparison.
Comparison of estimation of the time profile of metabolic rate using EMG-driven musculoskeletal method versus computed muscle
control (CMC) data. The EMG-driven timeseries is a metabolic time profile of one participant during level walking, obtained with the
model, musculoskeletal method, and muscle metabolic rate equations that are used in the musculoskeletal method in the main text.
The computed muscle control time series is a metabolic time profile of the same participant and walking condition, obtained with the
same muscle metabolic rate equations but with a different model and general approach to obtain the states of the muscles. For the
computed muscle control driven timeseries, we used the computed muscle control tool in combination with the default model
(Gait2392) in OpenSim to obtain the muscle states from 46 lower leg muscles per side. This comparison shows that metabolic time
profile estimations can be different even when the same muscle metabolic rate equations are used but with different models and
general approaches to obtain muscle state data.
https://doi.org/10.1371/journal.pcbi.1008280.s005
(TIFF)

S1 Table. Raw metabolic rate data in absolute units (W kg ).
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Treadmill grade conditions, shoe inclination conditions and normal walking condition. Rows indicate participants. Columns include
different estimation methods and indirect calorimetry.
https://doi.org/10.1371/journal.pcbi.1008280.s006
(PDF)

S2 Table. Changes in metabolic rate in percent of normal walking condition.
Treadmill grade conditions and shoe inclination conditions. Columns include different estimation methods and indirect calorimetry.
Rows represent mean and inter-participant s.e.m.
https://doi.org/10.1371/journal.pcbi.1008280.s007
(PDF)

S1 File. MATLAB data file named “Data_MetabolicTimeProfileEstimation.mat” with temporal, kinematic, kinetic, muscle, and metabolic data for both
metabolic cost estimation conditions for all participants and conditions.
A text file named “Data_MetabolicTimeProfileEstimation—readme.txt” with an explanation on data organization is included.
https://doi.org/10.1371/journal.pcbi.1008280.s008
(ZIP)
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