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Locomotor patterns change over time 
during walking on an uneven surface  

 
Jenny A. Kent, Joel H. Sommerfeld, Mukul Mukherjee, Kota Z. Takahashi, Nicholas 
Stergiou  

ABSTRACT 

During walking, uneven surfaces impose new demands for controlling balance and 
forward progression at each step. It is unknown to what extent walking may be refined 
given an amount of stride-to-stride unpredictability at the distal level. Here, we explored 
the effects of an uneven terrain surface on whole-body locomotor dynamics immediately 
following exposure and after a familiarization period. Eleven young, unimpaired adults 
walked for 12 min on flat and uneven terrain treadmills. The whole-body center of mass 
excursion range (COMexc) and peak velocity (COMvel), step length and width were 
estimated. On first exposure to uneven terrain, we saw significant increases in medial–
lateral COMexc and lateral COMvel, and in the variability of COMexc, COMvel and foot 
placement in both anterior–posterior and medial–lateral directions. Increases in step 
width and decreases in step length supported the immediate adoption of a cautious, 
restrictive solution on uneven terrain. After familiarization, step length increased and the 
variability of anterior–posterior COMvel and step length reduced, while step width and 
lateral COMvel reduced, alluding to a refinement of movement and a reduction of 
conservative strategies over time. However, the variability of medial–lateral COMexc and 
lateral COMvel increased, consistent with the release of previously constrained degrees 
of freedom. Despite this increase in variability, a strong relationship between step width 
and medial–lateral center of mass movement was maintained. Our results indicate that 
movement strategies of unimpaired adults when walking on uneven terrain can evolve 
over time with longer exposure to the surface. 
 

Keywords: 
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INTRODUCTION 

The urban environment is rarely completely level; therefore, mobility outside the home 
presents unpredictability that can challenge locomotion if it is not sufficiently adaptable 
(Patla and Shumway-Cook, 1999). The multiple joints of the uncompromised 
musculoskeletal system provide a huge amount of flexibility, and enable gross 
functional movements, such as a step, to be produced by infinite combinations of 
trajectories of the individual segments of the body, e.g. shank, thigh, foot (Bernstein, 
1967; Fitts, 1964). Balance during walking is dependent on the appropriate 
orchestration of segments such that the movement of their combined center of mass 
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(COM) is maintained within a functional boundary related to foot position (Hof et al., 
2005), regardless of context (Courtine and Schieppati, 2004; Patla and Shumway-Cook, 
1999; Patla, 2003). 
 
During walking, segments are loosely organized into patterns that are similar from stride 
to stride. However, these patterns are never identical even on level ground, reflecting an 
ability to exploit system redundancy, without which gait would appear robotic 
(Harbourne and Stergiou, 2009; Harrison and Stergiou, 2015; Stergiou and Decker, 
2011; van Emmerik and van Wegen, 2000). Hypothetically, upon a consistent support 
surface and assuming negligible additional external force on the body, an identically 
produced step would have an identical result following contact with the ground. Further, 
the dynamic consequences of the interaction between the body and the ground would 
be largely predictable, and the surface could be readily exploited to facilitate the task 
(e.g. Fajen et al., 2009). When the contour of the ground fluctuates, however, a new 
control problem is presented. The reaction forces experienced by the body via the foot 
will vary in magnitude and direction from stride to stride, subtly or markedly changing 
the demands of forward progression and dynamic balance (Patla and Shumway-Cook, 
1999; Patla, 2003). Peaks and troughs may act to impair or accelerate the rotation of 
the leg about the ankle in the direction of walking, inducing delayed or early foot contact 
in the other limb. Contours that act to invert or evert the foot will encourage medial or 
lateral movement of the body whilst shifting the boundary and integrity of the base of 
support provided by the feet (Patla, 2003). A step that is identically produced by an 
individual cannot physically produce an identical result; to achieve kinematic uniformity 
from stride to stride would require the adjustment of internally produced forces to 
counteract the changes in ground reaction force experienced. 
 
Healthy, unimpaired adults are able to walk without loss of balance on unstable and 
unpredictable surfaces, although they display increases in step length and width 
variability, and greater and more variable whole-body COM excursions, velocities and 
accelerations during walking (e.g. Gates et al., 2012; Richardson et al., 2005; Stokes et 
al., 2017; Thies et al., 2005; Voloshina et al., 2013). As the prevention of loss of balance 
relies on maintaining the relationship between the base of support and COM movement 
(Hof et al., 2005; Pai and Patton, 1997), unpredictable dynamics induced by an uneven 
walking surface may present an increased and ongoing risk of a loss of balance 
occurring. 
 
Foot placement during unperturbed gait has been shown to be closely attuned to 
movement of the COM, as estimated from the pelvis or trunk (Arvin et al., 
2016, 2018; Roden-Reynolds et al., 2015; Wang and Srinivasan, 2014). Lateral foot 
positioning, for example, can be predicted from the velocity and position of the pelvis or 
whole-body COM (Arvin et al., 2018; Wang and Srinivasan, 2014). This coupling 
appears to hold during isolated and unpredictable lateral perturbations directed at the 
waist (Hof and Duysens, 2013) and at the foot (Rankin et al., 2014), and empirical 
evidence points to a neuromechanical control strategy involving the proprioception 
(Arvin et al., 2016; Roden-Reynolds et al., 2015) and action of the hip abductors 
(Roden-Reynolds et al., 2015). 



 
In addition to this proposed neuromechanical coupling mechanism (Roden-Reynolds et 
al., 2015), commonly reported gross deviations in the presence of balance challenges 
include: decreasing step length to permit a flatter foot contact with the ground (Gates et 
al., 2012); increasing double support time (Menant et al., 2009), thereby reducing the 
period when the body is unilaterally supported; increasing knee and hip flexion during 
swing to avoid tripping (Gates et al., 2012); and increasing step width to increase the 
boundary within which the COM may safely deviate without risk of a sideways fall (Hak 
et al., 2013; Rankin et al., 2014). Such strategies would reduce the likelihood of any 
unpredictable encounter causing excessive divergence of the COM with respect to the 
base of support, and may be conservative solutions to the unpredictability problem. 
 
List of abbreviations 

 AP = anterior–posterior 
 COM = center of mass 
 COMexc = whole-body center of mass excursion range 
 COMvel  = whole-body center of mass peak velocity 
 FT = flat terrain 
 ML = medial–lateral 
  UT = uneven terrain 
 UT1 = start of uneven terrain trial 
 UT2 = end of uneven terrain trial 

 
Although these strategies may be effective for maintaining balance, they may not 
constitute the most functional way of moving through the environment. For example, 
highly variable trunk and head movement, a lack of movement fluidity, or the 
requirement for greater attention to be directed towards walking may disrupt the 
performance of concurrent tasks (Ebersbach et al., 1995), and increases in step width 
have been shown to increase metabolic cost by over 40% (Donelan et al., 2001). These 
results suggest that, although adaptations to account for terrain are well within the 
capability of young adults, they can result in reduced locomotor economy (Voloshina et 
al., 2013) and can be detrimental to the effectiveness of walking as a means to travel 
from one place to another. As such, refinement may be beneficial. 
 
Previous studies exploring movement on uneven ground have focused only on isolated 
bouts of walking (e.g. Gates et al., 2012; Richardson et al., 2005; Thies et al., 2005), 
primarily via traverses of a section of uneven surface within the laboratory 
environment. Voloshina et al. (2013) utilized a treadmill with an adapted belt to explore 
mechanics and energetics on uneven ground, permitting a longer period of continuous 
walking to be evaluated. However, their study focused only on the final 2.5 min of a 
10 min trial. It therefore remains unknown whether people can refine their movement on 
uneven ground over time. It might be expected that conservative strategies would be 
employed on uneven ground on first encounter to avoid falls, but adjusted with 
familiarity to optimize movement based on a greater awareness of the constraints and 
challenges of the terrain underfoot. 
 



The purpose of this study was to investigate the effect of terrain unevenness on the 
whole-body locomotor dynamics of unimpaired individuals. Specifically, we examined 
walking both on first exposure to uneven ground and after a period of familiarization, 
with a focus on COM movement and foot placement from stride to stride. We 
hypothesized that on first exposure to an uneven terrain surface we would observe an 
increase in the amount of variability in step patterns (length and width) and COM 
dynamics, accompanied by increases in whole-body COM excursion and peak COM 
velocity on a step-to-step basis. We predicted that unimpaired individuals would adopt a 
restrictive and cautious solution at first; specifically, a reduction in step length and an 
increase in step width, to mitigate the risk of a loss of balance when first encountering 
the surface. We also anticipated that, given their adaptability, individuals would refine 
their solution with time, leading to a reduction in COM movement, the amount of 
variability, and these potentially costly or effortful conservative step placement 
strategies. 

MATERIALS AND METHODS 

Participants 

Eleven young unimpaired adults (age 24.4±2.8 years, mass 78.3±10.1 kg, height 
1.79±0.09 m, means±s.d.) were recruited from the staff and student body of the 
University of Nebraska at Omaha and provided written informed consent to participate. 
Sample size was based on a power analysis indicating that an effect size of 0.8 could 
be achieved with 80% power at α=0.05 and 10 participants. The study protocol was 
approved by the University of Nebraska Medical Center Institutional Review Board. All 
participants were familiar with treadmill walking or running and reported themselves 
able to walk for at least 30 min continuously with no perceived fatigue. They had no 
history of ankle instability, knee ligamentous injury or knee instability; no diagnosed joint 
laxity or hypermobility; no lower limb osteoarthritis; no current musculoskeletal injury or 
pain; and no musculoskeletal or neurological disorder. They had not sustained a lower 
limb injury in the previous 12 months nor had surgery in the previous 6 months. They 
had no history of cardiovascular events and were not pregnant. 

Procedures 

A tight athletic suit was worn for motion capture purposes. Participants were tested 
wearing flexible footwear provided by the laboratory. A 6-degrees-of-freedom full-body 
marker set based on calibrated anatomical systems technique (Cappozzo et al., 1995) 
was applied, with motion capture markers affixed to the feet, lower leg, thigh, pelvis, 
trunk, shoulders, arms, hands and head (see Table S2). Five minutes of walking were 
completed on a standard flat-belt commercial treadmill (TRM 731, Precor, Woodinville, 
WA, USA) prior to the start of the captured trials in order to familiarize the participants 
with the footwear, equipment and environment. 
Walking trials were performed on the flat terrain treadmill and on an in-house modified 
uneven terrain treadmill (Fig. 1). The treadmill belt width and average height were 
consistent across devices, and participants were asked to focus on a fixation cross 
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mounted at the same height from the belt on the front of each, to maintain visual 
consistency across walking conditions. A ceiling-mounted harness was worn for all trials 
for safety. 
 
Fig. 1. 

 

 
Uneven terrain treadmill. The uneven terrain surface is composed of manually shaped wooden 
slats affixed to a standard treadmill belt perpendicular to the direction of travel. The repeating 
pattern has four levels, in increments of 7, 7 and 8 mm from the lowest level (maximum depth of 
approximately 2.2 cm), selected as sufficiently shallow to enable a heel–toe gait to be maintained. 
The contours of the pattern were designed such that, unless deliberate targeting is attempted, 
each step on the surface should result in a slightly different interaction. The pattern is reflected 
and offset so that the left and right feet should have equal probability of encountering the same 
contours. 

 
All trials were performed at a fixed speed of 1 m s−1, consistent with previous literature 
(Voloshina et al., 2013) and determined to be comfortable on the uneven terrain 
previously in a group of 17 healthy adults. In order to avoid familiarization with the 
uneven terrain surface during treadmill acceleration at the start of the trial, participants 
were asked to straddle the walking surface until the belt was at speed, then to step on 
and immediately remove their hands from the handrails. Participants walked for 12 min 
on flat terrain followed by 12 min on uneven terrain, with a break of at least 5 min 
between trials. Kinematic data were captured at 100 Hz using a 17-camera motion 
capture system (Motion Analysis Corp., Santa Rosa, CA, USA). 



Outcome variables 

Subsequent variables selected for analysis focused on whole-body measures of gait 
performance and balance; COM excursion range (COMexc) and peak velocity (COMvel) 
in the anterior–posterior (AP) and medial–lateral (ML) directions, and step length and 
step width to represent foot placement in the AP and ML directions, respectively 
(Fig. 2). Analyses were performed under the assumption that treadmill walking was 
already a learned skill. Baseline level walking data were extracted from the final 60 
strides of the flat terrain trial (FT), at which point participants would have completed 15–
16 min of walking in total to enable familiarization to the set treadmill speed, footwear, 
harness and environment, isolating the effect of the terrain. Values of each variable 
were calculated from 60 strides on each limb at the start and end of the uneven terrain 
trial (UT1 and UT2, respectively). This is with the exception of one participant who 
stumbled briefly due to a toe catch during UT1. For this participant, three strides were 
excluded bilaterally, with recovery visually determined from video and motion capture 
data based on trunk and foot movement. In the direction of progression, the average 
(mean) and variability (standard deviation) of AP COMexc, the anterior COMvel and the 
step length were calculated for each step and extracted. In the direction perpendicular 
to the plane of progression, the average (mean) and variability (standard deviation) of 
ML COMexc, the lateral COMexc (directed towards the stance leg) and the step width 
were calculated for each step (Fig. 2). 
 
Fig. 2. 

 
Variables. Anterior–posterior (AP) and medial–lateral (ML) center of mass excursion (COMexc) 

and velocity (COMvel), and step placement. 

Processing and data extraction 

Kinematic data were tracked in Cortex (Motion Analysis Corp.) with further processing 
undertaken in Visual3D (C-Motion Inc., Germantown, MD, USA). The full-body 6-
degrees-of-freedom model was applied, composed of 15 segments: bilateral feet, 
shanks, thighs, upper arms, forearms and hands, and head, trunk and pelvis 
(see Table S3). Segment mass was computed relative to body mass, according 
to Dempster (1955), and center of gravity locations were estimated based on geometric 
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shape approximations of each segment (cylinder, cone, ellipsoid; Hanavan, 1964; 
see Tables S1–S6 for a full description of the biomechanical model). Foot mass was 
adjusted to account for footwear. A 4th-order low-pass Butterworth filter was applied to 
raw marker data. Cut-off frequencies were determined using power spectral analysis as 
described by Giakas (2004) and Winter (2009), and ranged from 7 Hz (head) to 12 Hz 
(feet). 
 
To identify the terrain contour beneath each footfall and ensure that no changes to the 
task occurred as a result of systematic changes in foot placement across trials, the 
range and standard deviation of the sagittal and coronal plane midstance foot angles 
were calculated for each step, defined as the instantaneous angle of the foot with 
respect to the laboratory coordinate system at the time point at which the contralateral 
swing foot toe marker (placed dorsal to the second metatarsal head) crossed the stance 
foot heel marker. The appropriateness of utilizing this toe–heel crossing instance to 
determine ground contour was verified using video data. Visual inspection confirmed 
that no participant adopted an early plantarflexion vaulting strategy and indicated that 
both the posture of the foot and the slope of the ground beneath it could be adequately 
characterized at this instance. 
 
Variables were computed for both limbs and categorized according to the limb each 
participant reported they would kick a ball with, designated as their dominant limb. Foot 
contact events were estimated using a kinematic velocity-based algorithm (Zeni et al., 
2008), and the location of foot contact at the start of each gait cycle was approximated 
by the position of the ankle joint center. Step length was defined as the distance in the 
treadmill direction of travel between the ipsilateral and previous contralateral foot 
contact locations plus the distance the treadmill belt traveled within that step duration 
(Jordan et al., 2007). Step width was defined as the distance perpendicular to the 
direction of travel between consecutive foot contact locations. 
 
Trial order was not randomized in order to avoid potential carryover effects following 
walking on the uneven ground. 

Statistical analysis 

Shapiro–Wilk tests and Q–Q plots were initially used to evaluate normality for each 
variable. In order to test the hypotheses that (1) there would be an increase in the 
amount of variability in step patterns and a more restrictive and cautious solution on first 
exposure to uneven terrain, and that (2) movement would be refined over time, each 
variable (average and variability of AP COMexc, ML COMexc, anterior COMvel, lateral 
COMvel, step length and step width, plus sagittal and coronal plane midstance foot 
angle) was examined using a one-way repeated measures ANOVA (three levels: FT, 
UT1, UT2). Friedman tests (three levels: FT, UT1, UT2) were used for variables that 
were not non-normally distributed. Where differences were identified, Tukey's HSD and 
Wilcoxon signed rank tests were applied, for normally and non-normally distributed 
variables, respectively. 
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RESULTS 

All participants were able to complete walking trials without the use of the handrails. 
Only the (self-reported) dominant limb results are given below as similar trends were 
observed for both limbs. 
 
Midstance foot angle range was significantly different across walking bouts in both 
sagittal (F2,20=133.201, P<0.001) and coronal planes (F2,20=250.983, P<0.001; Table 1). 
The range was higher in both uneven terrain walking bouts in comparison to flat terrain 
(all comparisons P<0.01) but there was no significant difference between UT1 and UT2 
(P>0.05). Significant differences were observed in the standard deviation of midstance 
foot angle (sagittal: F2,20=152.926, P<0.001; coronal: F2,20=231.588, P<0.001). Post 
hoc tests revealed that differences occurred only between FT and UT1, and FT and 
UT2 (all comparisons P<0.01). The range and standard deviation of foot positions when 
the foot was loaded, which were 3–7 times greater than those observed during level 
walking, indicate that the surface of the treadmill used for the study successfully 
affected distal extremity posture from stride to stride, with the potential to alter level 
walking patterns (Klint et al., 2008). 
 

 

AP dynamics 

Average AP COMexc (F2,20=7.053, P=0.005) and its variability (F2,20=15.374, P<0.001) 
were significantly different across walking bouts (Fig. 3A). Post hoc tests revealed that 
average AP COMexc was higher at UT2 in comparison to FT (P<0.01) only. The 
variability of AP COMexc increased at UT1 (P<0.01) but there was no further change at 
UT2 (P>0.05). 
 
 
 
 
 
 
 



Fig. 3. 

 
Center of mass (COM) and step dynamics in the anterior-posterior (AP) direction. Average 
values (mean; left) and variability (s.d.; right) across 60 strides on flat terrain (FT) and uneven 
terrain, at the beginning (UT1) and end (UT2) of a 12 min walking trial. Circles represent 
individual subject results; crosses represent the mean value. (A) Per-step COM excursion range 
(COMexc), (B) per-step peak anterior COM velocity (COMvel) and (C) step length. N=11, *P<0.05, 
in post hoc Tukey's HSD/Wilcoxon signed rank (for average anterior COMvel only) tests. 

 
Average anterior COMvel did not change across walking bouts (χ2

2=5.636, P=0.06). 
Significant differences in the variability of anterior COMvel were observed 
(F2,20=74.868, P<0.001), with post hoc tests revealing a higher variability at UT1 in 
comparison to FT (P<0.01; Fig. 3B). This variability reduced at UT2 (P<0.01) but 
remained higher than that on FT (P<0.01). 
 
Significant differences in average step length (F2,20=21.738, P<0.001) and step length 
variability (F2,20=26.062, P<0.001) were observed across walking bouts (Fig. 3C). Step 
length was on average lower at UT1 than on FT (P<0.01), increased at UT2 (P<0.05) 
but remained shorter on average than on FT (P<0.01). Step length variability was higher 
at UT1 in comparison to FT (P<0.01). It then reduced at UT2 (P<0.05), although it 
remained significantly different from that on FT (P<0.01). 

ML dynamics 



There were significant differences in both average ML COMexc (F2,20=13.673, P<0.001) 
and the variability of ML COMexc (F2,20=26.589, P<0.001) (Fig. 4A). Post hoc tests 
revealed a significantly higher average ML COMexc at UT1 and UT2 in comparison to FT 
(both P<0.01), but not between UT1 and UT2 (P>0.05). The variability of ML 
COMexc was greater at UT1 than on FT (P<0.01) and increased further at UT2 (FT–UT2 
and UT1–UT2 both P<0.01). Differences in both average lateral COMvel and its 
variability were observed (F2,20=5.529, P=0.012 and F2,20=34.453, P<0.001, 
respectively; Fig. 4B). Lateral COMvel was on average higher at UT1 than on FT 
(P<0.01), but was not different from FT at UT2 (P>0.05). The variability of lateral 
COMvel was higher at UT1 in comparison to FT (P<0.01) and there was a further 
significant increase at UT2 (P<0.05). 
 
Fig. 4. 

 

 
Center of mass (COM) and step dynamics in the medial–lateral (ML) direction. Average 
values (mean; left) and variability (s.d.; right) across 60 strides on flat terrain (FT) and uneven 
terrain, at the beginning (UT1) and end (UT2) of a 12 min walking trial. Circles represent 
individual subject results; crosses represent the mean value. (A) Per-step COM excursion range 
(COMexc), (B) per-step peak lateral COM velocity (COMvel) and (C) step width. N=11, *P<0.05, 
in post hoc Tukey's HSD tests. 

 
Significant differences in average step width (F1.3,13.3=16.312, P=0.001; Fig. 4C) and 
step width variability (F2,20=29.805, P<0.001) were observed. Average step width was 
higher initially on uneven terrain at UT1 (P<0.01) but reduced (P<0.01) such that it was 



not different from FT at UT2 (P>0.05). Step width variability was higher at UT1 in 
comparison to FT (P<0.01) and remained high at UT2 (UT1–UT2 P>0.05, FT–
UT2 P<0.01). 

DISCUSSION 

Initial phase of walking on uneven terrain: cautious and variable 

Average values for step length and width were comparable to previously reported 
values for flat and uneven terrain walking (Voloshina et al., 2013). The variability of 
these parameters was slightly lower in the present study, potentially a result of 
differences in the treadmill surface. As anticipated, an immediate change in dynamics 
was observable as participants were first exposed to an uneven surface. Variability in 
COM excursion range, peak COM velocity and foot placement in the AP and ML 
directions was higher during the first 60 strides of walking on uneven terrain in 
comparison to FT. It is likely that some of this variability may be explained by trends 
inflating the spread of the data over the 60 steps whilst participants became familiar with 
the surface, e.g. gradual increases in step length. 
 
The changes in foot placement observed at UT1, i.e. increases in step width and 
decreases in step length, support the immediate adoption of a cautious and restrictive 
solution, and were as anticipated and consistent with previous literature (e.g. Hak et al., 
2013; Voloshina et al., 2013). The hypothesized increases in average COMexc and 
COMvel on initial exposure to uneven terrain were observed only in the ML direction, but 
not the AP direction. An orthogonal interplay between AP versus ML control has 
similarly been observed in previous studies, which was suggested to illustrate the 
relative prioritization of progression in the direction of locomotion versus balance control 
(Bauby and Kuo, 2000; Wurdeman et al., 2012). While passive dynamics may 
effectively manage forward progression during level walking (Bauby and Kuo, 
2000; Collins et al., 2005), lateral stability is believed to be under the control of higher 
centers (O'Connor and Kuo, 2009). In this novel task, a change in the ML direction 
accompanied by a lack of change in the AP direction, evident despite the uneven 
support surface, may be a result of active AP restriction as a means to avoid 
destabilization and to prioritize balance control in the early stages of exposure. The lack 
of change in AP COMexc and COMvel may also be a secondary effect of the shorter step 
length, or merely due to the constraint of the fixed treadmill speed. The imposition of a 
fixed step length across conditions, and repetition of the study on an overground 
uneven surface or self-paced uneven terrain treadmill could exclude these last two 
hypotheses. 

Change in locomotor patterns on uneven terrain over time: less restrictive but 
more refined 

Changes in whole-body locomotor patterns were observed following a longer period of 
walking on the same surface in some but not in all variables examined. Further, the 
changes were not consistent across AP and ML directions. Against expectations, 



COMexc range and its variability did not reduce at UT2. AP excursion range, in fact, 
increased at UT2, and the higher variability observed at UT1 was maintained, whereas 
ML excursion range did not change but its variability increased at UT2. Both of these 
findings, again, might indicate an initial self-imposed restriction to motion that was 
released with familiarity with the uneven terrain (Bernstein, 1967; Vereijken et al., 1992). 
These results are notable given that across the analysis period of UT1 the presence of 
any increasing or decreasing trend in COMexc would have inflated the standard 
deviation of the data. 
 
In the AP direction, increases in average step length and reductions in the variability of 
COMvel and step length allude to an evolution of the dynamics in the direction of 
progression with time, consistent with a reduction of conservative strategies and a more 
refined solution. These variables at UT2 remained significantly different to those on FT, 
however, indicating an enduring effect of the terrain. It remains possible that an 
increase in the duration of the trial, which permitted only approximately 11 min of 
exposure prior to analysis in the current study, or inclusion of additional bouts of walking 
on the uneven surface, would have led to greater refinement. 
 
The elimination of the initial increase in step width and lateral COMvel similarly suggest 
refinement of the solution in the ML direction. Conversely, a high variability of COM 
movement and high step width variability have been associated with poorer control of 
movement and greater fall risk in studies of level walking (e.g. Brach et al., 2005); 
therefore, the observed increase in lateral variability over time might appear to support a 
degradation rather than a refinement in movement dynamics. However, an increase in 
lateral COM variability would arguably not present a risk to balance should an 
appropriate relationship between COM dynamics and base of support be maintained at 
each step. In order to further explore these unanticipated increases in variability, a post 
hoc analysis of the relationship between COM and foot placement in the ML direction 
was performed. Based on the method of Wang and Srinivasan (2014), models to predict 
the lateral placement of the (dominant) swing foot based on ML COM state (excursion 
and velocity) during the preceding midstance were developed [for detailed methods, 
refer to Wang and Srinivasan (2014), noting that in the present study whole-body COM 
was employed instead of pelvis, as per Arvin et al. (2018)]. Lateral step placement 
(analogous to step width in the present study) could be predicted by ML COM dynamics 
at the preceding midstance by the following equations, each based on 100 strides from 
each participant, with variables expressed as a deviation from the mean and coefficients 
averaged across the group: 
 
(1)  
 

(2)  
 

(3)  
 
Greater excursion and velocity towards the swing foot was associated with a more 
lateral foot placement, and the relationship was maintained on both flat and uneven 



terrain. R2 values computed from correlations between predicted and measured lateral 
foot positions revealed that approximately 70% of the variance in step width could be 
predicted by ML position and velocity at midstance with respect to the stance foot 
(across the group: FT 72.6±8.1%, UT1 69.6±10.5%, UT2 73.0%±5.9%). 
 
This post hoc analysis indicates that the increased variability of individual variables that 
was observed in the ML direction is actually effectively controlled and managed by 
unimpaired individuals through the coupling between COM dynamics and foot 
placement. As such, the increase in variability of the ML variables may simply be due to 
a lack of threat once the participant has become familiar with the constraints of the 
surface and their potential impact on movement. It is possible that the COM and step 
position variability in the ML direction is a direct consequence of the contours of the 
terrain that naturally perturb the person in the ML direction. One might speculate that it 
would be less profitable and more energetically costly to oppose these perturbations 
and attempt to restrict movement in this plane in the absence of a threat to stability. It is 
also possible that there is some benefit to an increased variability in this direction as a 
form of exploratory behavior, enabling the surface to be actively probed from stride to 
stride (Vereijken et al., 1992). 
 
In an alternative interpretation, the directional changes observed are consistent with 
optimization theories of motor control (Diedrichsen et al., 2010; Todorov and Jordan, 
2002) and the minimum intervention principle (Scott, 2004; Todorov and Jordan, 2002), 
with the assertion that variability would be expected to be minimized only when it 
hinders the task goal: walking forwards on a moving belt. Alteration of the task context, 
by introducing a requirement to stabilize a container of liquid whilst walking, for 
example, might reveal whether this lateral variability would be reduced should 
successful performance of the task demand it. 
 
Although these results indicate a refinement of movement, it is unclear whether the 
adaptations are associated with a greater walking economy. For example, whilst a 
reduction in step width and in step length variability over time might reduce metabolic 
cost (see Donelan et al., 2001; Rock et al., 2018), the increase in step width variability 
could have the opposite effect (O'Connor et al., 2012). Direct measurement of 
energetics within the same experimental paradigm would provide further insight into this 
aspect of locomotor performance. 
 
Despite differences in the terrain contour encountered from stride to stride, our findings 
suggest that individuals adapted their movement as they became familiar with the 
terrain. This implies that some understanding of the constraints of the surface and 
potential effects on the forces experienced during walking may be learned over time. 
Given the inherent periodicity of the pattern, such constraints might include the range of 
surface heights and the absence of abrupt changes in height. The manipulation of these 
factors, particularly in an unpredictable manner, may reduce the effectiveness of such 
refinements to movement and produce a different outcome. Similarly, the use of a 
treadmill will have introduced speed, step width and step length constraints associated 
with remaining safely in the center of the treadmill belt, potentially influencing the 



dynamics and variability of walking patterns on first exposure and after familiarization. 
Whether the same observations would be made without these constraints warrants 
testing. A further limitation to the study lies in the lack of inclusion of the first 60 strides 
of walking on the flat terrain (would be FT1). We performed this analysis under the 
presumption that treadmill walking was already a learned skill for these participants, and 
the flat and uneven terrain treadmills were similar, isolating the effect of the terrain. The 
results observed in the uneven terrain trial are unlikely to be due to familiarization with 
walking on a moving belt given that participants had walked for over 12 min on flat 
terrain prior to walking on uneven terrain. However, it is plausible that a similar trend in 
these measures would have been observed on the flat in addition to the uneven terrain 
(Owings and Grabiner, 2003; Taylor et al., 1996). 
 
This study investigated the whole-body responses of unimpaired individuals for whom 
conservative strategies appropriate for this context appear to be readily available. The 
changes in the terrain were modest, permitting heel strike and foot-flat to be achieved 
regardless of the contour encountered at each step. The absence of adequate ankle 
range of motion or the inability to adjust compliance at the foot and ankle, as may be 
experienced by an orthosis or prosthesis user, would preclude this ability, leading to a 
greater disruption to walking. Similarly, the lack of ability to appropriately perceive 
relevant cues regarding changes in COM state could be severely disabling in this 
context, and necessitate conservative strategies to be continually employed in order to 
maintain balance. Further investigation of the strength of the relationship between COM 
dynamics and foot placement at different points in the gait cycle, alongside the inclusion 
of AP and vertical COM state variables may provide further insight into the time course 
of step-to-step adjustments given changes in terrain contour in unimpaired and 
pathological populations. Further, the exploration of rotational dynamics at the joint and 
segmental level, both in concert and in isolation, will provide additional insight into how 
these global solutions arise, and the implications of degradation, injury or absence of 
joints for the ability of an individual to readily negotiate non-level environments. 

Conclusions 

Our results indicate that the whole-body locomotor dynamics of unimpaired individuals 
are affected by modest changes in terrain, and that movement solutions can evolve 
over time with longer exposure to the surface, despite changes in the interactions 
experienced from stride to stride. In the direction of walking, dynamics appeared to 
become more refined with time. In contrast, perpendicular to the direction of walking, 
the changes over time were consistent with a release of degrees of freedom, but one 
that is effectively managed when observing the system as a whole. Future work will 
explore the means by which these immediate and longer-term solutions are brought 
about, and the extent to which success of the task depends on controllable degrees of 
freedom, with implications for individuals with lower limb pathology or amputation. 
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