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Multifractality, Interactivity, and the 
Adaptive Capacity of the Human 

Movement System: A Perspective for 
Advancing the Conceptual Basis of 

Neurologic Physical Therapy 

Cavanaugh, James T. PT, PhD; Kelty-Stephen, Damian G. PhD; Stergiou, Nicholas 
PhD 

ABSTRACT 

Background and Purpose:  

Physical therapists seek to optimize movement as a means of reducing disability and 
improving health. The short-term effects of interventions designed to optimize 
movement ultimately are intended to be adapted for use across various future patterns 
of behavior, in potentially unpredictable ways, with varying frequency, and in the context 
of multiple tasks and environmental conditions. In this perspective article, we review and 
discuss the implications of recent evidence that optimal movement variability, which 
previously had been associated with adaptable motor behavior, contains a specific 
complex nonlinear feature known as “multifractality.” 

Summary of Key Points:  

Multifractal movement fluctuation patterns reflect robust physiologic interactivity 
occurring within the movement system across multiple time scales. Such patterns 
provide conceptual support for the idea that patterns of motor behavior occurring in the 
moment are inextricably linked in complex, physiologic ways to patterns of motor 
behavior occurring over much longer periods. The human movement system appears to 
be particularly tuned to multifractal fluctuation patterns and exhibits the ability to 
reorganize its output in response to external stimulation embedded with multifractal 
features. 

Recommendations for Clinical Practice:  

As a fundamental feature of human movement, multifractality opens new avenues for 
conceptualizing the link between physiologic interactivity and adaptive capacity. 
Preliminary evidence supporting the positive influence of multifractal rhythmic auditory 
stimulation on the gait patterns of individuals with Parkinson disease is used to illustrate 
how physical therapy interventions might be devised to specifically target the adaptive 
capacity of the human movement system. 



Video Abstract available for more insights from the authors (see Video, Supplemental 
Digital Content 1, https://links.lww.com/JNPT/A183). 
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Optimizing movement is the fundamental therapeutic goal of the physical therapy 
profession.1 As its core construct, the human movement system provides the profession 
with a scientific framework for understanding the nature of optimizing movement. The 
system, which “represents the collection of systems (cardiovascular, pulmonary, 
endocrine, integumentary, nervous, and musculoskeletal) that interact to move the body 
or its component parts,”1 is by definition a dynamic one. When functioning optimally, the 
continuous interactions within the human movement system maximize an individual's 
ability to engage with and respond to his or her environment by virtue of functional 
capacity and performance.1 Recent efforts by the American Physical Therapy 
Association1–3 underscore the importance of integrating movement system concepts into 
physical therapist education, practice, and research. 

Human movement is a complex behavior within a specific context.1 If at any given 
moment, the movement-related functional capacity and performance of an individual are 
the product of interactions among physiologic systems, and if interactions among 
system components fluctuate continuously by definition, then one would expect that the 
behavior of the human movement system as a whole would fluctuate to some extent 
from one moment to the next; this is indeed the case. Across a range of physiologic and 
performance measures (eg, heart rate, respiratory rate, postural control sway, and gait 
strides),4–14 variability in the output of the human movement system has been recognized 
as providing important information about the health of underlying physiologic systems 
and their interactions. Optimal human movement, in fact, exhibits complex, nonlinear 
fluctuation patterns in motor performance across multiple repetitions of a task that are 
suggestive of the capacity of the organism to adapt to changes in environmental 
conditions.15,16 

Our purpose in this perspective article is to introduce neurologic physical therapists to 
the concept of “multifractality,” a specific nonlinear feature of movement fluctuation 
patterns that recently has been identified as a mathematical descriptor of dynamic 
interactions among movement system components. We propose that multifractality 
characterizes the coordination of motor degrees of freedom and provides a window into 
understanding the adaptive capacity of the movement system as a whole. We begin by 
reviewing what is already known about movement variability in physical therapy clinical 
practice. We then review the basic idea of multifractality and evidence supporting its 
potential role in the movement system. In the final section, we translate multifractality 
concepts into neurologic physical therapy clinical practice by describing how various 
forms of mechanical stimulation currently in use might be augmented to promote greater 
interactivity, and therefore, enhanced adaptive capacity within the human movement 
system. 

https://links.lww.com/JNPT/A183


HUMAN MOVEMENT VARIABILITY IN CLINICAL PRACTICE: WHAT 
WE ALREADY KNOW 

In some clinical contexts, the neurologic therapist's immediate goal is to 
reduce variability in the number of ways a patient might move. In an acute care setting, 
for example, a therapist's goal may be to constrain the movement of patients with 
balance impairment by training them to use an assistive device for added stability when 
walking. In an inpatient rehabilitation setting, a therapist's goal may be to train a patient 
with respiratory impairment using a distributed practice schedule, so as to avoid oxygen 
desaturation. In an outpatient setting, a therapist's goal might be to train a patient to 
avoid various activities that provoke noxious symptoms associated with mild traumatic 
brain injury. In these types of situations, therapists are likely to consider the patient's 
consistent, error-free adherence to a specific mobility restriction as serving to prevent 
injury, pain, and/or delayed recovery. In doing so, the therapist makes an informed 
tradeoff: the recommended behavioral constraints help ensure patient safety but leave 
the patient with fewer options for adapting movements to changes in environmental 
conditions. 

In other clinical contexts, patients' relatively low risk of immediate harm during 
movement diminishes the need for highly restrictive, behavioral constraints to ensure 
safety. The therapist's main focus is to maximize patients' ability to engage with and 
respond to their customary environment by increasing functional capacity, improving 
task performance, and preventing injury. As reported previously using clinical 
examples,15,16 the process of optimizing movement under these conditions typically 
involves 1 of 2 common approaches for addressing movement variability. The first 
approach is a traditional, linear approach in which the therapist assumes that 
decreasing movement variability is required to improve functional ability. The therapist 
has a safe, “correct” movement pattern in mind and provides feedback designed to 
reduce performance errors. Behavioral flexibility is discouraged during the learning 
process. A successful outcome is defined as the patient's ability to perform the correct 
pattern of movement with minimal errors under a narrow set of environmental conditions 
determined by the therapist. 

The second approach is based on principles of nonlinearity, in which the therapist 
assumes that variations in a target movement pattern from one repetition to the next 
contain valuable information necessary for the movement system to develop adaptable 
motor skills. The therapist intentionally allows behavioral flexibility by encouraging the 
patient to explore a variety of ways to safely solve a given motor problem. The therapist 
strategically adds complexity to the intervention by varying environmental conditions 
across repetitions and encourages the patient to develop a repertoire of safe solutions 
for adapting the target behavior. A successful outcome is defined as the patient's ability 
to perform the target motor skill, not only under the environmental conditions under 
which it was acquired, but more importantly, under conditions in which it had not 
previously been attempted. 



In both the approach wherein variability is limited and that wherein variability is 
encouraged, the patient's successful outcome is defined as improved performance of a 
safe pattern of movement. The approaches differ fundamentally, however, in how they 
address movement variability. In the first approach, optimized movement is error free. 
The therapist's likely assumption is that the patient, now knowing the “correct” 
movement pattern, will learn to adapt it on his or her own. In the second approach, 
optimized movement encompasses a repertoire of variations in performance of the 
motor skill. A calculated clinical decision is made to provide the patient with 
opportunities to learn how to adapt the target movement in the face of changing 
conditions. The therapist's likely assumption is that the patient, having learned general 
rules for adapting the target movement pattern, will apply the rules when encountering 
novel conditions in the future, outside of the clinic spotlight. 

NEW DIRECTIONS IN HUMAN MOVEMENT VARIABILITY 

Perhaps not surprisingly, each therapist in the aforementioned examples can make only 
tenuous assumptions about his or her patient's adaptive capacity. Two key reasons lie 
at the root of this limitation. First, the concept of “adaptive capacity,” although intuitively 
appealing, lacks a clear conceptual and empirical linkage to interactive mechanisms 
within the human movement system. Second, contemporary therapists lack the 
necessary tools with which foster and measure the development of adaptive capacity, 
and accordingly, are unable to make more definitive prognostic statements regarding 
the potential long-term success of their clinical interventions. 

Interactivity Begets Adaptive Capacity 

Physiologic interactions within the human movement system are not directly observable. 
What clinicians observe instead are the external interactions of the person (ie, 
movement system as a whole) interacting with a given task in the context of a given 
environment. One key to understanding adaptive capacity is to recognize that the output 
of the movement system, when measured under certain conditions as a long series of 
repeated observations (eg, n = 1000), provides clues to the invisible interactivity 
occurring within the system itself.6–8 The clues are contained within structured, “fractal,” 
patterns of variability in the sequence of emerging observations. In terms of their 
mathematical description, fractal objects reflect the systems-perspective idea that 
patterns of events captured at one measurement scale have a statistical and geometric 
resemblance to patterns of events captured at another scale. A fractal pattern of 
movement variability, therefore, means that movement fluctuations (ie, changes in the 
value of a specific movement parameter) measured at a fine scale (eg, milliseconds) 
resemble changes in the value of the parameter viewed at coarser scales (eg, seconds, 
minutes, and hours). Self-similar, fractal patterns are present in biological systems like 
the human movement system, in which physiologic interactions occur across a range of 
progressively longer time scales.15–23 

Recent advances in movement science (see Supplemental Digital Content 
2, https://links.lww.com/JNPT/A184, for selected examples) have revealed that a 

https://links.lww.com/JNPT/A184


collection of multiple fractal fluctuation patterns, or “multifractality,” rather than a single 
fractal pattern, is a better indicator of an interaction-driven architecture in the human 
movement system.24 The concept of multifractality arises from evidence that fractal 
patterns emerging from physiologic interactions across time scales will vary slightly from 
one another, depending on the nature and direction of the interactions under 
consideration. The variation is thought to occur as a result of differences in how finely-
scale physiologic events influence various coarsely-scaled events (and vice 
versa).25 For the interested reader, tutorials and basic information about fractal objects 
and multifractality are available elsewhere.25–28 

The following is a conceptual example of temporal interactivity in the human movement 
system. Movement kinematics measured in milliseconds may influence physical activity 
patterns occurring over the course of an entire day. Daily physical activity patterns, in 
turn, may influence movement kinematics but not necessarily to the same extent. 
Furthermore, the extent to which movement kinematics and hourly physical activity 
patterns might influence one another, or the extent to which daily and seasonal physical 
activity patterns might influence one another, presumably is also not identical. When 
one considers that such differing, interdependent, bidirectional interactions can occur 
across many different time scales at once, it becomes apparent that a repertoire of 
interactivity may provide a better characterization of temporal events occurring within 
the human movement system than a single metric. 

The idea that stable, adaptable human movement systems maintain a rich repertoire of 
movement strategies containing optimal movement variability is not new.15,16 Similarly, 
the concept that fractal scaling promotes adaptability is also not new.4,6–8 What is new 
here is that the adaptive capacity of the individual can now be conceptually and 
empirically linked to the multifractal characteristics of physiologic interactivity occurring 
within the system. Clinical understanding of a patient's capacity to adapt his or her 
motor behavior to changes in task demands and environmental conditions requires the 
recognition that such (1) behavioral changes are composed of changes in physiologic 
interactivity, (2) changes in interactivity can occur over many time scales, and (3) 
changes in interactivity can have differential, bidirectional influences on one another. 
Thus, we propose that clinicians seeking to foster the development of a patient's 
adaptive capacity should not limit their interventions to behavioral motor learning 
paradigms (eg, variable or random task practice).29 Instead, the clinician should consider 
implementing additional interventions that directly enrich and diversify the patient's 
multifractal patterns of physiologic interactivity for a given task. 

Measuring Multifractality 

One widely used fractal analysis method is detrended fluctuation analysis 
(DFA),30 which can provide unique insights into the patterns of fluctuation embedded in 
the temporal sequence of a movement. DFA begins with taking a measurement 
series x(t), that is, measuring some variable x and doing so repeatedly (eg, n ≥ 1000) 
over regular intervals or space—or even simply measuring attributes of isolated events 
as each consecutive event occurs. Examples of common time series on which DFA has 



been applied previously include center of pressure location collected during quiet 
standing31,32; the interval between consecutive heel strikes during overground walking in 
a laboratory or clinical environment4; and the number of steps per minute measured with 
an activity monitor during unconstrained, “free-living” walking in one's customary 
environment outside of a laboratory.14 

The DFA algorithm is applied to a given time series using computer programming 
languages such as Matlab (Mathworks, Natick, Massachusetts) or R (R Foundation for 
Statistical Computing, Vienna, Austria). The algorithm proceeds by constructing, from 
the measurement series x(t), a random-walk series y(t) and assessing standard 
deviation as the root mean square (RMS) fluctuations above and beyond local trends. 
See Supplemental Digital Content 3, https://links.lww.com/JNPT/A185, for an appendix 
containing a brief introduction to these concepts. DFA assesses these detrended RMS 
fluctuations over bins of many different sizes to estimate how much the standard 
deviation grows over different scales of the measurement (Figures 1 and 2). The 
resulting “fluctuation function” (see the bottom panel of Figure 2) depicts what is called a 
power-law relationship between RMS (ie, standard deviation) and measurement scale. 
The exponent on the power-law relationship provides the analytical key to diagnosing 
fractality. Typically, these power-law exponents estimated by DFA are denoted by a 
Greek letter α or by an upper-case H. A power-law exponent of 0.5 indicates temporally 
uncorrelated fluctuations, whereas temporal correlations will yield power-law exponents 
beyond 0.5. 

 
Figure 1.:  
Schematic of initial steps in detrended fluctuation analysis. The first panel (top left) 
schematizes the measured series. The second panel (top right) schematizes the 
cumulative sum over time. The third panel (bottom left) schematizes the fitting of linear 
trends to nonoverlapping bins of the cumulative sum from the second panel, depicting 
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the cumulative sum series in gray curves, the trend lines in solid black lines, and the bin 
boundaries in dashed black vertical lines. The fourth panel (bottom right) schematizes 
the MSE of residuals left over from each bin's linear fit in the bottom left panel. In both 
bottom panels, the MSEs on the right correspond to the linear fits on the left, for small, 
medium, and large bins. MSE, mean squared error. 

 
Figure 2.:  
Schematic of concluding steps in DFA algorithm. As the top panels show, the MSE 
values depicted in Figure 1 contribute to an average whose square root is an RMS error 
statistic, and each bin size has a corresponding RMS statistic. The bottom panels 
schematize, on the left, the plot of RMS statistics for each bin size with newer gray 
circles representing other RMS values for intermediate bin sizes not schematized in 
these figures and, on the right, a logarithmic scaling of the RMS error and a logarithmic 
scaling of the time scale represented by the bin sizes. The lower right panel 
schematizes the possibility that this RMS function, once logarithmically transformed, 
can yield a linear relationship whose slope is an estimate of the power-law exponent. 
DFA, detrended fluctuation analysis; MSE, mean squared error; RMS, root mean 
square. 

Multifractality is quantified as the variability in these power-law exponents within the 
same system (or person). If we measure multiple series from the same person, we can 
find evidence of multifractality in the variability of α from one measurement series to the 
next. In addition, we can estimate the variability of power-law exponents as a 
“multifractal spectrum” that serves as a sort of histogram indicating the relative 
frequency of α within a single series (Figure 3).33 
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Figure 3.:  
Schematic of multifractal elaboration of the DFA algorithm. In this schematic, we 
consider the entire series of squared residuals left over from the binned detrending (top 
left panel). What multifractal DFA does is to introduce a parameter q that, for standard 
DFA, only equals 2. Different values of q amplify residuals of different size. As the top 
right panel shows, residuals raised to the exponent q is equivalent to squared residuals 
for standard DFA, residuals raised to exponents q greater than 2 leave large errors 
relatively large while diminishing smaller errors, and residuals raised to 
exponents q less than 2 amplify small errors and diminish larger errors. The bottom 
panels show how, whereas DFA uses a single series of squared residuals, multifractal 
DFA uses as many series of error-raised-to-exponent q as there are values of q. Each 
series of error-raised-to-exponent q contributes to a specific relationship between qth-
RMq and bin size, yielding potentially many linear relationships on logarithmic axes and 
so potentially many slopes. DFA, detrended fluctuation analysis. 

TRANSLATING MULTIFRACTALITY INTO NEUROLOGIC PHYSICAL 
THERAPY CLINICAL PRACTICE 

An empirical example of movement synchronization serves as a useful vehicle for 
envisioning how physical therapists might begin to incorporate an awareness of 
multifractality into clinical interventions designed to enhance adaptive capacity. When 
movement scientists employ a traditional paradigm to study repetitive finger tapping, 
they ask participants to entrain their tapping movements to periodic (ie, perfectly 
regular) metronome signals. The traditional interpretation of this ability has been that it 
reveals the production and use of a motor program that participants can use to 
synchronize their future movements with the metronome on the basis of their previous 
experiences with the metronome. The motor program allows the participants to predict 
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when the next metronome beat will be. However, sometimes experimenters will present 
their participants with metronome signals that fluctuate in their timing from one beat to 
the next. The pattern of fluctuating interbeat intervals contains a complex organizational 
structure that features multifractal fluctuation patterns. To the participants, the 
metronome signals simply seem to fluctuate in random and unpredictable ways. As a 
result, the standard expectation, that the beat-by-beat performance of the participant 
reflects a gradually fine-tuned predictive model of when it is most appropriate to tap the 
response button next, goes directly out the theoretical window. Participants will omit to 
tap, or sometimes, in a mix of clumsy anticipation and reaction, tap multiple times for 
individual beats. Surprisingly, however, when viewed over the wider time scale of the 
entire experiment, participants seem able to generate a series of taps (ie, some 
accurate, some missing, and some extra) with intertap intervals that fluctuated 
according to a rule similar to the one which generated the complex, interbeat series of 
the metronome.34 That is, despite failing to coordinate their taps with a variable 
metronome on a beat-by-beat basis, participants' tapping behavior displays a similar 
multifractal pattern to that of the metronome signal.35 The closeness of the match, 
especially given that it occurred across a collection of complex fluctuation patterns, 
could not have been produced by the participant simply attempting to roughly 
approximate the series of interbeat intervals. 

The metronome experiment offers a potentially intriguing example of how smoothly and 
easily multifractal fluctuations might spread from the task environment into the 
movement system. It offers a springboard into a novel way of thinking about the control 
of movement; that is, if multifractal fluctuations can spread from a metronome to a 
tapping hand, perhaps they can also influence motor coordination in neurologic patient 
populations for whom movement retraining is a common focus of rehabilitation. For 
example, it is well established that healthy human gait is characterized by naturally 
occurring fractal dynamics that are thought to allow humans to ambulate in a stable yet 
flexible manner, ready to adapt to unpredictable changes in the 
environment.4 Moreover, abnormal gait patterns associated with a variety of 
neuromuscular disorders are characterized by alterations in fractal dynamics.4 For 
individuals with Parkinson disease (PD), rhythmic auditory stimulation (RAS) delivered 
via a fixed-tempo metronome can be used to temporarily improve gait velocity, stride 
length, cadence, and symmetry.4,36 Conceptually, however, fixed-tempo RAS has the 
potential to overtrain 1 tempo during rehabilitation, thereby reducing 
adaptability.37 Moreover, fixed-tempo RAS does not appear to restore the diminished 
fractal scaling of PD gait dynamics, and, in fact, appears to induce diminished fractal 
scaling in healthy adults.4 If the diminished fractal scaling properties of PD gait 
dynamics are indicative of defective movement system interactivity attributable to basal 
ganglia pathology,6–8 and if an important goal of PD rehabilitation is to optimize 
movement by restoring adaptive capacity via movement system interactivity, then it 
follows that the therapeutic value of fixed-tempo RAS may be inherently limited. 
Perhaps this limitation helps explain why the therapeutic effect of fixed-tempo RAS on 
gait biomechanics appears to be relatively short-lived.38 



Can the benefits of RAS be amplified in individuals with PD if the cueing stimulus 
contains multifractal dynamics? Preliminary evidence suggests that this might be the 
case. In 2013, Hove et al37 asked a small sample of individuals with PD and healthy 
individuals to walk over ground under 3 conditions: no auditory stimulus, fixed-tempo 
RAS, and interactive RAS embedded with nonlinear temporal structure. Their results 
revealed that the diminished fractal scaling properties of gait dynamics of individuals 
with PD were restored to healthy levels only with exposure to an interactive, nonlinear 
auditory stimulus. Furthermore, the gait patterns retained the restored fractal scaling 5 
minutes after removing the interactive RAS, suggesting that the interaction stabilized 
the internal rhythm-generating system and reintegrated timing networks of the 
participants with PD. A meaningful additional outcome of the study was that the 
participants with PD reported greater perceived stability when walking with the nonlinear 
RAS compared with a fixed-tempo RAS. 

Several more recent studies provide preliminary evidence that RAS embedded with 
nonlinear features can indeed alter the naturally occurring fractal characteristics of 
human gait.34,39,40 Importantly, however, the methods used across studies varied in key 
ways (eg, whether participants were explicitly instructed to synchronize their gait with 
the metronome and whether walking was assessed on a treadmill or over ground). 
Furthermore, the extent to which the RAS used in each study may have been 
multifractal was either limited or unclear. Nonetheless, the studies collectively support 
the general proposition that movement retraining interventions promoting interactivity 
among system components may be a potent stimulus for building adaptive capacity of 
the system as a whole. 

FUTURE DIRECTIONS 

In contemporary neurologic clinical practice, physical therapists have opportunities to 
augment their patients' movement training routines by using devices to deliver subtle, 
repetitive, auditory, visual, or tactile stimulation. Examples (other than a metronome) 
include movements influenced by virtual reality,41 robotic cues,42 whole body vibration,43–

46 vibratory insoles to the feet,47,48 and neuromuscular electrical stimulation).49 Very 
recently, noninvasive brain stimulation has also been added to the array of stimulation-
based tools that might augment neurorehabilitation practices.50 Generally speaking, 
these devices are designed to deliver predictable, linear patterns of stimulation for the 
purpose of facilitating movement (eg, muscle activation and kinematics). In the future, 
such devices could potentially be designed to deliver stimulation containing multifractal 
features, with the specific intent of enhancing and diversifying the adaptive capacity of a 
patient's movement system. 

To facilitate the discussion of multifractal concepts and their implications for future 
neurorehabilitation practice, it will be important to consider work occurring in a variety of 
areas. For example, Cavanaugh et al14 demonstrated that the temporal sequence of 
steps taken during customary ambulatory activity in a sample of community dwelling-
older adults contained fractal properties. Rand et al51 recently demonstrated that 
patterns of support surface translations with temporal characteristics of varying 



complexity differentially altered the center of pressure signals of healthy adults. In the 
field of robotics, Wang and Ren52 recently reported on the development of comfortably 
wearable, assistive technologies on the basis of multifractal concepts that may 
dramatically diminish the motor learning curve for movement retraining using prosthetics 
and orthotics. In our view, such developments have strong potential to expand the array 
of interventions considered by neurologic physical therapists for building adaptive 
capacity in their patients. 

SUMMARY 

Neurologic physical therapists routinely apply concepts of movement variability when 
considering patients' behavioral goals. Whether constraining variability to promote 
safety or fostering variability to promote motor skill development, therapists routinely 
manipulate intervention parameters around variability to optimize patient motor behavior 
for a given purpose. The short-term effects of such interventions generally are intended 
to be adapted for use in nonlinear fashion across various future patterns of behavior 
beyond the clinic spotlight, in potentially unpredictable ways, with varying frequency, 
and in the context of multiple tasks and environmental conditions. Accordingly, the 
assessment of adaptability typically centers on the performance of patients attempting 
to adjust their visible behavior to meet the changing demands of a given task or 
environment. 

The recently identified multifractal fluctuation patterns of human movement show 
promise for advancing the conceptual basis of neurologic physical therapy in 2 distinct 
ways. First, the application of multifractal concepts can expand how therapists envision 
the intended target of their interventions designed to improve adaptability. Rather than 
targeting visible motor behavior only, multifractal forms of external stimulation also 
would explicitly target the unseen complex physiologic interactivity occurring within the 
human movement system itself, and therefore, its adaptive capacity. In this sense, 
multifractality expands the concept of “optimizing movement” to more broadly 
encompass not only external (ie, performance-based) but also internal (ie, capacity-
based) forms of interactivity and adaptability. 

Second, multifractality adds new insights to the fundamental clinical idea that kinematic 
patterns of movement occurring over a few seconds potentially can influence motor 
behavior patterns occurring over weeks, months, and years; and similarly, that motor 
behavior patterns occurring over relatively longer periods can influence patterns of 
movement occurring over much shorter periods. The existence of multifractal movement 
fluctuations indicates that such bidirectional influences themselves are likely to vary, 
depending on the time scales under consideration. For neurologic physical therapists, 
the implication of this complex, nonlinear idea is that physiologic adaptive capacity is 
enhanced when such bidirectional, multiscale influences are robust and diverse. Thus, 
interventions designed to promote, restore, or preserve multiscale internal interactivity 
(ie, adaptive capacity) may be more likely than traditional interventions to resonate 
within the human movement system over the long term. 



The multifractality concepts presented in this perspective represent the frontier of a 
relatively nascent scientific field of study. There remains no strong clinical evidence 
supporting the hypothesis that restoring healthy levels of multifractality in the movement 
signatures of patients with neurological health conditions prepares them to cope more 
effectively with irregularities in the natural environment. Indeed, we have only just begun 
to understand how multifractal movement features characterize the healthy human 
movement system and that they can be manipulated experimentally. Furthermore, 
clinically expedient methods for collecting and analyzing long series of repeated 
movement observations are not routinely available in contemporary practice settings. 
Nonetheless, we believe that the science and clinical implications of multifractality, 
interactivity, and adaptive capacity have evolved sufficiently to warrant consideration for 
expanding the conceptual basis of neurologic physical therapy. At a broader level, we 
hope that the ideas presented in this perspective contribute to the ongoing dialog 
regarding the human movement system as the core construct for the physical therapy 
profession.1–3 
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Appendix 1. Selected Evidence Supporting the Existence of 

Movement System Multifractality  

Recent work has examined how healthy adults wield unseen objects by the 

hand.20 Participants grasp an object behind a curtain only by the object’s handle, and 

they wield it to get a feeling for the object’s inertial distribution. This effortful type of 

touch perception recruits limbs, joints, muscles and tendons, profiting from the 

hierarchical organization in which each muscle fiber sits within a muscle group, each 

muscle group encompasses a joint, joints together compose an entire limb, and all is 

woven together by fascia and skin.17 This hierarchical organization of movement 

system components requires multifractal modeling for its description generically.17 

Measuring wielding movements in terms of their multifractality actually predicts (1) how 

participants make different use of the same object’s inertial distribution to generate 

judgments of object length, and (2) differences in length judgments over different trials 

and across different participants. If we provide participants in the wielding study with 

visual feedback on their judgments, their attention to visual feedback depends on head-

sway multifractality; providing visual feedback prompts head-sway multifractality to have 

a more lasting effect in promoting multifractality in hand wielding.20 The multifractality of 

wielding simply exemplifies the more general hierarchical organization of movement 

variability that allows an organism to accumulate and coordinate information for action.  

In motor development during infancy, we find a long-standing understanding that 

infants’ spontaneous kicking movements are exploratory.53 Presumably, this 

exploration entails that spontaneous kicking should carry information from beyond the 

movement system, from more peripheral degrees of freedom (e.g., the ankle) to more 

central degrees of freedom (e.g., the hip) closer to the torso. Here again, we can 

leverage the same usefulness of multifractal measures for indexing the sharing or 

spread of information across the movement system. Typically-developing infants’ 

spontaneous kicking yields an intermittent series of joint-angle excursions as infants 

wiggle, squirm, and kick by turn. One study of typically developing infants sampled 

several minutes of this spontaneous kicking and examined consecutive 30-second 

segments of joint-angle time series. We used multifractal analysis to assess 

multifractality in each segment for the hip, knee, and ankles of each infant, and causal 

modeling provided evidence that joint-angle kinematics exhibited a spreading of 

multifractality from ankle to knee, and from knee to hip.54 This contingency of 

multifractality from more peripheral to more central degrees of freedom follows just the 

sort of flow from periphery to torso that, as noted above, would be consonant with an 

exploratory role for spontaneous kicking. This example thus used a known exploratory 

aspect of the movement system to lend further weight to the idea that multifractality is a 

key feature of exploratory movement variability.  

Adults show a similar coordination of multifractal patterning across different 

muscles participating in the same synergy. Intriguingly, they only show this coordination 

when their movement is intentional. One study examined EMG signals from muscles in 



the arm that produce elbow flexion. EMG was collected in under two conditions, one in 

which elbow flexion was active, i.e., initiated by the participants on their own intention 

and motive force, and one in which the flexion was passive, i.e., initiated by an 

experimenter. EMG shows closely coupled multifractal patterns when the movement 

system is actively flexing the arm, but not when the experimenter provided the motive 

force behind the flexion movements. Thus, multifractal fluctuations appear to be a 

specific hallmark of the intentional cooperation of multiple degrees of freedom.55  

Neural signals themselves carry multifractal patterns that serve to translate motor 

command into movement trajectory.18 Even their supporting fascia has been shown to 

display a multifractal geometry.17 Thus, neural signals contain and are contained by 

temporal and spatial multifractal structure.  

Reference list given in: Cavanaugh J et al. Multifractality, interactivity, and the adaptive 
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Appendix 2. A brief introduction to measuring multifractality 

  Multifractality, as its name suggests, is the case of multiple fractalities. One way 

to understand fractality is to revisit (briefly!) some fundamental concepts of probability. 

We begin with a straightforward dice-rolling example to show how standard deviation 

can reveal temporal correlations, a statistical signature of the echoing across time 

scales noted above. Temporal correlations exemplify fractality.  

Dice roll example  

Let us say that we roll two six-sided dice, over and over again, taking the sum of 

the two numbers that roll face-up on the dice. Let us assume that the dice are fairly 

constructed so that, for each die, there is an even probability of each face, that is, for 

the numbers 1, 2, 3, 4, 5, and 6. As we roll the two dice, pick them up, and roll again, 

there should be no sequence between the two-dice sum for each roll. If we took note of 

the sums as we rolled the dice, we might record the following sequence: 4, 7, 9, 3, 7, 

10, 8, 6, … and so forth. These values would eventually converge around an average of 

6.5, and the standard deviation of the two-dice sums around that mean would converge 

at some constant value determined by the hands of the dice roller, the edges of the 

dice, the surface where the tumbling dice roll, etc. By the thousandth or so dice roll, the 

standard deviation will not budge very much from what it had been after the hundredth 

or so dice roll.  

If we construct what’s called a “random walk” from these dice rolls, we get a 

different result. Random-walk variability grows slowly for independent random events. A 

random walk is summing up of progressive values of individual measured “steps.” In this 

case, each steps in the random walk will be from each dice roll. So, our random walk for 

the two dice rolls from above would start out with 4 because that is the first “step.” Our 

random walk would continue with 4+7 = 11, 4+7+9=20, and so forth. The random walk 

for the first eight dice rolls shown above would be 4, 11, 20, 23, 30, 40, 48, and 54. 

Because each number on the dice faces is positive, the random walk of the dice-roll 

sums will always increase, and so, whereas the series of individual dice-roll sums 

eventually settles on a stable value, the random walk for the dice-roll sums has a 

standard deviation that always increases. If the dice and the rolls are completely fair, if 

there’s no effect of one dice roll on the next, then we can be fairly sure that, once the 

series of individual dice-rolls settle on its stable standard deviation, the standard 

deviation of the random walk will increase slowly, at a rate defined by the square root of 

roll number. So, for instance, the standard deviation of the random walk at 100 rolls will 

be double what it was at 25 rolls, and the standard deviation of the random walk at 400 

will be double what it was at 100 rolls. That is, for fair dice with fair rolling, when there is 

no temporal correlation from one dice roll to the next, the standard deviation grows 

slowly, taking ever more rolls to double.  

Faster growth of variability in temporally correlated events 



 What if your dice are loaded? What if someone has perfected the art of rolling 

the dice to manipulate the outcome? What if, essentially, there is a distinct relationship 

across time from one dice roll to the next? In that case, the random walk will grow much 

more erratically. If the dice-roll sums were temporally correlated, then the random walk 

would show us a standard deviation increasing much more quickly than before. We 

might see a standard deviation at 50 rolls double that of what is was at 25 rolls, and 

again doubling at 100 rolls and once more at 200 rolls. The temporally correlated dice-

roll sums would exhibit a random walk with much more rapid growth of variability than 

we had seen with the random walk of the uncorrelated dice-roll sums. This more rapid 

growth of variability is often a signature of temporal correlations.  

Estimating temporal correlations from standard deviation  

Fractal analyses are essentially ways to assess the standard deviation for 

measured random-walk series. We take a measurement, construct the random walk by 

taking the cumulative sums as for the dice-rolls. To diagnose a measurement as 

“fractal,” we need to be sure that the fast growth of random-walk standard deviation has 

to do specifically with temporal correlations. Fast growth of random-walk standard 

deviation might simply be due to nonstationary (i.e. “explosive”) growth: that is, you may 

have perfected the art of rolling the same number, and as you roll more and more, you 

might find yourself preferring to roll 12 every time or a 2 every time. Rolling 12 every 

time and rolling 2 every time would reflect the same temporal correlations, but rolling 12 

every time would cause standard deviation to positively explode whereas rolling 2 every 

time would provide only minimal increase. We want a way to assess temporal 

correlations, the dependence among consecutive dice-roll sums, without being fooled 

by trends in the data.  

The same physiological, behavioral, and cognitive measurements that inform 

physical therapy can often be nonstationary. So, judicious use of fractal methods 

requires adequate removal of trends. Different data may require different methods 

particularly as different processes as well as different task constraints may produce 

different trends. 56,57  
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