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Abstract 
In the present study, we analyse data from the English Lexicon Project to assess the 

extent to which age of acquisition (AoA) effects on word processing stem from the number of 

semantic associations tied to a word. We show that the backward number of associates (bNoA; 

that is, the log transformed number of words that produce the target word in free association) is an 

important predictor of both lexical decision and reading aloud performance, and reduces the typical 

AoA effect as represented by subject ratings in both tasks. Although the AoA effect is reduced, it 

remains a significant predictor of performance above and beyond bNoA. We conclude that the 

semantic locus of AoA effects can be found in the number of backward connections to the word, 

and that the independent AoA effect is due to network plasticity. We discuss how computational 

models currently explain AoA effects, and how bNoA may affect their processing. 

 

Keywords 
Age of acquisition; number of backward associations; semantic locus hypothesis 

 

 

Age of acquisition (AoA) is a general and strong predictor of word processing 
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performance in tasks such as reading aloud and lexical decision, among others (see, for 

example, Cortese & Schock, 2013; Juhasz, 2005). AoA refers to the estimated age at 

which people typically learn a word. AoA is usually considered on a relative scale. For 

example, top is a word that is often acquired at a relatively early age as compared with a 

word such as apex which is typically acquired much later. Because AoA influences 

performance on measures of word processing, it is important to determine the loci of 

AoA effects because it has important implications for theories of semantic memory, 

lexical organisation, and word processing more generally. 

One issue with the representation of AoA concerns how best to estimate it. Thus 

far, subjective ratings have been the most common way to measure AoA. That is, adults 

estimate the age at which they learned each of a series of words, some that were 

acquired many years ago. Participants are asked to perform these subjective ratings, 

often times, for hundreds if not thousands of words. In fact, Kuperman et al. (2012) 

collected such ratings via Amazon Mechanical Turk for 30,000 English words across 

1,906 participants. Of course, the subjective nature of this method leaves open the 

possibility that the ratings are influenced by other lexical variables. While previous 

research has shown fairly strong correlations between the subjective AoA and more 

objective measures of AoA (see, for example, Carroll & White, 1973), the correlations are 

not perfect, and AoA correlates with many other lexical variables such as frequency, 

imageability, and orthographic length (Cortese & Khanna, 2008). Thus, if people are 

influenced by these other variables when making their estimates of AoA, it is possible 

that some proportion of AoA effects on word processing measures is actually due to 

these or other variables. 

Consider word frequency. Words rated as earlier acquired tend to be more 

frequently encountered in the language. For example, the early acquired top is quite 

frequent as compared with the much later acquired apex. Accordingly, Zevin and 

Seidenberg (2004) proposed that frequency trajectory might be a better way to 

conceptualise AoA than subjective ratings. Frequency trajectory refers to the pattern of 

frequency associated with words across development. Some words (e.g., potty) are 

more frequently encountered early in development, some words are more frequently 

encountered later in development (e.g., merlot), and other words maintain a fairly 



 

 

constant frequency trajectory (e.g., spoon). And so, a word may be acquired at an early 

age when it is encountered more frequently early during development than when it is 

encountered less frequently early on. However, frequency trajectory has not been a 

strong predictor of word processing performance, and it has little influence on AoA’s 

relationship with word processing (Brysbaert, 2017; Cortese & Khanna, 2007). 

Moreover, AoA effects are robust after more recent and accurate frequency norms are 

used to estimate frequency (see Brysbaert & Cortese, 2011). In other words, one cannot 

simply reduce AoA to either frequency or frequency trajectory. 

Instead, we might better understand the nature of AoA if we look at semantic 

variables that relate to AoA. The present studies were motivated by the hypothesis that 

AoA has a semantic basis (e.g., Brysbaert et al., 2000; Steyvers & Tenenbaum, 2005; 

Van Loon-Vervoon, 1989). According to Steyvers and Tenenbaum’s small world network 

theory, for example, new concepts are acquired incrementally via establishing 

associations with the meanings of previously acquired words. For example, when 

people encounter apex, they will likely make the association between it and top. Thus, 

the earlier acquired word (e.g., top) is processed at the semantic level when a later 

acquired word (e.g., apex) that shares semantic information is encountered. Because 

picture naming and lexical decision are assumed to rely on semantic information more 

than reading aloud, the semantic locus hypothesis can explain the differential effect of 

AoA across these tasks (Juhasz, 2005). More specifically, Steyvers and Tenenbaum 

(2005) propose that when a word is acquired, a node representing the concept of the 

word is established, and connections from it to a subset of nodes in a semantic network 

also form. Over the course of lexical development, certain early acquired words become 

hubs, and novel representations then connect to these earlier acquired hubs. 

If new concepts are formed by making associations with already established 

concepts, then one should find that earlier acquired words (e.g., top) are produced more 

often in free association tasks (e.g., Nelson et al., 1998) than later acquired words (e.g., 

apex). Indeed, 65 other words generate top in free association, whereas only 3 other 

words produce apex. More generally, in a study of semantic associations of 1,117 Dutch 

words, De Deyne and Storms (2008) reported a correlation of –.61 between the AoA of 

target words and the (log transformed) back- ward number of associates (bNoA; that is, 



 

the words that led to the production of the target words in free association) of that target 

word. In contrast, AoA was not related to the number of forward associates (i.e., words 

produced by the target word in free association; r = .03). In other words, later acquired 

words produce just as many associates in free association as earlier words. In analyses 

of 3,055 English words, Schock, Cortese, Khanna, and Toppi (2012) replicated this 

pattern to a remarkable degree (the correlations were –.62 and .03, respectively), even 

though De Deyne and Storms (2008) utilised a continuous association task where 

multiple associates to a target are generated, whereas the Nelson et al. (1998) norms 

are based on a single response association task. 

Clearly, the semantic locus hypothesis makes the pre- diction that at least part of 

the AoA effect can be reduced to the number of backward associates of the target word. 

Of course, there are other theories that offer viable explanations of AoA effects, but we 

save our discussion of these theories for the general discussion. In the present study, we 

examine how AoA relates to the number and direction of semantic associations of a 

word and whether these associations account for some AoA-related variance in reading 

aloud and lexical decision performance for 2,940 words. We extracted z-score 

transformed reaction times (i.e., zRTs) and accuracy measures from the English 

Lexicon Project (ELP). A semantic association occurs between two words when one 

word (e.g., apex) generates the other word (e.g., top) in free association (Nelson et al., 

1998). The direction of the association in the case of apex and top is one way. 

Specifically, apex generates top in free association, but top does not generate apex. In 

terms of the terminology that we use throughout this article, top is a forward associate of 

apex, and apex is a backward associate of top. We note, that, in this case, apex is a 

later acquired word and top is an earlier acquired word. 

Interestingly, to the best of our knowledge, no one has simultaneously explored 

the relationship among AoA, the number of forward and backward (or reciprocal; that is, 

words that are associated in both the forward and back- ward directions) associates of a 

target word, and word processing performance. We note that other studies (e.g., Balota 

et al., 2004; Steyvers & Tenenbaum, 2005; Yap & Balota, 2009; Yap et al., 2011) have 

included semantic neighbourhood or number of semantic associates as predictors, but 

those studies have not differentiated the direction of the associations in the way we 



 

 

have done in the present study. For example, Balota et al. (2004) assessed connectivity 

as the sum of the number of associates generated by a target (i.e., the forward 

associates) and the number of other words that generate the target (i.e., the backward 

associates). In the Nelson et al. (1998) norms, we find that top generates 11 associates, 

and, as mentioned, 65 other words generate top. Therefore, the connectivity value 

utilised by Balota et al. would be (the log of) 76. Balota et al. found that, in a sample of 

1,625 monosyllabic words, connectivity is related to lexical decision reaction time (RT) 

but not reading aloud RT. In the present study, we parsed out this connectivity value by 

separating the influences of forward and backward associations. We did this because, 

as we indicate above, AoA is not related to the number of forward associates of a word, 

but it is related to the number of backward associates. Furthermore, we hypothesise that 

forward associates and backward associates likely have different influences on models 

of word processing. In addition, we thought it was important to acknowledge that some 

pairs of words act as both forward and backward associates of one another. For 

example, top is a forward associate of hat, and hat is a forward associate of top; we refer 

to these as reciprocal associates. Therefore, we also examine the influence of reciprocal 

associates on word processing measures. 

Specifically, we examine the influence on word processing from three distinct 

measures of the number of associations a word has. First, we examine bNoA. This 

variable refers to the number of words that generate a tar- get word and is moderately 

associated with AoA (De Deyne & Storms, 2008; Schock, Cortese, & Khanna, 2012). 

Due to the log-linear relationship between AoA and bNoA, we log transformed bNoA for 

the purposes of the present study. Second, we examine the influence of for- ward 

number of associates (i.e., fNoA). This variable refers to the number of words that a 

target word itself generates in free association and is not strongly associated with AoA 

(De Deyne & Storms, 2008; Schock, Cortese, Khanna, & Toppi, 2012). For example, 

top generates 11 other words in free association, and apex generates 16 other words. 

Third, we examine the reciprocal number of associates (i.e., rNoA). This variable refers 

to the common forward and backward associates of a word. For example, top has six 

reciprocal associates (bottom, hat, above, spin, cover, and shirt), and apex has one 

reciprocal associate (summit). AoA is also correlated with rNoA, but the correlation is a 



 

bit weaker than that between AoA and bNoA (see below). Because bNoA and rNoA are 

highly correlated, we analysed these variables separately. 

We felt that the examination of rNoA was needed because it is not clear how 

computational models of reading aloud would be influenced by bNoA. Most 

computational models do not assume much if any semantic influence in the reading aloud 

process. This is simply because, to read aloud a word, one needs to translate an 

orthographic code into a phono- logical code that is articulated. The influence of 

semantics tends to be minimal in this task (Cortese & Khanna, 2007). In fact, neither the 

dual route cascade (DRC; Coltheart et al., 2001) model of reading aloud nor the 

connectionist dual process (CDP++; Perry et al., 2010) model implement any semantic 

system at all. A recent exception that implements a semantic system into its 

computational framework comes from the bilingual word recognition model Multilink, pro- 

posed by Dijkstra et al. (2019). Within Multilink, there is a semantic system that interacts 

with both orthographic and phonological representations, and thus, the model assumes 

that reading aloud of a word may be influenced by its reciprocal semantic associates. On 

the contrary, backward associates would not be expected to influence reading aloud 

performance in Multilink unless a forward association was also present. For example, 

when top is read, the lexical (i.e., orthographic, phonological) representations for it would 

be activated, and this activation would then spread to the semantic system, activating 

top’s forward associates. As we noted above, later acquired words have just as many 

for- ward associates as earlier acquired words. However, importantly, the orthographic 

and phonological lexical representations for top would receive top-down activation from 

the semantic system via the reciprocal associates. In this case, bottom, hat, above, and 

so on would be activated from the bottom-up (via activation from top) and would 

reinforce activation of top either through top-down activation from the semantic level to 

the orthographic and phono- logical levels or via top’s semantic representation. In 

contrast, the later acquired word apex would benefit in a similar manner for only the 

single reciprocal associate summit. Like this example, earlier acquired words do tend to 

have more reciprocal associates than later acquired words. In the current study of 2,940 

words, r = –.485 between log 10 rNoA and AoA. We note that the correlation is stronger 

between log 10 bNoA and AoA (r = –.614 in the current study) than log 10 rNoA and AoA. 



 

 

Log 10 rNoA and log 10 bNoA are strongly correlated (r = .812). 

We also note that the activation process described above for Multilink would be 

similar for parallel-distributed-processing (PDP) models (e.g., Chang et al., 2019; Harm 

& Seidenberg, 2004; Plaut et al., 1996), but representations would be distributed rather 

than localised. In particular, we think that the model proposed by Chang et al. (2019) 

rep- resents an important extension to the PDP framework because it incorporates a 

semantic network in addition to orthographic and phonological networks. This addition is 

important because it allows for the simultaneous computation of a phonological code 

and a semantic code from an orthographic input. Furthermore, through interactivity, the 

computation of a code at any one level could be influenced by activity occurring at any of 

the other levels, although Chang et al. do not implement interactivity from semantics or 

phonology towards orthography. Thus, in the model, the computation of a semantic code 

during reading occurs directly via orthography and also indirectly via an orthog- raphy-

to-phonology-to semantic pathway. Furthermore, through interactive activation, the 

computation of a semantic code is influenced by activity accruing in the phono- logical 

network, and the computation of a phonological code is influenced by activity accruing in 

the semantic net- work. Interactivity between semantic and/or phonological levels and 

the orthographic level was not implemented, but theoretically, one would assume 

interactivity among all representational levels. In general, we think that the PDP 

approach provides a very good theoretical framework for explaining AoA effects (see 

Cortese & Khanna, 2007; Cortese & Schock, 2013) on measures of word processing. 

We discuss this approach in more detail in the “Results and discussion” section. 

In the current study, we accessed lexical decision and reading aloud RT (zRT) 

and accuracy measures from the ELP for 2,940 monosyllabic and disyllabic words. The 

words that we selected for inclusion in this study were chosen because they had one or 

two syllables; had at least one forward associate, one backward associate, and one 

reciprocal associate; and because predictor values for standard predictors (e.g., 

frequency, AoA, imageability) were available. To assess the influence of AoA and the 

NoA variables (fNoA, bNoA, and rNoA) on performance, we applied stepwise multiple 

regression. In our analyses, initial phoneme was entered in the first step, and sublexical 

and lexical factors and imageability were entered at the second step. At the third step, 



 

the NoA variables were entered, and AoA was assessed in the final step. 

We predicted that because lexical decision is thought to rely substantially on 

semantic information (Cortese & Khanna, 2007), all NoA variables would be expected to 

affect performance on that task. When a word is encountered, it will activate the 

representations of its associates from the bottom-up. Specifically, in dual route models, 

the orthographic and phonological representations will be activated by the printed word 

and will serve as input to the semantic system which will activate associates to the tar- 

get word. If the target word activates a larger number of associates, this information 

would be useful in discriminating words from nonwords as nonwords do not have 

semantic associates. We assume that this process would be similar for distributed 

models (e.g., Plaut et al., 1996) but would involve distributed representations at the 

ortho- graphic, phonological, and semantic levels. In addition, rNoA could influence 

performance due to feedback from semantics to orthographic and phonological systems 

which would result in increased activity at the lexical level for words having relatively 

more rNoAs. It is not entirely clear how bNoA would affect performance in these 

models, except via rNoA. 

For reading aloud, one might expect the effects of the NoA variables to be 

somewhat weaker than lexical decision because there is less emphasis on semantic 

information when reading aloud. Thus, the main way in which these NoA variables 

would influence contemporary models of reading aloud would be through recurrent 

activity from the semantic system to orthographic and phonological representations for 

words with relatively more rNoAs.  

A central issue involves the degree to which the semantic locus of the AoA effect 

can be reduced to bNoA. If it can, then we would expect a substantial reduction of the 

AoA effect when bNoA is controlled versus when it is not. So, to address this issue, 

additional analyses were con- ducted without bNoA to compare the AoA effect with and 

without bNoA in the regression model. Regardless, if AoA remains significant after 

controlling for bNoA, then the time at which a word is learned is still an important 

characteristic that affects word processing. 

 

Method 



 

 

Materials 

Stimulus characteristics for the 2,940 words in the studies can be found in Table 

1, and the correlation matrix for the Steps 2 to 4 predictor variables can be found in 

Table 2. 

 

 



 

AoA scale 

AoA ratings were taken from Cortese and Khanna’s (2008) monosyllabic database 

and Schock et al.’s (2012) disyllabic database. In both studies, participants estimated 

the age at which they acquired each of 3,000 words on a 1 to 7 scale, where 1 indicated 

some time between 0 and 2 years of age, and each successive number on the scale 

incremented the AoA by 2 years until the rating of 7 which rep- resented the age of 13 or 

older. 

 

NoA variables 

All of the NoA variables were derived from the Nelson et al. (1998) norms. Due 

to their positive skew, we log transformed bNoA and rNoA for the analyses. fNoA did 

not have this problem and so was analysed without any transformation. 

 

Control variables 

The control variables were entered in the first two steps. Initial phoneme, in terms 

of 13 features (e.g., voicing, stop, bilabial), was dichotomously coded and entered in the 

first step. Log subtitle frequency (Brysbaert & New, 2009), number of syllables, 

orthographic length,1 and imageability (Cortese & Fugett, 2004; Schock, Cortese, & 

Khanna, 2012) were entered in the second step. 

 

Key predictors 

AoA (Cortese & Khanna, 2008; Schock et al., 2012) and the NoA variables were 

entered in the third step. A high correlation between log bNoA and log rNoA (r = .812, 

p < .001) prevented us from assessing these variables together. Therefore, bNoA and 

rNoA were analysed separately. Fortunately, the correlations between fNoA and the 

other NoA variables were not problematic in terms of col- linearity, so fNoA was included 

in every analysis at the third step. As previously mentioned, to assess the 

reduction of the AoA effect in terms of bNoA, separate analyses were conducted with 

and without bNoA in the model. 

 

Results and discussion 



 

 

Six regression analyses (three for each task) were per- formed with RT as the 

dependent variable (DV; see Tables 3 and 4), and six analyses were performed with 

accuracy as a DV. We report only the results on RT for three reasons. First, the 

theoretical interest is mainly based on the RT data. Second, the pattern of all the critical 

variables (fNoA, log bNoA, log rNoA, and AoA) reported for the RT analyses is not 

qualified in any way by the accuracy results. Third, the accuracy results show the same, 

albeit smaller in magnitude, patterns as the RT results for all of the critical variables. 

The data used for all of the analyses are provided in Open Science Framework (OSF; 

https://osf.io/z8yq6/). 

 
  

The results of the present studies indicate that (1) bNoA significantly relates to RT 

even after controlling for many factors related to performance; (2) the effect of the NoA 

variables is larger in lexical decision than reading aloud; (3) the AoA effect is reduced 

when bNoA is controlled; (4) the reduction in AoA, due to bNoA, is larger in lexical 

decision than reading aloud; and (5) the AoA effect remains a significant predictor after 

controlling for bNoA. Finally, we note that due to the high correlation between bNoA and 

rNoA, we were unable to fully distinguish the two variables. However, in all cases, bNoA 

was more strongly related to performance than rNoA, and the AoA effect was always 

https://osf.io/z8yq6/


 

reduced more when bNoA was controlled than when rNoA was controlled. 

 
Of primary importance, the semantic locus hypothesis predicts the first four of 

these results and is agnostic towards the last. According to the hypothesis, new words 

(e.g., apex) are learned, in part, through associations to previously learned words (e.g., 

top; Steyvers & Tenenbaum, 2005). This premise leads to the prediction that there 

should be a negative correlation between AoA and bNoA, which was previously 

established (De Deyne & Storms, 2008). While we knew about the relationship between 

bNoA and AoA, we did not know how these variables related to reading aloud and lexical 

decision performance. The results reported here make these relationships clearer. Based 

on the R2 values when AoA and fNoA are included in the regression model versus when 

bNoA is also included, we estimate that about 50% of the previously reported AoA effect 

in lexical decision RT and about 30% of the AoA effect in reading aloud RT can be 

attributed to bNoA. However, based on our analyses, AoA still accounts for a significant 

1% of additional variance in lexical decision RT and .7% of additional variance in reading 

aloud RT above and beyond all of the control variables. Unfortunately, we are unable to 

fully distinguish between bNoA and rNoA as these variables were highly correlated. 

However, in all cases, bNoA was a stronger predictor than rNoA.2 

 



 

 

These results are consistent with predictions made by the semantic locus 

hypothesis (Steyvers & Tenenbaum, 2005), thus advancing our understanding of AoA 

effects and allowing for a more precise description of the relationship among AoA, 

bNoA, and performance. In addition, these results have implications for computational 

models of word recognition. For example, both Multilink and the PDP model of Chang et 

al. (2019) have incorporated semantic systems into their computational frameworks. Of 

course, simulations would need to be conducted to determine the extent to which 

these NoA variables affect the models’ performance. However, we think that rNoA may 

influence word processing performance via interactive activation between the semantic 

level and the ortho- graphic and phonological levels. 

A general approach that accounts for the most basic AoA effects in the literature 

is the PDP model. A PDP model involves an interconnected network of simple 

processing units that learn associations between inputs and outputs. Seidenberg and 

McClelland (1989) introduced what is now becoming the triangle model (for a recent 

version of this model, see Chang et al., 2019). Triangle models consist of 

representational units at the orthographic, phonological, and semantic levels. Any one of 

these levels can serve as an input or output. For example, in a reading aloud task, the 

orthographic layer serves as the input, and the phonological layer serves as the output. 

In a visual lexical decision task, orthography serves as the input, and semantics may 

serve as the output (Cheyette & Plaut, 2017). In between each representation layer is a 

layer of hidden units. These units mediate associations between the inputs and outputs 

and allow for arbitrary associations to be formed (Hinton & Shallice, 1991). AoA has a 

general effect on processing in PDP models, in part because there are larger changes in 

connection weights early in a model’s development than later. This relationship between 

the amount of weight change and AoA occurs because the amount of weight adjustment 

is, in part, a function of how much error there is in the output; outputs with more error 

produce larger weight changes than outputs with less error. Thus, words encountered 

earlier in training are associated with more error and thus tend to produce larger weight 

changes than those occurring later. Moreover, the model is exposed to earlier acquired 

words early in the model’s development when the model is considered to be a more 

optimal processor, thus also contributing to the effect of AoA on word processing (see 



 

Monaghan & Ellis, 2010). Importantly, in PDP models, AoA exhibits the strongest effect 

when the relationship (i.e., mapping) between inputs (e.g., orthography) and outputs 

(e.g., phonology) is arbitrary (Chang et al., 2019; Lambon Ralph & Ehsan, 2006, 

although see Monaghan & Ellis, 2010). When the relation- ship is systematic, later 

acquired words benefit from the shared structure that they have with earlier acquired 

words. However, when the relationship is arbitrary, later acquired words do not benefit 

from shared structure with other words. Consider the process of reading aloud. When 

the model encounters baulk at a later age, there is little cost of being encountered late 

because of the shared structure between baulk and earlier acquired neighbours such as 

walk and talk. In contrast, when the model encounters yacht, there is less shared 

structure with other words, and there is a greater processing cost due to its irregular 

spelling-to-sound pattern. So, the model predicts an interaction between AoA and 

spelling-to-sound consistency on reading aloud RT (Cortese & Schock, 2013) where 

inconsistent words are read aloud more slowly when they are later acquired than when 

they are earlier acquired, and AoA has little effect on words with consistent spelling-to-

sound mappings. Interestingly, one of the main predictions of this mapping hypothesis is 

that there should be a larger effect of AoA on lexical decision RT than reading aloud RT. 

In lexical decision, if one assumes that the input is orthography and the output is 

semantics, then the relationship between the two is largely arbitrary. For example, 

although baulk shares structure at the orthographic and phonological levels with walk, 

talk, and so on, it does not at the semantic level. In other words, alk maps onto different 

meanings in these different words. In contrast, in reading aloud, the semi-regular 

relationship between orthography and phonology in general characterises the inputs and 

out- puts. In other words, alk maps onto the same phonology in all cases. Thus, the PDP 

approach can explain much of the AoA effects (and how they differ across tasks) and 

the relative strengths of these effects that are reported in the literature. And, the 

independent AoA effects reported in the present analyses could be interpreted in a 

similar manner although the magnitude of the AoA effect is reduced in all cases by the 

inclusion of bNoA. 

So, how would the PDP model explain the bNoA effects reported here? When 

encountering a word in a reading aloud or lexical decision task, a set of distributed 



 

 

ortho-graphic inputs activates a set of distributed phonological representations and a set 

of semantic representations via connections mediated by hidden units. Through 

interactive activation, activated semantic representations activate both phonological and 

orthographic units, and phonological representations provide input into semantics and 

orthography. The question here is, in terms of semantic activity, do target words like top 

produce more and/or stronger activation of semantic representations because of their 

high number of backward associations? It might be safe to assume that the activation of 

representations associated with the reciprocal associates may occur through recurrent 

interactive activation among semantic units. In other words, the representations 

associated with the target are activated and those of the target’s associates are then 

also activated, and this co-activity would serve to reinforce each other. What is not clear 

is how the representations associated with backward but not forward associates of the 

target word could also be activated. In the case of reading aloud, the phonological code 

used for reading aloud typically would be computed quickly and so it would be expected 

to show smaller semantic effects than lexical decision. In lexical decision, the semantic 

code would be the best way to differentiate between words and nonwords, and so larger 

semantic effects would be expected. Alternative computational models of reading aloud 

and lexical decision (Coltheart et al., 2001; Perry et al., 2010) have not implemented a 

semantic system. If we assume that the semantic system represents concepts as nodes 

in a network with forward and backward connections, then the types of interactions 

between the semantic system and orthographic and phonological systems described for 

the PDP model would hold for these models as well. 

We note that fNoA would be expected to have an effect at the semantic level in 

terms of increased activity, and this could be used to facilitate lexical decisions. 

However, one would not expect there to be strong connections between the semantic 

representations activated by the target’s for- ward associates and those semantic, 

orthographic, and/or phonological representations of the target unless the for- ward 

associates are also backward associates of the target. Thus, as we observed, fNoA’s 

relationship with lexical decision was reliable, but with reading aloud, the effect of fNoA 

was much weaker and was only significant when neither bNoA nor rNoA was controlled. 

We note that Yap et al. (2011) found in their analyses of a smaller set of 389 words that 



 

fNoA was not significantly related to either lexical decision or reading aloud 

performance. 

In sum, we differentiated between AoA and bNoA and determined their 

relationships with RT in reading aloud and lexical decision tasks. These variables can 

both serve as semantic predictor variables in studies of word processing. We found that 

both variables affect RTs on both tasks. These effects were more evident in lexical 

decision—a more semantic-focused task—than reading aloud. In both tasks, AoA 

effects were reduced when bNoA was con- trolled. Thus, when the semantic locus is 

operationally defined in terms of the number of backward associates, it provides a viable 

account of how the AoA of a word seeds semantic representations and influences 

performance. We also described how contemporary models of word processing may 

account for these findings, but simulations would need to be done to verify these 

hypotheses. 
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Notes 

1. As can be seen in Table 2, orthographic length and Levenshtein 
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orthographic distance (LOD) were highly correlated. To avoid issues related to 

collinearity, we included orthographic length and excluded LOD in our analyses. 

However, none of the patterns regarding AoA or any of the NoA variables change as a 

function of which variable was included in the model. 

2. Researchers may wish to employ structural equation modelling (SEM) to 

examine related issues (see, for example, Lewis & Vladeanu, 2006). For example, one 

might structure a model such that bNoA or rNoA, frequency trajectory, AoA estimates, 

and so on, map onto a latent variable, and this latent variable would then relate to word 

processing performance. However, we do not think that SEM can differentiate between 

bNoA and rNoA, as SEM does not solve the problem of collinearity (Lewis & Vladeanu, 

2006). Therefore, we did not apply SEM in the present study. 
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