Attraction Among Late-Adolescents

C. Nathalie Yuen
Tom Koziol
Jonathan Santo

Follow this and additional works at: https://digitalcommons.unomaha.edu/psychfacpub

Part of the Psychology Commons

Please take our feedback survey at: https://unomaha.az1.qualtrics.com/jfe/form/SV_8cchtFmpDyGfBLE
Examination of Age, Ethnicity, and Sex Differences on Attraction Among Late-Adolescents

C. Nathalie Yuen
Tom Koziol
Jonathan Bruce Santo
University of Nebraska at Omaha

Abstract
Using a within-subjects experimental design, this study assessed the association between age and level of attraction in 514 male and female participants 19 years of age or older when rating photographs of individuals 19-22. The hypotheses were formulated to test the evolutionary perspective of attraction, that males prefer a younger female mate while females prefer an older male mate. Additionally, this theory suggests that initial attraction is influenced largely by reproductive factors. To test these hypotheses, 320 different pictures for each sex were used to measure perceived attractiveness. Multilevel modeling was used to test the proposed hypotheses which were partially supported, showing that age influenced male participant ratings’ more so than female participant ratings’.
A kid could use Tinder. It's the simplest dating app there is: in most instances, a user merely sees a photo of a potential mate and either swipes left ("No thanks") or right ("I'm interested"). If both people swipe right, "It's a match!" and the users can message each other (Grigoriadis, 2014, 24).

How people interact with each other is a major focus of social psychology, especially how these interactions can develop into romantic relationships. This is only more relevant as more romantic interactions begin online (Grigoriadis, 2014). Previous research on romantic relationships has identified three key categories: dating desirability, mate selection, and physical attraction (Buunk, Dijkstra, Fetchenhauer, & Kenrick, 2002; Luo & Zhang, 2009; Wood and Brumbaugh, 2009). It is important to understand how the categories are related as well as the specific factors that can affect each category (Luo & Zhang, 2009). Attraction has been studied in multiple contexts including the laboratory, speed dating, and online; however, questions remain regarding the study of romantic relationships, particularly with regards to the initial spark of attraction. The current study aims to expand on the extant literature using a high-resolution within-subjects experimental model of initial physical attraction to pictures of the opposite sex.

Dating Desirability

According to the evolutionary perspective, biological and psychological processes both contribute to dating desirability. Males tend to focus on physical attraction whereas females tend to focus on status and personality (Buunk et al., 2002; Sprecher, 1989). From a biological perspective, males prefer a younger female mate and females prefer an older male mate (Kenrick, Gabrieli-dis, Keefe, & Cornelius, 1996). Additionally, the good genes theory suggests that to optimize the success of reproduction, mates are carefully selected based on their abilities and strength of their genetic material (Alcock, 2001). From a psychological perspective, cognitive processes such as classification and perception can affect ratings of attraction. Halberstadt and Winkielman (2014) reported decreases in attractiveness when classification of facial features by race was difficult. Quist, DeBruine, Little, and Jones (2011) reported decreases in attractiveness when perceived level of commitment was low. Additionally, extensive research has been conducted on partner similarity and attraction (Eastwick, Eagly, Finkel & Johnson, 2011; Eastwick, Finkel & Eagly, 2011; Tidwell, Eastwick, & Finkel, 2013; Zietsch, Verweij, Heath, & Martin, 2011).

Short-Term and Long-Term Dating Preferences

Choosing a life-mate (e.g., husband, wife, long-term partner) requires a large commitment and is based heavily on factors that reflect a future investment, such as personality, income, and social status (Luo & Zhang, 2009). Much of the research has only focused on factors after a relationship has been established and is firmly rooted (Marcus
& Miller, 2003). When compared to mate selection, short-term dating involves much lower levels of commitment. Bleske-Rechek, VandenHeuvel, and Vander Wyst (2009), reported that those in early adulthood (18-26 years) believe long-term preferences increase for others, but show that short-term and long-term preferences remain stable for the individual. Although research on partner preferences in adolescence has been largely overlooked, relationships in adolescence show many similarities to those in adulthood (Collins, 2003).

Ethnic Differences

Past research in the area of physical attraction has also reported that individuals are attracted to their own ethnicity (Kurzban & Weeden, 2004; Levin, Taylor & Caudle, 2007; Lin & Lundquist, 2013; Mok 1999; Sweeny and Borden, 2009). Liu, Cambell, and Condie (1995) examined the effects of ethnicity on ratings of attractiveness and dating desirability. Results revealed strong differences as a function of ethnicity. There was also a strong effect of perceived similarity on these ratings. Unfortunately, the authors did not test for moderating influences of similarity. According to Fiebert, Nugent, Hershberger, and Kasdan (2004), situation affected dating preferences where participants preferred those of different ethnicities for short-term dating but preferred someone of the same ethnicity for a life-mate. Moreover, it remains to be explored in detail whether ethnic differences in attraction vary as a function of other factors, such as gender.

Replication and Expansion of the Wood and Brumbaugh (2009) Study

One study in particular has explored the aspect of physical attraction very carefully. Wood and Brumbaugh (2009) used 4,305 participants, rating their attraction to almost one hundred photographs of individuals (ages 18-25). They used questionnaires in which participants could rate the photographs based on various visual characteristics. The aim of the study was to find which of these factors, on average, weighed heaviest for heterosexual men and women. This study found that attraction to the photographs (among both sexes) was heavily influenced by three factors: confidence, sexual suggestiveness, and desirable body shape. Quist, DeBruine, Little and Jones (2012) used pictures of men to identify what affect social knowledge plays in ratings of attractiveness among young women. This study expanded on the process of rating attractiveness using pictures with a within-person experimental approach.

The current study differed from the Wood and Brumbaugh study (2009) by having the participants simply rate their initial attraction to photographs instead of rating it on various preset characteristics. Franklin and Adams (2009) argued that we have yet to completely understand the processed underlying ratings of facial attractiveness. The current study focused on the participants’ initial spark of attraction by having them rate only the level of attraction. This methodological approach allowed us to expand on the previous study by examining within-individual factors (namely the age of the person in the picture) and between-individual factors (such as the rater’s sex and ethnicity).
The Current Study

There are several key gaps within this area of research that the current study aimed to address. Wood and Brumbaugh's study (2009) examined overall consensus (based on averaging out all unique characteristics) that men had for a number of photographs. However, a more detailed within-participants analysis may reveal additional associations. By isolating the photographs into unique groups based on characteristics such as age and ethnicity, the current study was able to provide a more detailed examination through the use of a within-subjects experimental design. In sum, this study was able to account for within-participants variability as a function of ethnicity and age.

Second, few studies focus on the late adolescent and early adulthood periods of the lifespan; which is arguably the period of time in which both males and females engage in casual dating (Collins, 2003). In addition to that, commitment factors are viewed more important later in life (Zietsch, Verweij, Heath, & Martin, 2011). Thus, attraction within this period of the lifespan will most likely be based on physical characteristics. Although the Wood and Brumbaugh study (2009) did use photographs from an age range of 18-25, the participants varied in age greatly and did not reflect the late adolescent period of the lifespan exclusively.

Third, the analysis done by Wood and Brumbaugh (2009) was only able to look at one level of a particular correlation. For example, the Wood and Brumbaugh study explored the correlation between the age of the individual being rated, and the attraction level rating that they received. The present study aimed to expand on this by using a multi-level modeling analysis to examine various associations simultaneously. By using multilevel modeling, we can examine the effects of several factors while accounting for the non-independence of having participants rate multiple pictures. In particular, one way in which the current study was designed to expand on the Wood and Brumbaugh study is by including more photographs. Finally, the current project was designed to capitalize on the effects of ethnic diversity by including a large portion of photos of minorities (including pictures of Latino, Asian, and Black late adolescents).

Hypotheses

First, it was believed that males would exhibit a declining attraction as women got older. In other words, total overall attraction in the photographs will decrease as the age of the women in the photographs increased. Meanwhile, it was expected that female participants would exhibit the opposite effect. In other words, total overall attraction ratings would increase as the age of the men in the photographs increases. These hypotheses, in general, support of the Evolutionary Model of Life History Strategies (Kenrick et al., 1996). Moreover, it was believed that ethnocentric effects would be observed. Basically, it was believed that participants would rate individuals more favorably if the individual was of the same ethnicity (Liu, Cambell, & Condie, 1995). Figure 1 represents a conceptual map of the analyses.
Method

Participants
This was a within-subjects experimental model that took a community-based approach using a convenience sample. The participants were 514 undergraduate students recruited from the University of Nebraska at Omaha. The lower age limit for the study was 19 to as old as 24 (mean age = 19.96, S.D. = 1.34). The ethnicity of the participants was consistent with census data for Omaha, Nebraska (US census bureau, 2000). Specifically, there was 82.7% White, 6.5% Hispanic, 5.4% Black, 2.6% Asian, and 2.8% representing the other category.

Materials
The photographs for the online survey were carefully selected from random public accounts from two popular social networking sites (myspace.com and facebook.com). The age of the people in the photographs ranged from 19-22 years. The criteria for the selection of the photographs were identical to the Wood and Brumbaugh study (2009). A photograph was used if it was of a person's head and torso, in focus, and did not include multiple individuals. Additionally, if a photograph contained any form of editing or modification, it was not used. Most photographs on facebook.com and myspace.com were of White individuals, so photographs of non-White individuals were oversampled to match the current Omaha, Nebraska census data (US Census Bureau, 2000). As such, 65% of the pictures were of White, late adolescents and the other 35% was equally distributed among Latino, Asian, and Black late adolescents. All told, our study contained 640 unique photographs, 320 for each sex.

Procedure
Potential participants were approached in their undergraduate classrooms by the research team. A short description of the study goals and procedures were given (less than 5 minutes). Interested participants were given a sheet of paper with the website address for the study. Participants were able to choose their sexual preference (choosing whether to rate pictures of males or females). In the current report, only heterosexual attraction ratings were used. The survey itself contained a consent form, several demographic questions, a series of photographs to rate, followed by some open-ended questions. The ratings of the photographs ranged from 1 “Not at all attractive” to 5 “Very attractive”. It is important to note that the age of the people in photographs were unknown to the participants providing the ratings. The completion time of the questionnaire depended upon the participant. Although there were exceptions, most participants took 30 to 45 minutes to complete the questionnaire.
Data Analysis

Multi-level modeling (Bryk & Raudenbush, 1992) was used to account for non-independence in individual's ratings of the various pictures. As such, we were able to explain variability in the ratings of different pictures and variability in the differences between subjects. Stated another way, the ratings of the various pictures (analyses at level 1) were nested within each subject (at level 2). First, an unconditional model was prepared to reflect the percentage of variance at the within individual and at the between individual levels. Next, age of the people in the photographs was added to the model (at level 1) followed by an examination of sex differences (on level 2) on the effects of age. To test for differences in the ratings of the various ethnicities three contrast codes were used. Pictures of Whites (coded as 3) were compared to minorities (which included pictures of Latinos, Blacks, and Asians (coded as -1). Next, pictures of Latinos (coded as 2) were contrasted to pictures of Blacks and Asians (coded as -1). Lastly, pictures of Blacks (coded as 1) were contrasted to pictures of Asians (coded as -1). To test for differences as a function of ethnicity, the contrast codes for ethnicity were then added to the model at level 1, followed by preference for the same ethnicity at level 2 and lastly sex differences on the effect of ethnicity at level 2. All variables were entered into the model uncentered and all level 1 effects were treated as random (assumed to vary at level 2).

Results

Descriptive Statistics

Of the 514 participants, only 462 had complete data for the purpose of analyses. In total, the participants provided 135,962 attraction ratings. Interestingly, we found a relatively low average rating of attractiveness among participants (M = 1.62, SE = .02 with scores ranging from 1 to 5). While introducing a potential floor effect, this finding could be argued to bolster the ecological validity of the choice of photographs of actual social media users. Moreover, the reliability coefficient (as calculated using an average measures intra-class correlation) was high (.973) reflecting large agreement among participants regarding their ratings of others. Interestingly, female participants rated the pictures overall less positively (b = -.335, t(449) = 6.07, p < .05) than males (Model A). Parameter estimates at various steps of the model building process are provided in Table 1.

Unconditional Model

We then examined an unconditional model to see the distribution of the variability in the ratings. The single measures intra-class correlation revealed that 76.02% variability was at the within individual level while the remaining 23.98% was at the between individual level. Not surprisingly, there was a statistically significant amount of between individual variability (χ²(449) = 42,576.16, p < .05).
Age Effects

We began hypothesis testing first by examining possible age differences in the rating of the pictures. The age of the individual in the photograph was significantly negatively associated with ratings of the photographs. This has been described as a youth preference effect; as the age of the individual in the photograph increased, the ratings given by participants decreased ($b = -0.042$, $t_{(450)} = 19.98$, $p < .05$). This difference significantly improved the model ($\Delta\chi^2(2) = 371.03$, $p < .05$) with a .32% reduction in prediction error. We then tested for potential curvilinear effects of age. Interestingly, the observed decrease as a function of age was stronger among the photographs of older people ($b = 0.031$, $t_{(450)} = 16.64$, $p < .05$). The addition of the curvilinear effect of age significantly improved the model ($\Delta\chi^2(3) = 171.37$, $p < .05$) with an additional .13% reduction in prediction error (Model B). Tests for variability in the linear and curvilinear slopes for age were not statistically significant ($\chi^2_{(439)} = 257.80$, $p > .05$ and $\chi^2_{(439)} = 280.23$, $p > .05$, respectively) denoting that there was little between-subject variability in the effects of age on attraction. Nevertheless, given that it was expected that such variability would be observed in the population (Kline, 2004), between subject analyses were performed regardless.

Sex on Age Effects

After finding significant (though weak) level 1 age effects, we attempted to test for differences on the effects of age (Model C). Adding sex as a between individual predictor revealed whether the youth preference effect did differ as a function of sex. Sex differences were observed on the linear effect of age ($b = -0.066$, $t_{(449)} = 4.84$, $p < .05$) and the curvilinear effect ($b = 0.025$, $t_{(449)} = 5.66$, $p < .05$). This difference significantly improved the model ($\Delta\chi^2(2) = 36.85$, $p < .05$) with a 51.35% reduction in the prediction error of the age effects. To explain, as age increased, the male ratings of the photographs decreased sharply while females’ rating of the photographs decreased as well, though the slope was weaker (Figure 2).

Ethnocentric Effects

Next, we tested for differences in the ratings of the photographs as a function of ethnicity (again using three contrast codes: of Whites contrasted to minorities, Latinos contrasted to Black and Asians and lastly Blacks contrasted to Asians). The addition of ethnicity of the person (Model D) in the photograph significantly improved the model ($\Delta\chi^2(15) = 1467.57$, $p < .05$) explaining 1.95% of the variability. Only one significant difference was observed. Photographs of Black late adolescents and early adults were rated significantly more negatively than photographs of Asian late adolescents ($b = 0.063$, $t_{(450)} = 6.59$, $p < .05$). Tests for variability in the ethnicity slopes revealed statistically significant between-subject variability in the effects of ethnicity ($\chi^2_{(436)} = 1225.00$, $p < .05$; $\chi^2_{(436)} = 1051.69$, $p < .05$; $\chi^2_{(436)} = 1522.63$, $p < .05$, for each contrast coded effect respectively).
Nevertheless, the purpose of this test was to identify whether there was an observable preference among participants for photographs of people of the same ethnicity (Model E). To do so, we next added ethnicity of the rater as a between individual predictor. One effect emerged in that White participants rated the photographs of minorities less positively than the photographs of White late adolescents ($b = -.011, t_{(449)} = 2.51, p < .05$). The addition of subject’s ethnicity explained 4.00% of the variability in the effects of ethnicity in the photographs, significantly reducing prediction error in the model ($\Delta \chi^2_{(1)} = 30.24, p < .05$).

Sex Differences in the Effects of Ethnicity

The last analysis involved testing for sex differences in the effects of ethnicity (Model F). Several effects were observed (Figure 3). First, while males rated pictures of minorities on average slightly less positively ($b = -.026, t_{(448)} = 4.00, p < .05$), few differences were observed among female raters. Sex differences explained 10.00% of the between subject variability of the White/Minorities contrast. Moreover, males rated pictures of Latinos more positively than those of Black and Asian people ($b = -.148, t_{(448)} = 18.67, p < .05$) while for female raters, few effects were observed. Sex differences explained 86.60% of the between subject variability of the Latino/Black and Asian contrast. Lastly, males rated pictures of Asian females more positively than those of Black females ($b = .300, t_{(448)} = 13.19, p < .05$). Meanwhile, among female raters there was again little difference. Sex differences explained 62.34% of the between subject variability of the Black/Asian contrast. The addition of the sex on the effects of ethnicity significantly reduced prediction error in the model ($\Delta \chi^2_{(3)} = 1313.07, p < .05$). So, to summarize, while females showed little to no ethnicity differences in their attractiveness ratings, males were more likely to rate pictures of Latinos and Asians more positively than pictures of White early adults and were more like to rate pictures of Black young adults more negatively. Final parameter estimates are also provided in Table 1.

Discussion

The findings of the current study partially supported the Evolutionary Model of Life History Strategies (Kenrick et al., 1996) in that males rated pictures of younger females more positively. Despite the extremely tight age range of 19-22 years, a statistically significant slope can still be observed (Figure 1). As the females in the photographs got older, the males’ ratings of them decreased (Kenrick et al., 1996). However, for females, the evolutionary model was not supported in that they were also more likely to rate pictures of older males more negatively than those of their younger counterparts. Interestingly, the youth preference effect was significantly weaker among females.

In addition to the slopes of the ratings, the means of the ratings showed sex differences as well. On average, males rated the photographs a third of a point higher on the five point scale compared to females. It is possible that the photographs males rated
were objectively more attractive on average compared to the photographs that the females rated. However, it is also possible that females rated the photographs more critically than males did. In fact, one could argue that the reason ratings by females did not decline as steeply as males could be due to a floor effect. Alternatively, based on the low ratings given by females and the weak slope corresponding to age differences, one could argue that physical attraction is not as important to females as it is to males (at least in the current context of rating pictures). This supports previous research showing that females are not influenced by physical attraction or other aspects of the evolutionary perspective (Kenrick et al., 1996; Luo & Zhang, 2009).

These age findings, though weak, are again worth noting in light of the (arguably very) narrow age range of the pictures used. In this study several steps were taken to ensure that we would have the best chance at observing preferences based on the evolutionary perspective. First, we studied an age demographic that would have the highest likelihood of being influenced by physical attraction (Collins, 2003). Second, we used a survey method that was based on initial responses to visual stimuli through photographs. Third, we aimed to eliminate personal investment factors such as personality, income, and social status. Based on previous research, these factors could interfere with pure initial physical attraction (Luo & Zhang, 2009). Finally, it bears mentioning that age effects were observed even though participants were unaware of the age of the people in the photographs.

In addition, ethnocentric effects were also observed. In general, pictures of Black late adolescents and early adults were rated significantly more negatively than those of Asian late adolescents. These types of main effect differences are consistent with previous research (Liu, Cambell, & Condie, 1995). More interestingly though, were the effects of rater’s ethnicity on the effects of ethnicity in picture. Specifically, White participants rated the photographs of minorities less positively than the photographs of other White late adolescents.

Finally, strong sex differences were observed in the ethnocentric effects. Males rated pictures of Latinos and Asians more positively than pictures of White early adults and rated pictures of Black early adults more negatively. These results do not support our hypothesis and contrast previous research of suggested ethnocentric effects that would be observed (Liu, Cambell, & Condie, 1995). Unfortunately, though we were able to identify differences in attraction as function of the ethnicity in the pictures, the ethnicity of the person rating the pictures and sex differences between the raters, we lack any ability to suggest what process are responsible for these differences. As such, these may simply represent idiosyncrasies of the sample. Additional research on this topic is needed to clarify the mechanisms that explain these ethnicity differences.

Implications

This study may be the first that was able to actually observe the initial spark of attraction as it pertains to rating pictures of the opposite sex. This initial spark of
attraction is a very brief period of time and this implies two likely possibilities. First, it was believed that in this short span of time (of mere seconds rating each picture) only physical attraction could be focused on. Because of the focus on physical attraction, this study steered away from questionnaires examining commitment factors. Instead, the goal was to use the photographic content as rigorously as possible. This has led to the largest photographic survey ever done with each participant rating over 300 pictures.

Second, it was thought that in this short time span, evolutionary principles might influence the initial spark of attraction (assuming they have an effect). Essentially, this theory suggested that late adolescent/early adult males would rate a younger female more favorably; and that females would rate an older male more favorably. There was weak partial support of the Evolutionary Model of Life History Strategies (Kenrick et al., 1996). This was the first study monitoring both the age of the individuals in the photographs, as well as the age of the participants. Perhaps worth mentioning again is the key aspect that participants were unaware of the age of the people in the photographs. With that being said, this study used methods specifically designed to expand and improve on the work done in previous studies. It is believed that the variety of methods, some of which were never used before, helped fill in gaps in this area of research.

Nevertheless, the current study had several limitations. In particular, the issue of ecological validity is a principal concern. It can be argued that a photograph does not represent a true real world encounter. External validity is weakened by using a survey instead of a real world encounter. However, with the increased popularity of online dating and Tinder (Finkel, Eastwick, Karney, Reis, & Sprecher, 2012) the protocol used in the current study may be more ecologically valid than in the recent past and may be even more so should online dating become more prevalent. Additionally, previous research suggests that it is possible to get useful information through the use of only photographs (Wood & Brumbaugh, 2009).

Conclusions and Future Directions

Based on the findings of this study, it is believed that preferences based on the evolutionary perspective can be observed in males. The data shows a significant slope, despite the small age range, suggesting that late-adolescent males appear to be more heavily influenced by the evolutionary perspective and physical attraction (Figure 2). Based on the findings of this study, it is believed that preferences based on the evolutionary perspective are fairly weak in females. It is possible that females are not as heavily influenced by the evolutionary perspective and physical attraction. According to previous research, one could argue that personal investment factors influence females more (Luo & Zhang, 2009). This research also shows a strong consensus on the attraction ratings among males and females. This supports previous research showing that males typically agree on what is considered attractive, as do females (Wood & Brumbaugh, 2009).
This study showed surprising results. Despite our focus on age differences, sex differences were observed to have the strongest effects in the models. We believe that future research should be conducted so as to better define sex differences on attraction. A few steps should be taken to help better focus on this area. First, the age range should be widened to encompass almost all of adolescence, late-adolescence, and early adulthood. Second, the photographs presented to the participants should be divided into two categories. Specifically, some pictures should show people in normal attire; this would consist of clothes that one would wear on a typical day. The rest of the pictures should consist of beach attire; this would be swimwear that one would wear to the beach. Having both types of clothing would allow for comparisons that were not possible with the current study perhaps providing more opportunity to identify effects of the evolutionary perspective. Third, the photographs should be full body pictures as opposed to just a profile. This might also help increase the likelihood of tapping into the effects of the evolutionary perspective.

In conclusion, this study showed that age influenced male participant ratings more so than female participant ratings, supporting the evolutionary perspective. The analysis showed that male participants were influenced by reproductive factors more heavily than female participants. Additionally, our research showed statistically significant correlations despite the limited age range studied. Moreover, significant effects of ethnicity were also observed. In sum, the findings of the current study suggest that the late adolescent age group (especially males) is influenced by factors supporting the evolutionary perspective. Further research will undoubtedly elucidate the effects of age on attraction that can be seen among females.
References

Social Moments

Table 1

<table>
<thead>
<tr>
<th>Predictors</th>
<th>Model A</th>
<th>Model B</th>
<th>Model C</th>
<th>Model D</th>
<th>Model E</th>
<th>Model F</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>b</td>
<td>t</td>
<td>b</td>
<td>t</td>
<td>b</td>
<td>t</td>
</tr>
<tr>
<td>Intercept</td>
<td>1.648</td>
<td></td>
<td>1.666</td>
<td></td>
<td>1.672</td>
<td></td>
</tr>
<tr>
<td>Sex (Main effect)</td>
<td>-.335</td>
<td>.632*</td>
<td>-.324</td>
<td>5.68*</td>
<td>-.141</td>
<td>2.66*</td>
</tr>
<tr>
<td>Age (Linear)</td>
<td>.052</td>
<td>9.15*</td>
<td>.053</td>
<td>9.56*</td>
<td>.056</td>
<td>10.02*</td>
</tr>
<tr>
<td>x Sex</td>
<td>-.006</td>
<td>4.84*</td>
<td>-.039</td>
<td>4.32*</td>
<td>-.059</td>
<td>4.33*</td>
</tr>
<tr>
<td>Age (Curvilinear)</td>
<td>-.031</td>
<td>16.64*</td>
<td>-.032</td>
<td>17.44*</td>
<td>-.033</td>
<td>17.58*</td>
</tr>
<tr>
<td>x Sex</td>
<td>.025</td>
<td>5.66*</td>
<td>.017</td>
<td>4.00*</td>
<td>.017</td>
<td>4.05*</td>
</tr>
<tr>
<td>White/Minority</td>
<td></td>
<td></td>
<td>-.002</td>
<td>1.16</td>
<td>-.002</td>
<td>1.39</td>
</tr>
<tr>
<td>x Same Ethnicity</td>
<td>.012</td>
<td>2.51*</td>
<td>-.026</td>
<td>4.01*</td>
<td></td>
<td></td>
</tr>
<tr>
<td>x Sex</td>
<td>.013</td>
<td>2.72*</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Latino/Other</td>
<td>-.002</td>
<td>.53</td>
<td>-.002</td>
<td>.56</td>
<td>< -.001</td>
<td>.03</td>
</tr>
<tr>
<td>x Same Ethnicity</td>
<td>.003</td>
<td>.37</td>
<td>.007</td>
<td>1.15</td>
<td></td>
<td></td>
</tr>
<tr>
<td>x Sex</td>
<td>-.148</td>
<td>18.67*</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Black/Asian</td>
<td>-.063</td>
<td>6.59*</td>
<td>-.064</td>
<td>6.59*</td>
<td>-.068</td>
<td>8.99*</td>
</tr>
<tr>
<td>x Same Ethnicity</td>
<td>.010</td>
<td>.54</td>
<td>.002</td>
<td>.168</td>
<td></td>
<td></td>
</tr>
<tr>
<td>x Sex</td>
<td>.300</td>
<td>13.19*</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Note. Within-individual predictors (level 1) and coefficients are left justified (and in bold) while between-subject predictors (level 2) are right justified (and italicized).

* = p < .05

Figure 1. Conceptual map of the multilevel analyses.
Figure 2. Sex differences as a function of the age of the person in the photographs. Note: The scale of the y-axis has been truncated to highlight the effects. The full range of attractiveness scores goes from 1 to 5.

Figure 3. Sex differences as a function of the ethnicity of the person in the photographs. Note: The scale of the y-axis has been truncated to highlight the effects. The full range of attractiveness scores goes from 1 to 5.