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Abstract: Peripheral artery disease (PAD) manifests from atherosclerosis, which limits blood flow
to the legs and causes changes in muscle structure and function, and in gait performance. PAD is
underdiagnosed, which delays treatment and worsens clinical outcomes. To overcome this challenge,
the purpose of this study is to develop machine learning (ML) models that distinguish individuals
with and without PAD. This is the first step to using ML to identify those with PAD risk early. We
built ML models based on previously acquired overground walking biomechanics data from patients
with PAD and healthy controls. Gait signatures were characterized using ankle, knee, and hip joint
angles, torques, and powers, as well as ground reaction forces (GRF). ML was able to classify those
with and without PAD using Neural Networks or Random Forest algorithms with 89% accuracy (0.64
Matthew’s Correlation Coefficient) using all laboratory-based gait variables. Moreover, models using
only GRF variables provided up to 87% accuracy (0.64 Matthew’s Correlation Coefficient). These
results indicate that ML models can classify those with and without PAD using gait signatures with
acceptable performance. Results also show that an ML gait signature model that uses GRF features
delivers the most informative data for PAD classification.

Keywords: peripheral artery disease; vascular disease; machine learning; gait analysis; deep learning

1. Introduction

Peripheral artery disease (PAD) is a cardiovascular disease caused by atherosclerosis,
which limits blood flow to the arteries and tissues. PAD affects up to 10% of Americans
over 40 years of age [1–4]. The number of patients with PAD has increased, making
PAD the third most common atherosclerotic cardiovascular disease after coronary artery
disease and stroke [5–9]. The most prevalent symptom of PAD is intermittent claudication,
defined as ischemic pain that develops when working leg muscles do not have adequate
oxygen [10]. Patients with PAD become progressively more sedentary [11,12] and have
altered mobility [13–20]. Moreover, functional impairment frequently occurs before PAD
diagnosis, and unidentified, asymptomatic PAD is associated with more adverse outcomes
than intermittent claudication [21].

Diagnosing PAD early would enable treatment to slow disease progression, which
would decrease the risk of major cardiovascular events [21]. However, 40–60% of patients
with PAD go undiagnosed in a primary care setting [21]. The standard diagnostic method,
the ankle-brachial index, is a highly specialized test that is costly and requires technologists
with training in a specialized vascular lab setting [12,22–24]. Sheng et al. reported that pulse
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wave measurements could accurately detect PAD as ABI, but the pulse wave recording
technique could be affected by physiological limitations [25]. A pulse wave depends
on peripheral blood flow and may be affected by sympathetic nerve input rather than
vessel patency [25]. In addition, severe congestive heart failure can also simulate inflow
disease by reducing the blood flow [25]. A review study suggested that although pulse
wave velocity measurements to detect PAD are reliable hemodynamic measures, further
research is needed to establish the screening and diagnostic validity [26]. The diagnosis of
PAD is challenging because of the absence of a distinctive sign that can help physicians
to distinguish PAD from the typical signs of aging and other movement-related health
conditions. A non-invasive screening approach that physicians could use to identify
individuals at higher risk of PAD during daily activities is needed.

Recent research has implemented a data-driven approach using machine learning
(ML) to identify patients with PAD [27–30]. ML models have been implemented for PAD
diagnosis using blood samples and Doppler data [16]; clinical records [17]; symptom
surveys, interviews, and walking distances [18]; and arterial pulse waveforms [19]. While
some of these diagnostic models achieved accuracies up to 87%, significant limitations
arise in terms of time required (e.g., multiple years of medical records), resources (e.g.,
protein-based lab setting and interviews that are not standard of care), and involvement
of experts with advanced training to obtain the required data to train the models. A
model using the six-minute walk test and symptom scores has fewer barriers but led to a
compromised accuracy of 69%, and it still required detailed physician evaluation to gather
symptom scores [18]. ML and Neural Networks have also been used to automate the
classification of arterial segments affected following PAD diagnosis. This approach used
computer vision algorithms with Doppler waveforms and PAD imaging but also required
manual adjustment of images, which is time consuming [31,32]. Deep learning-based
arterial pulse waveform analysis was also used to detect and estimate PAD severity, but this
test is not easier to access than an ankle-brachial index test [30]. Other research developed
ML algorithms to identify PAD and predict the mortality risk using complete clinical,
imaging, demographic, and genomic information for each patient [28]. The resulting
machine-learned models surpassed stepwise logistic regression models to identify patients
with PAD and predict future mortality. However, the models depended on the availability
of multiple clinical information collected simultaneously, which may not be available in
practice and would only be helpful after a PAD diagnosis [28].

ML has recently been applied to ground reaction forces and joint angles to characterize
gait in individuals [33], including those with Parkinson’s disease [34–36], but not for
PAD. Gait analysis has proven crucial in determining the mechanisms and severity of
functional limitations, measuring treatment effectiveness, and monitoring the progression
of PAD [18,37,38]. For instance, patients with PAD walk slower, have decreased step length
while walking before and after pain onset, and spend more time in the double support
phase compared to older healthy controls [18–20,39]. In addition, gait biomechanics studies
have found reduced joint angular displacement, velocities, and accelerations in patients
with PAD compared to older controls without PAD [40]. Based on the consistently altered
gait patterns in patients with PAD [18–20,38,41–44], it is likely that ML can be applied
to gait data to identify the presence of PAD. Thus, ML can be valuable for developing
gait signatures that enable early PAD detection and monitor functional severity, disease
progression, and improvements with treatment.

This paper implements ML models on gait features to distinguish individuals with
PAD from healthy older individuals without PAD. The organization of this paper is as
follows: First, we provide a detailed description of the data sources, including gait data
and the produced gait features. Next, we provide a preliminary descriptive analysis of
gait signatures by studying variance, F-statistic, information gain, and correlation among
the gait features. Then, we describe the predictive ML models, including data extraction,
grouping, and feeding of the ML model. Finally, we dive into our ML approach that uses
gait signatures to classify PAD by extracting the most distinguishing gait features. Figure 1
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briefly demonstrates this paper’s workflow. This work provides a foundation to model
PAD gait features from biomechanics data collected in the lab. This modeling approach may
inspire extracting those gait features from acceleration measurements taken with wearable
devices, which could be worn in real-world settings to identify potential patients with PAD.
Thus, the presented work takes an essential first step toward continuously monitoring
individuals’ physical and movement behavior. PAD is costly for individuals, governments,
and society. These new models could be used to monitor moving in the real world, helping
alert physicians to the potential presence of PAD in general practices, enable in-home
detection of worsening PAD symptoms, manage chronic PAD, and predict when significant
adverse health events may occur.
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Figure 1. A flowchart briefly describing the utilized data and the methods applied.

2. Data Sources

This section describes the available biomechanics data and the gait feature extraction
process for ML applications. Biomechanics data were gathered from studies conducted and
approved by the Institutional Review Boards at the University of Nebraska Medical Center
and the Nebraska-Western Iowa Veteran Affairs Medical Center. These studies consist of a
total of 270 participants, including 227 patients with PAD and 43 healthy older controls.

Experimental tests were conducted in the Biomechanics Research Building gait lab at
the University of Nebraska at Omaha. Reflective markers were placed at specific anatomical
locations on the lower limbs, utilizing the marker systems of Vaughan [45] and Nigg [46].
Each subject walked at their self-selected pace through a ten-meter pathway containing
force platforms set level with the floor. Kinematics data were recorded using a 12 high-
speed digital camera motion capture system (100 Hz; Cortex 5.1, Motion Analysis Corp.,
Rohnert Park, CA, USA) and ground reaction forces were collected using force plates
(1000 Hz; AMTI, Watertown, MA, USA). Each patient performed the walking test before
(pain-free condition) and after the onset of claudication pain (pain condition). Patients
were required to rest one minute in between trials to prevent the onset of claudication
pain during the pain-free walking condition. Healthy controls only performed the test
in the pain-free condition since they do not experience claudication pain. A total of five
successful overground walking trials per leg were collected in which heel-strike and toe-off
events were within the boundaries of the force plate. Data were exported and processed
using custom laboratory codes in MATLAB software (MathWorks Inc., Natick, MA, USA)
and Visual 3D software (C-Motion, Inc., Germantown, MD, USA). Visual 3D software was
used to calculate the ground reaction forces in vertical, anterior–posterior, and medial–
lateral directions, as well as ankle, knee, and hip joint angles, and joint angular velocities
during the stance phase of walking. Joint torques and powers were calculated using
inverse dynamics for the ankle, knee, and hip joints during the stance phase of walking.
Inverse dynamics combines the kinematics and the ground reaction forces described by
Winter [47]. The joint torques and powers determine the lower extremity joint angles,
muscular responses (torques), and contributions (powers) during walking.

From the biomechanics overground time-series data (Appendix A, Figure A1), peak
discrete points were extracted from all trials for all subjects. Points included minimums
and maximums for joint angles, torques, and powers for the ankle, knee, and hip. There
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were peak values from the anterior–posterior, medial–lateral, and vertical ground reaction
forces. Overall, this resulted in a total of 31 predictive gait features from each trial. The
peak discrete points were averaged across the five trials for each subject (Appendix A,
Table A1), describing the gait features we used to develop the ML models.

3. Descriptive Data Analysis

For the preliminary data analysis of gait signatures, we first used statistical methods
to provide a descriptive analysis of the data and anticipate the significance of each gait
feature by exploring the variance [48], ANOVA F-statistic [49], information gain [50],
and correlation [51]. These methods help with feature selection, producing features with
high predictive capability for our ML model. Additionally, in our analysis, we used
these methods to provide insight into the most important gait feature groups for our
classification task (separating patients with PAD from healthy controls). For instance,
variance is necessary within the dataset because the significant differences within feature
variance allow the ML model to learn the different patterns hidden in the data. F-statistic,
or F-test, is a statistical test that calculates the ratio between variance values, such as the
variance from two different samples. F-statistics compare and identify relevant features for
a classification task. Information gain measures the association between inputs and outputs.
Thus, the higher the information gained, the better. Moreover, using the correlation in the
data to extract the redundant features produces a better prediction [52]. Then, we utilize
the insights from the descriptive analysis to build ML models using sub-groups of the data
based on the source of the measurement (ankle, hip, knee, and GRF).

Our dataset consists of 32 predictive features that include 31 numerical features, as
described in Table A1 in the Appendix A. First, we use variance analysis to visualize the
distribution within each numeric feature and its corresponding presence or absence of
PAD. The variance provides insight into the ability of each feature to distinguish between
individuals with and without PAD. Because some features in the data are not normally
distributed, we used Levene’s test [53], which accepts non-normal distributions to detect
the features that significantly differed in variance between individuals with and without
PAD. Figure 2 shows a boxplot of each numeric feature and distribution for each group. We
divided the figures into four groups based on the gait feature measurement source (ankle,
hip, knee, and GRF). The green asterisks represent a significant Levene’s test p-values for
the difference in variance between patients with PAD and healthy controls. Our results
show that GRF features have a higher variance than other features. For example, only one
of the gait kinematic (ankle, knee, or hip) features differed in variance. However, there
was a difference in variance for most GRF features. This suggests that GRF might be more
discriminant gait measurement source to identify PAD.

Another commonly used feature selection method for classification is information
gain, which measures the reduction in entropy by splitting a dataset according to a given
value of a random variable. Entropy quantifies how much information exists in a random
variable, specifically its probability distribution. For example, a skewed distribution has
low entropy, whereas a distribution where events have equal probability has a higher
entropy. The higher the information gain, the more informative the feature for the model
classification capability. Similarly, F-statistic calculates the difference between two sample
variances, and the higher F-statistic, the more valuable the data feature. Figure 3 shows
the aggregated F-statistic and information gain average based on the measurement source.
While we applied our analysis to all gait features, we only show the aggregated average
groups of joint measurements for better presentation.
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Figure 3. A comparison between gait feature sources in terms of (a) Average ANOVA F-statistic and
(b) Average Information Gain. GRF features have higher F-statistic and information gain than the
ankle, knee, and hip gait parameters.

The final step before applying ML is determining the correlation between gait features.
This can be used to identify and eliminate redundant features. A correlation study between
all numeric features shows that GRF features are highly correlated compared to other
features (Figure 4), which indicates that only a few GRF features might be sufficient for
distinguishing PAD. This finding, along with our observations from the variance analysis
(Figure 2) and F-statistic (Figure 3), suggests that a few laboratory-based gait features, e.g.,
GRF features, can successfully train ML models to identify the presence or absence of PAD.
We test this hypothesis in the upcoming ML section.
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Figure 4. A correlation study of all numeric gait features regardless of PAD status (healthy controls or
patients with PAD). The color line indicates the correlation coefficient between features from “Dark
Red: −1” to “Navy: 1”. A correlation coefficient of “−1” between two variables implies a perfect
negative relationship, and a correlation coefficient of “1” between two variables implies a perfect
positive relationship. If the correlation between two variables is 0, there is no linear relationship.
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4. Predictive ML Models to Diagnose PAD

This section explains how we distinguish between patients with PAD and healthy
controls. It also demonstrates how the most essential gait features were extracted to identify
the presence or absence of PAD. The ML model includes input, data grouping, ML training,
ML testing, and performance evaluation (Figure 5). The goal is to find the lowest number
of gait features that produce the most accurate ML model to classify individuals as having
or not having PAD.
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Figure 5. Flowchart showing the 3-step ML analysis method to identify PAD and extract the most
valuable gait signatures for PAD diagnosis.

We divided the data into six groups to identify the most important features for clas-
sifying PAD (Figure 5). The groups range for including all features (Group 1), features
from only one joint (Group 2, 3, 4), all GRF features (Group 5), or all features except
GRF features (Group 6). Next, we divided the data into training and testing data sets.
Due to the imbalance between the number of healthy controls versus patients with PAD,
we oversampled.

The healthy subjects’ data in the training set using the Synthetic Minority Oversam-
pling Technique (SMOTE) algorithm [54]. Subsequently, we applied several ML algorithms
to Group 1 training data sets, extracted binary predictions using the test data, and compared
these predictions with the original test data. Finally, we used the best algorithms obtained
from Group 1 data and evaluated these algorithms for the other groups listed above. We
followed this grouping criterion to assess the strength of different data sources (ankle, knee,
and hip gait features and GRF) in distinguishing PAD using ML models. The descriptive
data analysis in the previous section suggests that GRF gait features might be sufficient
for a ML model to distinguish between patients with PAD and healthy controls. Moreover,
identifying one valuable gait signature source could minimize the time and computational
cost of detecting PAD.

In terms of ML, we used four well-known algorithms: Neural Networks [55,56], Ran-
dom Forest [57], Support Vector Machine (SVM) [58], and Logistic Regression [59]. Previous
research used these algorithms in many classification tasks for diagnostic applications in
the medical fields [31,32,60–62]. We ran each group to achieve the best predictions and find
the minimum features that produced acceptable performance. Specifically, we built the ML
models to deliver the best possible performance using Group 1 data (all features), which
we treated as a benchmark for comparing our predictions using the other groups.

We used TensorFlow to build Neural Networks models [63], and the Sci-kit Learn
library [64] was used to create Random Forest, SVM, and logistic regression models in
python [65] (The source code for each ML model can be found in the Supplementary Mate-
rials). Then, we used the grid search method [66] and manually tuned the hyperparameters
to produce the best performance for each model. Hyperparameters refer to parameters
within each ML model that require optimization to produce the best possible prediction
result. It is noteworthy that Neural Networks models require the assigning of many param-
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eters to form the model architecture, including the number of hidden layers, number of
neurons in each hidden layer, activation functions, optimizers, and other hyperparameters.
For example, the architecture of our Neural Networks includes activation functions before
each hidden layer, five hidden layers, and an output activation function (Sigmoid) for
binary classification.

Random Forest, SVM, and logistic regression ML algorithms require a relatively
short building and tuning time to produce the best possible model for our specific data
combinations. On the other hand, Neural Networks models need more time to build and
tune, requiring many hyperparameters for tuning (Table 1). Neural Networks also require
longer training time compares to Random Forest, SVM, and logistic regression approaches.
Nevertheless, previous research proved Neural Networks to be a valuable and accurate tool
in classification tasks [56]. Each algorithm has unique corresponding hyperparameters, and
Neural Networks models require consideration of many hyperparameters (Table 1). (The best
possible hyperparameters for each model can be found in the Supplementary Materials).

Table 1. The hyperparameters for each algorithm.

Algorithm List of Hyperparameters

Neural Networks

• Activation function
• Optimizer
• Kernel Initializer
• Learning rate
• Regularization
• Batch size
• Number of epochs

Random Forest

• Number of trees
• Maximum number of features
• Maximum depth of layers
• Criteria

SVM
• Kernel
• Gamma
• Penalty parameter

Logistic Regression • Regularization

In the current study, 81% of the total data came from patients with PAD. Therefore,
we oversampled the healthy subjects’ data and used multiple performance metrics to add
to the accuracy metric (the number of predictions correctly predicted divided by the total
number of examples) to avoid over-optimistic results [67]. Here, we provide an overview of
some of the metrics we use. These include Matthew’s Correlation Coefficient, Discriminant
Power, and Geometric Mean [67,68].

Matthew’s Correlation Coefficient is calculated based on four scores (true positive, true
negative, false positive, and false negative), known as confusion matrix scores. Matthew’s
Correlation Coefficient provides a good score, which usually ranges between 0.5 and
1 only if the model performs well in all four confusion matrix categories, and it is the
least influenced model metric by data imbalance. Thus, we use Matthew’s Correlation
Coefficient as the primary comparison method between the models. Matthew’s Correlation
Coefficient values ranged from −1 to 1, with “1” as the perfect model, “−1” as the worst
model, and 0 no better than a random naïve model [67,68]. The Geometric Mean measures
the balance of the classification performance in the majority (PAD) and minority (healthy
control) classes. It also helps avoid overfitting in negative and underfitting in positive
classes. Finally, Discriminant Power measures the ability of the classifier to distinguish
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between minority and majority cases. A higher Discriminant Power value translates to
better model performance.

5. ML Models Results

The predictions of Group 1, which included all gait features, yielded higher perfor-
mance values in all metrics with the Neural Networks and Random Forest than with SVM
and logistic regression (Figure 6). Therefore, in the next step, we applied Neural Networks
and Random Forest models to the rest of the groups and compared the predictive perfor-
mances with Group 1 predictions to measure the ability of the models to classify PAD using
a few laboratory-based gait features.
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Figure 6. Performance metric results that measure the ability of each ML model algorithm to
distinguish PAD.

In Groups 2, 3, and 4, which included the gait data generated from one joint (ankle,
knee, or hip), the model predictions show that Neural Networks models were more accurate
than Random Forest (Table 2). However, all these models were less accurate than the GRF
model (Group 5). Group 5 GRF data yielded a comparable prediction accuracy to Group 1
(Figure 7). GRF-based Random Forest predictions had higher Discriminant Power and
Geometric Mean values than Group 1 predictions (Table 2). Moreover, all the models that
included GRF (Groups 1 and 5) performed better than the models built to distinguish
PAD with gait data from only one joint. Interestingly, when all the body joints data were
combined (Group 6), the GRF models still performed better, indicating that GRF is a crucial
measurement factor in classifying PAD.

Table 2. A summary of the models’ performances on the testing data. It evaluates the applied model
scores utilizing every group based on four performance metrics. The shaded columns highlight the
comparison between all gait features models (Group 1) and GRF features (Group 6).

Metric Model Type Group Category

All Ankle Hip Knee GRF Ankle,
Hip, Knee

Group 1 Group 2 Group 3 Group 4 Group 5 Group 6

Accuracy
Neural Networks 0.89 0.79 0.78 0.81 0.82 0.84

Random Forest 0.89 0.69 0.73 0.75 0.87 0.83

Discriminant Power
Neural Networks 1.94 0.95 0.82 0.90 1.87 1.33

Random Forest 1.94 0.64 0.29 0.71 2.09 1.19

Geometric Mean
Neural Networks 0.83 0.65 0.61 0.54 0.84 0.84

Random Forest 0.83 0.63 0.46 0.60 0.87 0.63
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Table 2. Cont.

Metric Model Type Group Category

All Ankle Hip Knee GRF Ankle,
Hip, Knee

Group 1 Group 2 Group 3 Group 4 Group 5 Group 6

Matthew’s
Correlation Coefficient

Neural Networks 0.64 0.33 0.27 0.27 0.57 0.44

Random Forest 0.64 0.22 0.09 0.24 0.64 0.39

Best model type

Neural
Networks,
Random

Forest

Neural
Networks

Neural
Networks

Neural
Net-

works

Random
Forest

Neural
Networks

ML Performance Metrics Description:

• Accuracy: the number of correct predictions divided by the total number of examples. Range: (0 to 1), an accuracy value of “1”
means the model predicts perfectly with no errors.

• Discriminant Power: measures the ability of the classifier to distinguish between minority (healthy controls) and majority
(Patients with PAD) cases. A higher Discriminant Power value translates to better model performance.

• Geometric Mean measures the balance of the classification performance in the majority and minority cases. The higher the
geometric mean, the better the model performance.

• Matthew’s Correlation Coefficient provides a good score only if the model performs well in all four confusion matrix categories.
Range: (−1 to 1), with “1” as the perfect model, “−1” as the worst model, and 0 no better than a random naïve model.
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Figure 7. A measurement of the ability of a few laboratory-based gait features to distinguish PAD us-
ing Matthew’s Correlation Coefficient. Generally, the GRF-based models (Groups 1 and 5) performed
better than joint data models (Groups 2, 3, 4, and 6) and provided comparable results to using all
gait features.

Finally, we explored using a few GRF-based gait features by dividing GRF data into
three sub-groups based on the signal origins (X: anteroposterior component, Y: mediolat-
eral component, Z: vertical component). GRF-anteroposterior produces five gait features,
GRF-mediolateral produces two gait features, and GRF-vertical produces three features
(Table A1). GRF-anteroposterior performed better than GRF-mediolateral and GRF-vertical
in identifying the presence of PAD (Figure 8). However, using all GRF components still pro-
vided better predictive results indicating that limiting the GRF components compromised
the model’s ability to identify PAD.
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Figure 8. A comparison between GRF-based signals in identifying PAD using Matthew’s Correlation
Coefficient as a performance metric. For both Neural Network and Random Forest model approaches,
including all GRF components led to better PAD classification compared with any single GRF
component (x = anteroposterior, y = mediolateral, and z = vertical).

6. Discussion

We have described a proof-of-concept application of ML to classify individuals as
having or not having PAD using laboratory-based gait features. The model used a dataset
of 227 previously diagnosed patients with PAD and 43 healthy controls. Our preliminary
analysis based on variance, F-statistic, and information gain (Figures 1 and 2) suggested
that GRF gait features hold the most valuable information to classify individuals compared
to the joint angle features (ankle, knee, and hip).

Our results (Figures 5 and 6; Table 2) suggest that individuals with PAD have distinct
gait signatures compared to healthy individuals, and this ML approach may be helpful in
the early identification of PAD. In addition, our findings indicate that classification of PAD
is possible using a few laboratory-based gait features. For instance, the Random Forest
model based on Group 5 GRF data (Matthew’s Correlation Coefficient: 0.64) performed
similar to the model using all gait biomechanics features available in Group 1. Additionally,
the Neural Networks GRF-based model (Group 5; Matthew’s Correlation Coefficient:
0.57) yielded comparable prediction quality compared to Group 1 (Matthew’s Correlation
Coefficient: 0.64). On the other hand, joint data such as the ankle, knee, or hip produced
less accurate results than Group 1. Future research can utilize this information to build a
model that monitors disease severity and progression.

Furthermore, we showed the best ML model to handle the predictions for each group.
Models using Neural Networks and Random Forest classified individuals with and without
PAD using all gait features. The model using the Neural Networks approach produced the
highest performance values when using all gait features, while the Random Forest-based
model generated the best result for PAD classification using GRF gait features. Finally,
we tested the ability of a few GRF laboratory gait features to classify PAD. While some
GRF features performed better than the ankle, hip, or knee data alone, the models still lost
essential information to provide high-quality predictions, making the model that included
all gait features the best.

Based on gait signatures, this study provided a preliminary step toward a more robust
model with a larger dataset that can accurately identify the presence of PAD. Moreover,
researchers can use this ML method to identify individuals at risk of developing PAD
or other diseases using the same training, testing, model architecture, comparison, and
performance measurement techniques discussed in this paper. For instance, this research
lays the first stone to possibly extract meaningful data points from gait measures captured
with wearable sensors by identifying the most crucial gait features. By identifying these
features, this research successfully minimizes the complexity of building of ML models that
can identify PAD with gait data with larger datasets in the future. Eventually, such models
could be implemented based on wearable, real-world data, providing alerts to physicians
to order more detailed PAD screening.

There are some limitations to this study. First, the dataset is relatively small for ML
applications, so the results from this paper cannot be generalized to identify PAD from a
more extensive dataset. In addition, given the challenges of identifying and diagnosing
PAD and its severity, the patients with PAD in this study are all pre-labeled with PAD,
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ensuring that PAD was the primary cause of functional impairment rather than other
conditions impact function. Therefore, this could make the results less generalizable.
However, this paper demonstrates that ML can offer a high-quality prediction while
distinguishing between patients with PAD and healthy controls, even with a few laboratory-
based gait features.

Future work will explore the ability of machine learning models to identify early
PAD risk and monitor PAD progression and treatment effectiveness. Knowledge from this
work could be transferred to wearable sensors that could be integrated into shoes or other
assistive devices worn by older individuals. The ability to detect abnormal gait signatures
or changes that indicate worsening disease progression can become a valuable tool for
managing this chronic disease.

7. Conclusions

This paper utilized ML applications to classify individuals with PAD by developing
gait signatures with laboratory-based gait features. First, we provided a preliminary analy-
sis to statistically distinguish the essential gait features. Then, we used an ML approach to
extract the most valuable features for classifying PAD. Our data-driven approach provided
a preliminary foundation for ML identification tasks for an underdiagnosed disease and
would greatly benefit from earlier detection. Our findings showed that ML algorithms
could produce informative and strong performance values when applied to identify PAD.
We also demonstrated that GRF measurements provided better information for classifying
individuals with and without PAD. Future research should explore ML models’ ability
to identify the risk of having PAD calculating surrogate measures of GRF and gait from
measurement taken outside the laboratory. Future work could explore using ML models of
wearable gait data as an indicator of PAD risk, as well as to monitor disease progression,
severity, and treatment effectiveness.
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Appendix A

Table A1. Biomechanics Data and Gait Features Sources and Descriptions.

Gait Feature Source Raw Signal Gait Signature Extracted Definition and Explanation

Ground Reaction
Forces (GRF)

Figure A1a

GRF x-axis
(Anteroposterior component)

Braking peak: Initial negative force component after
heel contact. (N/kg)
Zero-crossing: the midpoint of the anteroposterior
component. (N/kg)
Propulsive peak: The positive peak of the propulsion
component. (N/kg)
Braking impulse: The area under the
anterior-posterior force curve between touch-down
and zero-crossing at midstance. (N.s/kg)
Propulsive impulse: The area under the
anterior-posterior force curve between zero-crossing at
midstance and toe-off. (N.s/kg)

GRF is recorded on overground force
plates, where the center of pressure is
expressed in a standard cartesian
coordinate system (x, y, z). The ground
reaction force is exerted by the ground
on a body in contact with it and is
composed of three components: vertical,
anterior-posterior, and mediolateral.
These forces can be combined with the
limb orientation data to calculate ankle,
knee, and hip joint torques and powers.
The rotating effect of the force located at
a distance from the joint axis is
quantified using joint torques, while the
joint power quantifies the power output
of individual joints during walking.

GRF y-axis
(Mediolateral component)

Lateral peak: The maximum short positive force
component immediately after heel contact. (N/kg)
Medial peak: The minimum negative force
component as the foot snatches for toe-off. (N/kg)

GRF z-axis
(Vertical component)

Loading response peak: Rapid rise in force after heel
contact. (N/kg)
Midstance valley: The minimum force exerted by the
center of mass at midstance. (N/kg)
Terminal stance peak: Second peak force that is
greater than body weight (N/kg)

Ankle

Figure A1b

Ankle Joint Angle

Ankle plantarflexion maximum: Peak plantarflexion
during stance. (Degree)
Ankle dorsiflexion maximum: Peak dorsiflexion
during stance. (Degree)

The ankle is plantar flexed at heel strike
in the range of 5–6 degrees, moves to
10–12 degrees of dorsiflexion, and then
back to plantarflexion (15–20 degrees)
at toe-off.

Ankle Torque

Ankle dorsiflexor peak torque: Peak response of the
ankle dorsi flexors during stance. (N.m/kg)
Ankle plantar flexor peak torque: Peak response of
the ankle plantar flexors (extensors) during
stance. (N.m/kg)

During loading, the ankle has a
dorsiflexor torque as the foot is lowered
to the ground. Next, a plantarflexion
torque occurs through midstance to
control the weight transfer over the
ankle as the body moves over the foot.
Finally, at late stance, the plantarflexion
torque continues as the plantar flexors
advance the foot into the swing.

Ankle Power

Early power absorption: (Eccentric
muscular contraction) at the ankle after heel strike.
(W/kg)
Peak power absorption: (Eccentric
muscular contraction) at the ankle during
midstance. (W/kg)
Peak power generation: (Concentric
muscular contraction) at the ankle during
late stance. (W/kg)

At loading response, power is absorbed
by the dorsiflexors as the foot is lowered
to the ground. Power absorption
continues by the plantar flexors as the
body moves over the foot. Finally,
power is generated by the plantar flexors
to drive the leg into the swing.
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Table A1. Cont.

Gait Feature Source Raw Signal Gait Signature Extracted Definition and Explanation

Hip

Figure A1c

Hip Joint Angle

Hip Flexion Maximum: Peak hip flexion during
stance. (Degree)
Hip Extension Maximum: Peak hip extension during
stance. (Degree)

Peak hip flexion usually occurs at heel
contact and is approximately 35–50
degrees. After heel contact, hip flexion
reduces throughout support until
toe-off.

Hip Torque

Hip Flexor peak torque: Peak response of the
hip flexors during stance. (N.m/kg)
Hip Extensor peak torque: Peak response of the
hip extensors during stance. (N.m/kg)

A net hip extensor torque during the
initial loading phase of support
continues through midstance into late
stance.

Hip Power

Early peak power generation: (Concentric
muscular contraction) at the hip after heel
strike. (W/kg)
Peak power absorption: (Eccentric
muscular contraction) at the hip during
midstance. (W/kg)
Peak power generation: (Concentric
muscular contraction) at the hip during
late stance. (W/kg)

At heel contact, there is power
generation of the hip extensors. In late
stance, there is new power absorption by
the hip extensors to decelerate the hip
flexors, followed by power generation of
the hip flexors to propel the leg into
the swing.

Knee

Figure A1d

Knee Joint Angle

Knee Flexion Maximum: Peak dorsiflexion during
stance. (Degree)
Knee Extension Maximum: Peak plantarflexion
during stance. (Degree)

The ankle is plantar flexed at heel strike
in the range of 5–6 degrees and moves to
10–12 degrees of dorsiflexion and then
back to plantarflexion (15–20 degrees)
at toe-off.

Knee Torque

Knee Flexor peak torque: Peak response of the
knee flexors during stance. (N.m/kg)
Knee Extensor peak torque: Peak response of the knee
extensors during stance. (N.m/kg)

The loading response at the knee
involves an extensor torque of the knee,
which transfers to a flexor torque after
the knee angle moves into extension
towards toe-off.

Knee Power

Early peak power absorption: (Concentric
muscular contraction) at the knee after
heel strike. (W/kg)
Peak power generation: (Concentric
muscular contraction) at the knee during
mid stance. (W/kg)
Peak power absorption: (Eccentric
muscular contraction) at the knee during
terminal stance. (W/kg)

There is knee flexion controlled by the
extensors (power absorption) at heel
contact moving into midstance, where
there is a knee extensor torque
controlled by the extensors (power
generation). In late stance, there is a
knee extensor torque controlled by the
extensors (power generation).
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