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NONAN GaitPrint: An IMU gait 
database of healthy young adults
Tyler M. Wiles   1, Madhur Mangalam1, Joel H. Sommerfeld1, Seung Kyeom Kim1, 
Kolby J. Brink   1, Anaelle Emeline Charles1, Alli Grunkemeyer1, Marilena Kalaitzi Manifrenti   1, 
Spyridon Mastorakis2, Nick Stergiou1,3 & Aaron D. Likens1 ✉

An ongoing thrust of research focused on human gait pertains to identifying individuals based on gait 
patterns. However, no existing gait database supports modeling efforts to assess gait patterns unique 
to individuals. Hence, we introduce the Nonlinear Analysis Core (NONAN) GaitPrint database containing 
whole body kinematics and foot placement during self-paced overground walking on a 200-meter looping 
indoor track. Noraxon Ultium MotionTM inertial measurement unit (IMU) sensors sampled the motion of 
35 healthy young adults (19–35 years old; 18 men and 17 women; mean ± 1 s.d. age: 24.6 ± 2.7 years; 
height: 1.73 ± 0.78 m; body mass: 72.44 ± 15.04 kg) over 18 4-min trials across two days. Continuous 
variables include acceleration, velocity, position, and the acceleration, velocity, position, orientation, 
and rotational velocity of each corresponding body segment, and the angle of each respective joint. The 
discrete variables include an exhaustive set of gait parameters derived from the spatiotemporal dynamics 
of foot placement. We technically validate our data using continuous relative phase, Lyapunov exponent, 
and Hurst exponent—nonlinear metrics quantifying different aspects of healthy human gait.

Background & Summary
An ongoing thrust of research focused on human gait pertains to identifying individuals based on gait patterns 
using various analytical techniques on various data types (e.g., images, videos, and radar signals)1–9. The motiva-
tion behind this approach is that if the model is complicated enough (e.g., the neural network used has enough 
layers), then analyzing large amounts of gait data will yield the expected results. Even without any time spent 
a priori using expertise in human movement science to decide on features to include in building such model. 
However, these attempts are thwarted by the fact that we still do not know whether some gait features can be 
attributed uniquely to individuals. This knowledge is fundamental to understanding whether each individual 
has a unique “gaitprint” just as each individual has a unique fingerprint.

The distinctiveness of one’s gaitprint readily lends itself to personal identification. Ongoing research from 
our laboratory offers compelling evidence that an individual’s manner of walking is as unique and singular 
as a fingerprint itself10,11. This revelation has profound implications, spanning diverse fields. In the realm of 
biometrics, the utilization of gait analysis could revolutionize the identification of perpetrators at crime scenes 
or enable seamless access to authorized areas without disrupting the individual’s activities. Similarly, in the 
domain of athletics, an individual’s distinctive running style or specialized techniques geared towards achieving 
specific sports objectives could greatly benefit from gaitprint recognition5. This extremely personal identification 
enables the creation of tailored training regimens, honing in on the subtle nuances that differentiate athletes 
from their peers. However, the most transformative applications may lie within the medical arena. Personalized 
health monitoring has long been championed as a superior approach to rehabilitation when contrasted with 
symptom-based treatment plans applied broadly to patient populations. The intricacies of transient or persistent 
gait characteristics used for distinguishing individuals hold immense potential for crafting nuanced rehabil-
itation programs. These programs could offer more effective and precise interventions, warranting thorough 
investigation and exploration.

Stability in human performance goes hand in hand with fluctuation—even the most skilled musicians and 
athletes bring their lifetime of reliable practice and tune it based on the unique moment of each live perfor-
mance. Perfect replication is rare and might hamper performance to meet the present circumstance or task. 

1Division of Biomechanics and Research Development, Department of Biomechanics, and Center for Research in 
Human Movement Variability, University of Nebraska at Omaha, Omaha, NE, 68182, USA. 2College of Information 
Science and Technology, University of Nebraska at Omaha, Omaha, NE, 68182, USA. 3 Department of Physical 
Education and Sport Science, Aristotle University, Thessaloniki, Greece. ✉e-mail: alikens@unomaha.edu
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Variation is necessary and pervasive in well-practiced movements. In all human performance, there is a stability 
that thrives on and coexists with natural variability. Even for upright bipedal-walking gait, regular though our 
stride may be, no two footfalls are exactly the same. There is in all human performance a stability that thrives on 
and coexists with natural variability. Human gait variability has been specifically quantified to predict cognitive 
and physiological declines and prevent life-threatening consequences (e.g., identification of older adults at great 
risk of falling)12,13. For instance, variability has been studied for decades in clinical research on heart rate irregu-
larities14–16, congestive heart failure, arterial blood pressure irregularities17,18, cerebral ischemia19,20, epileptic sei-
zures21,22, and many other conditions23–26, to comprehend their complexity and eventually create prognostic and 
diagnostic tools. Likewise, the study of human gait variability can provide a window for understanding whether 
each individual has a unique “gaitprint” just as each individual has a unique fingerprint. For instance, natural 
fluctuations in walking (e.g., stride-to-stride fluctuations) follow a certain state of variability, which refers to 
the idea that human steps never exactly replicate themselves27–29. Therefore, we contend that the variability of 
human gait is the key to answering this question30,31. Assessing gait characteristics unique to individuals could 
then be used as an early indicator and predictor of disease and disability.

Movement fluctuations in healthy individuals show long-range correlations closely resembling fractional 
Gaussian noise (fGn) whose autoregressive coefficient ρ decays with lag k in a power-law fashion: 
ρ = + − + −∣ ∣ ∣ ∣ ∣ ∣k k k k( 1 2 1 )H H H1

2
2 2 2 32. The Hurst exponent, H, can cause the moments of the autocor-

relation to diverge for . < ≤H0 5 1fGn ; in this range, the autocorrelation function decays asymptotically towards 
zero, as k tends to infinity32. The fGn is often referred to as “pink noise.” Pink noise is “fractal,” or statistically 
self-similar with fluctuations scaling invariantly with time, as suggested by the above autocorrelation equation33. 
The lack of a pink noise structure is referred to as a “white noise” structure, or lacking long-range correlations 
(i.e., = .H 0 5fGn ). Finding a pink noise structure in a measurement series suggests that the underlying causal 
processes operate simultaneously across several timescales and provide a “persistent,” long-range correlated 
structure in the time-evolving behavior. So far, nonlinear analytical methods quantifying long-range correla-
tions have been used to characterize the healthy structure of variability in different gait parameters34–36, and to 
distinguish healthy temporal structures of variability from those found during aging and disease37–40. These 
nonlinear analytical methods have never been used to identify gait characteristics unique to individuals. Any 
attempt to identify gait characteristics unique to individuals by leveraging variability inherent to the human gait 
would require a large gait dataset that, at the very least, fulfills the following conditions:

•	 reflects walking in everyday life (overground as opposed to walking on a treadmill)
•	 includes nuances necessary to provide sufficient variability in gait parameters inherent to daily walking (e.g., 

when taking turns, varying walking speed, etc.)
•	 contains huge quantities of data per individual—preferably spanning across trials to hours to days to weeks—

to identify which gait parameters remain consistent within the individual and which parameters vary
•	 yields a variety of gait parameters—lying in the spatial, temporal, and spatiotemporal domains—to increase 

the chances of identifying the latent relationships among different gait parameters

However, to our knowledge, no gait dataset exists that fulfills those conditions, as evident by a sampling of 
existing gait datasets in Supplementary Table 1.

Supplementary Table 1 provides a survey of existing gait datasets and supports the above claim. We review 
only datasets published after 2010 as motion capture technology has significantly advanced in the last decade, 
including rapid improvements to inertial measurement unit (IMU)-based motion recording devices. Note that 
this survey is not exhaustive, and we may have missed several important gait datasets, but the sole purpose 
of this exercise is to put the present gait dataset in context and to provide interested readers with a glimpse of 
state-of-the-art datasets. These datasets provide critical gait data in multitudinous walking conditions from 
multiple countries spanning all around the globe and are fueling gait research in meaningful ways, as affirmed 
by the thousands of citations they have accumulated. However, these datasets also have several limitations that 
preclude their utility for assessing gait characteristics unique to individuals using the most advanced nonlinear 
analytical methods:

•	 A singular focus on straight walking. With a few exceptions41, almost all existing gait datasets focus on 
straight walking over an even surface. Straight walking is not fully representative of real-life walking, which 
involves curved paths, sharp turns, uneven surfaces, and countless obstacles. During curved walking, for 
example, a combination of motor strategies come into play to stabilize the head in space and orient the entire 
body in the desired direction42,43. Consequently, curved walking challenges spatiotemporal, stability, and 
symmetry-related gait patterns44–46. A gait dataset representative of real-world walking must have at least a 
few elements of curved walking.

•	 Lack of dynamic optic flow. Existing gait datasets mostly constitute data collected while walking on the 
treadmill in a gait laboratory. As opposed to walking in a natural environment where optic flow is highly 
dynamic, optic flow while walking on a treadmill is relatively static. Treadmill walking has additional con-
straints such as limited space to walk, possible dangers if the subject is too far back or too close to the side, and 
a velocity vector from the belt that is continuously added to the subject’s velocity vector. Given the critical role 
of optic flow in the perceptuomotor control of walking47,48 and the role of these constraints on moderating 
walking dynamics49–54, these datasets miss a very important component influencing gait patterns. A more 
useful gait dataset must be based on walking in a dynamically changing visual environment.

•	 Reliance on laboratory-grade movement registration devices. Many existing gait datasets have been col-
lected using expensive, laboratory-grade movement registration devices (e.g., instrumented treadmills, and 
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optical motion trackers with multiple cameras). Often, this gold standard gait research may cost upwards of 
a hundred thousand dollars. There is no doubt that these devices provide high-precision and high-accuracy 
recordings with potentially high impact. However, not all institutions and investigators can receive consist-
ent and substantial funding to be able to have access to these facilities. At the same time, a reliance on those 
laboratory-grade devices affects practitioners whose subjects may not be able to enter the laboratory due to 
injury, disease, or disability. These factors severely limit the expansion and utility of these datasets. To circum-
vent these challenges, a gait dataset, collected using a portable and more easily accessible yet accurate motion 
registration device, allows systematic expansion of the previous datasets to subjects restricted to in home or 
assistive-care settings and comparison with future datasets.

•	 Emphasizing sample size over an individual. The typical approach to existing gait datasets has been to focus 
on breadth (e.g., a large number of subjects) at the cost of depth (e.g., a large amount of data per subject). The 
motivation behind this approach is a habit of blindly analyzing a wide array of shallow data without using 
human movement expertise to decide on included features to build appropriate models a priori. Nonetheless, 
a gait dataset appropriate for assessing gait characteristics unique to individuals must also involve a large 
amount of data per individual and domain expertise (e.g., biomechanics, human movement variability) to 
train models with carefully curated features of gait that have proven track records of characterizing human 
movements.

•	 Limited scope for analyses. A major drawback of the existing gait datasets is the small number of gait param-
eters used or calculated. For instance, joint angle trajectories are not enough to determine step width varia-
bility, which are significant predictors of fall risk in older adults55–63, and can differentiate older adult fallers 
from non-fallers after a slipping event64. Likewise, a dataset singularly focused on foot placement variables  
(e.g., step length, stride length, step width) is not fully equipped to investigate the coordination patterns 
underlying specific features of imperceptible gait pattern fluctuations. On the other hand, a comprehensive 
study of gait variability can incorporate as many as 16 gait parameters at the scale of individual steps65 in addi-
tion to the joint angle amplitudes, velocities, and accelerations belying these gait parameters. The literature 
is hungry for a gait dataset that collates all these kinematic variables and gait parameters for the same set of 
individuals to produce a well-rounded investigation of unique gait characteristics—an individual’s “gaitprint.”

•	 Test-retest reliability. Test-retest reliability is a measure of reliability obtained by administering the same test 
twice over a period of time. The mean and standard deviation may not vary, but the temporal structure may 
vary across trials. Some previous studies have assessed the retest reliability of gait parameters and found them 
to be high for many investigated parameters66–71. Notwithstanding, existing gait datasets fail to repeatedly 
sample subjects across a sufficient timeframe (e.g., days and weeks) to assess test-retest reliability. Further-
more, these datasets cannot identify which gait patterns are unique to the individual and how robust gait 
patterns are after a retest has been completed. A gait dataset with many trials for each subject collected over 
two sessions with a rest period of multiple days is necessary to distinguish between reliable and unreliable 
gait parameters.

The present dataset—which we call the Nonlinear Analysis Core (NONAN) GaitPrint dataset—overcomes all 
the above-mentioned limitations, providing a valuable resource for assessing gait characteristics unique to indi-
viduals based on established principles of human movement variability27–29. The database provides whole-body 
kinematics and foot placement variables during self-paced overground walking on a 200-meter looping indoor 
track. Noraxon Ultium MotionTM IMUs sampled the motion of 35 healthy young adults (19–35 years old) at 
200 Hz over 18 4-min trials across two days. Many discrete and continuous variables such as velocity, accelera-
tion, and cadence are outlined in the section “Data processing and extraction of foot placement variables.”

Methods
Subjects and ethical requirements.  Thirty-five adults (18 men and 17 women; mean ± 1 s.d. age: 
24.6 ± 2.7 years; height: 1.73 ± 0.78 m; body mass: 72.44 ± 15.04 kg) participated in the present study. Subjects 
were identified and recruited by word of mouth, campus-wide emails, and Facebook/Twitter posts that link to 
webpages owned by the University of Nebraska at Omaha. This study was also allowed to use recruiting flyers 
distributed throughout the community at universities, clinics, health centers, gyms, fitness classes, libraries, cafes/
coffee shops, retirement homes, stores, and community bulletin boards. Subjects were paid $20 per session for 
participation. Interested individuals were recruited only if they (i) were able to provide informed consent; (ii) 
were able to walk independently without an assistive device; (iii) did not self-report diagnosis of neurological dis-
ease; and (iv) did not self-report diagnosis of any lower limb disability, injury, or disease. Subjects provided verbal 
and written informed consent approved by the University of Nebraska Medical Center’s Institutional Review 
Board (# 0762-21-EP). This study does not contain sensitive data (i.e., from children) and all participants were 
between 19 to 31 years old72–85.

Sample size justification.  We expect that many of the statistical analyses performed on the present dataset 
will involve either statistical comparisons distinguishing between clinical groups (e.g., young vs. older adults, 
healthy adults vs. stroke survivors) or machine learning to identify distinguishing gait patterns among individu-
als. Excitingly, this dataset constitutes the first batch of subjects from an ongoing project that involves five other 
populations: healthy middle-aged adults (36–55 years old); healthy older-aged adults (56 + years old); lower-limb 
amputees; post-stroke patients; and patients with peripheral arterial disease (PAD). Hence, the issue of statistical 
power can be addressed by first considering the magnitude of differences between any of these groups that can 
be detected with reasonable probability. To address this issue within the context of mixed-effects models—which 
constitute the most common method for linear modeling, we simulated datasets (n = 1,000) based on effect sizes 
reported in a recent meta-analysis that identified systematic differences in young and old adults in terms 1/f 
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characteristics86. The same study also compared Parkinson’s patients with healthy controls. We used typical values 
and effect sizes from this study to simulate the multilevel data structure implied in the design of the present study. 
We conservatively focused the simulations on comparing young and old adults by reasoning that the effect sizes 
due to age were smaller than those due to clinical group86. Based on these simulations, a sample size of 30 healthy 
adults will provide 98% power to detect a standardized effect size of 0.20 (a small effect defined by Cohen87), 
assuming a 5% type 1 error rate. Hence, the current sample size of 35 healthy adults should allow reliable com-
parison with previously published datasets. Finally, to fully characterize each individual’s gait patterns, instead of 
collecting a limited amount of data for a larger number of subjects, we decided to collect a huge amount of data 
per subject over multiple days for a modest number of subjects to confer benefits to future analyses.

Setup and procedures.  Kinematic data were collected during self-paced overground walking on a 200 m 
indoor track at the University of Nebraska at Omaha on two separate days spread one week apart (one subject—
identified as S017—did not return for the second session). Each session lasted for a maximum of two hours and 
thirty minutes. Subjects were requested to wear semi-tight athletic clothing and shoes that they were comfort-
able walking in for no longer than 2.5 hours. Subjects were screened and consented at the Center for Research 
in Human Movement Variability (MOVCENTR), housed within the Biomechanics Research Building at the 
University of Nebraska at Omaha. Per session, subjects performed nine four-minute overground walking trials 
at their self-selected walking speed on an indoor running/walking track at the adjacent Health & Kinesiology 
Building. The trials were spread over three blocks of three trials each, with a self-chosen resting period between 
consecutive blocks of up to five minutes.

Kinematic data during walking were collected at 200 Hz using Noraxon Ultium MotionTM IMUs (Noraxon, 
Inc., Scottsdale, AZ). Sensors were placed on the following parts of the subject’s body, as recommended by 
Noraxon: head (middle of the back of the head), upper thoracic (below C7 in line with the spinal column, but 
high enough to not be affected by upper trapezius muscle movement), lower thoracic (in line with the spinal 
column at L1/T12; strap belt was positioned on lower ribs on the front side of the body), pelvis (body area of the 
sacrum), upper arm (midway between the shoulder and elbow joints, lateral to the bone axis), forearm (poste-
rior and distal, where there is a low amount of muscle tissue), hand (dorsal), thigh (frontal and distal half, where 
there was a lower amount of muscle displacement during motion), shank (front and slightly medial to be placed 
along the tibia medial surface of the tibias), and foot (upper foot, slightly below the ankle; Fig. 1). All sensors, 
except those attached to the foot, upper thoracic, lower thoracic, and pelvic, were clipped onto a Velcro strap 
tightened around the respective body segment to ensure minimal motion artifact but loose enough to promote 
movement. At the foot, the sensor was clipped into a rubber strap going over the dorsal side of the foot wrapped 
around the back of the heel and under the arch of the foot. The pelvis and thoracic sensors were clipped into a 
small plastic clip before placement. The upper thoracic sensor was taped to the upper thoracic area on subjects’ 
clothing or, when possible, on the subject’s skin. At the lower thoracic and pelvic area, the sensor and platform 
were secured to a clipped strap tightened around the torso.

Subjects’ body mass, height, and the following anthropometric measures were collected before the first 
experimental session to reconstruct and scale the biomechanical gait model in the MyoResearch 3.18.126 
software: skull height (mental protuberance to skull vertex), shoulder width (inter-acromion joint distance), 
lumbar + thoracic (C7 to S1), pelvis width (inter-anterior superior iliac spine distance), upper arm (acromion 
process to lateral humeral epicondyle), forearm length (lateral humeral epicondyle to radial styloid process), 
hand length (ulnar notch to the tip of the third phalange), thigh length (greater trochanter to lateral femoral 
epicondyle), shank length (lateral femoral epicondyle to lateral malleolus), and foot length (length of show). 
Several validation studies have shown that the kinematic data obtained from the Noraxon IMU sensors closely 
match the kinematic data obtained using traditional infrared motion capture systems88–92.

A functional walking calibration procedure was completed before each trial. First, subjects stood still 
for 2.5 seconds with their arms at their side and their feet close to shoulder-width apart. They then walked 
for 15 seconds at a self-selected pace, made a 180° turn, walked back to the starting position, and stood still 

Fig. 1  Experimental setup. (a) Indoor running/walking track where the data was collected. (b,c) Anterior and 
posterior views of a model wearing the Noraxon Ultium MotionTM IMU sensors prior to walking on the track 
shown in (a) The model in (b,c) is the first author, not a participant, and approves the use of his image.
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for another 2.5 seconds in the same initial posture. Next, subjects were instructed to walk for four minutes at a 
self-selected pace that they could maintain for at least 30 minutes and to maintain that same speed throughout 
the four-minute trial. Subjects walked on the track either clockwise or counterclockwise, with the order of the 
direction decided by the rules of the track (e.g., trials completed on Monday, Wednesday, Friday, or Sunday were 
walked clockwise; in 423 trials (69.12%) the participants walked on the track clockwise and in the 189 trials 
(30.88%) they walked counterclockwise). Two investigators always walked behind subjects with a cart holding 
the Ultium Motion receiver connected to a laptop computer while simultaneously monitoring data quality and 
subject safety. At the end of each four-minute trial, subjects were verbally instructed to stop walking. They then 
returned to the initial position for calibration, following which the subsequent trial began. All subjects started 
to walk from the same position on the track. A five minute rest period was given every three trials if needed.

Data processing and extraction of foot placement variables.  Before exporting the data for the pres-
ent database, the following post-processing options were applied by the Noraxon MyoResearch 3.18.126 software. 
First, the processing fusion mode was set to “standard”—the default fusion setting that uses an adaptive filtering 
technique to optimize sensor tracking while considering the cleanliness of the magnetometer data while record-
ing. Course Stabilization was set to “Foot, Shank, Thigh, Spine,” which acts as a high-pass filtering operation on 
the secondary joint angles to remove sensor drift using a ten-second sliding window. This applied stabilization is 
recommended for severe magnetic interference affecting the whole body and stabilizes the foot, shank, and thigh 
from the top down. It also stabilizes the upper and lower spine segments relative to the pelvis. The final setting, 
progression, was set to “translation.” Secondary knee angles were turned on to determine the left and right knee 
abduction and external knee rotation. Acceleration was set to “sensor-based” to capture acceleration data with 
respect to the coordinate frame of each sensor. The software detected heel contacts using the gyroscope and accel-
erometer data of the foot sensors to determine stance and swing as an on/off signal. The Noraxon MyoResearch 
3.18.126 software also provides an anti-wobbling correction that was applied to smooth the data at 5 Hz with a 
300 ms residual to remove soft tissue artifacts.

For each trial, the following variables were exported by the Noraxon MyoResearch 3.18.126 software: the 
acceleration, velocity, position, and orientation of each sensor and the acceleration, velocity, position, orienta-
tion, and rotational velocity of each corresponding body segment, and the angle of each respective joint.

For each trial, the following gait parameters, units in parentheses, were determined using the filtered time 
series data, as defined previously31,65:

Spatial parameters

•	 Step length (cm)—the distance from one heel strike to the next heel strike of the opposite foot.
•	 Stride length (cm)—the distance between two consecutive heel strikes of the same foot.
•	 Step width (cm)—the lateral distance between the heel center of one heel strike and the line joining the heel 

center of two consecutivie heel strikes of the opposite foot.
•	 Distance traveled (m)—the distance the subject traveled as tracked by the pelvis sensor.

Temporal parameters

•	 Cadence (steps/min)—the number of steps per minute, also referred to as step rate.
•	 Step time (s)—the time elapsed from the initial contact of one foot to the initial contact of the opposite foot.
•	 Stride time (s)—the time elapsed between the initial contacts of two consecutive footfalls of the same foot.
•	 Stance time (s)—the time elapsed between the first and last contacts of a single footfall (the stance phase starts 

at heel contact and ends at toe off of the same foot).
•	 Swing time (s)—the time elapsed between the last contact of the current footfall and the first contact of the 

following footfall of the same foot (the swing phase starts with toe off and ends with the first contact of the 
same foot).

•	 Single support time (s)—the total time one foot is in contact with the ground throughout the gait cycle.
•	 Double support time (s)—the total time both feet are simultaneously in contact with the ground throughout 

the gait cycle.

Temporophasic parameters

•	 Stance time (%Stride time)—stance time normalized to stride time.
•	 Swing time (%Stride time)—swing time normalized to stride time.
•	 Single support time (%Stride time)—single support time normalized to stride time.
•	 Double support time (%Stride time)—double support time normalized to stride time.

Spatiotemporal parameters

•	 Gait speed (m/s)—the ratio of distance walked and trial time.
•	 Stride speed (m/s)—the ratio of stride length and stride time.

The MATLAB (Mathworks, Inc., Natick, MA) script used to determine these gait parameters—GaitPrint_
Spatiotemporal_Calculation.m—is provided as part of the database on figshare.

https://doi.org/10.1038/s41597-023-02704-z
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Data Records
All data is made available using Figshare93. The deidentified subject information is stored in the file named 
GaitPrint_Subject_Characteristics.csv, describing for all subjects the screening outcomes, age, sex, body mass, 
height, hand and food dominance, shoe make and model, and anthropometrics measures: skull height, shoulder 
width, lumbar + thoracic, pelvis width, upper arm, forearm length, hand length, thigh length, shank length, and 
foot length. An additional file, GaitPrint_Trial_Characteristics.csv, described for all subjects the session date 
and start time, shoe make and model, walking direction, start time, first step taken, and any notes taken during 
the trial. All kinematic data have been grouped into subject-specific folders and .csv files, each file bearing the 
subject’s alphanumeric code (e.g., S001_G01_D01_B01_T01). All data files have a tabular structure with the 
following headers:

ID.  This field codes the subject number. It is labeled “S001,” “S002,” “S003,” … for the 35 subjects.

Group.  This field codes the study population. It is labeled “G01” for the current dataset.

Day.  This field codes whether the data was collected during the first or second day. It is labeled “D01” and 
“D02” for Day 1 and Day 2, respectively.

Block.  This field codes the block number within a session. It is labeled as “B01,” “B02,” and “B03” for Block 1, 
Block 2, and Block 3, respectively.

Trial.  This field codes the trial number within a block. It is labeled as “T01,” “T02,” and “T03” for Trial 1, Trial 
2, and Trial 3, respectively.

S###.zip (Raw Data).  These folders contain one .csv file for each trial completed by the participant. For 
example, S001.zip contains 18 .csv files each as a table providing all the raw data from that subject’s trial. The data 
are arranged in a matrix of 48,000 rows by 321 columns, with one row per timestamp. The first column, “Time” 
provides the timestamps, in milliseconds. The next 320 columns each provide the kinematic variables exported by 
the Noraxon MyoResearch 3.18.126 software: the acceleration, velocity, position, and orientation of each sensor, 
and the acceleration, velocity, position, orientation, and rotational velocity of each corresponding body segment, 
and the angle of each respective joint.

Spatiotemporal_variables.zip.  This folder contains one .csv per trial where each file contains a table pro-
viding all the spatiotemporal variables listed above. The data are arranged in 26 columns, with one row per sample 
in the time series of each gait parameter. cadence (steps/min), step time (s), left step length (cm), right step length 
(cm), left step width (cm), right step width (cm), left stride length (cm), right stride length (cm), left stride time 
(s), right stride time (s), left stance time (s), right stance time (s), left swing time (s), right swing time (s), single 
support time (s), double support time (s), left pct stance (%GC), right pct stance (%GC), left pct swing (%GC), 
right pct swing (%GC), pct single (%GC), pct double (%GC), average speed (m/s), left stride speed (m/s), right 
stride speed (m/s), and distance traveled (m).

We acknowledge that numerous researchers, particularly those affiliated with teaching institutions, may 
encounter obstacles when delving into the analyses of spatiotemporal variables or raw data. These hurdles may 
include limited access to paid software tools or a potential deficiency in coding, particularly in languages such 
as Python or R. To foster accessibility and facilitate secondary research endeavors involving this data, we have 
taken the initiative to offer all spatiotemporal variables and raw data for each subject and trial as distinct .csv 
files. Spatiotemporal files are conveniently bundled within a compressed folder titled “Spatiotemporal_Variables.
zip” and each subject’s raw data within compressed folders titled “S###.zip.” In addition, we have provided a 
compressed folder titled “template_scripts.zip” containing basic code examples with MATLAB, Python, and R 
extensions. This approach serves to lower the barrier to entry, enabling a wider range of researchers to engage 
with the data effectively.

Technical Validation
Continuous phase relationship between the right and left limb segments reveals highly consist-
ent inter-limb coordination over multiple gait cycles.  The lower extremity segments of a walking indi-
vidual can be considered a coupled system, and the interaction between the segments effectively moves the body 
forward. The behavior of such a dynamical system can be described by plotting a variable versus its first deriva-
tive—the phase portrait—that quantifies human movement94. The phase portraits of limb segments resemble a 
limit cycle system because the coordination is cyclic and dissipative, requiring energy to maintain the behavior95. 
Accordingly, the relation between two limb segments in phase space, or relative phase, describes the dynamic coor-
dination of these variables96–98. Continuous relative phase, Φ, describes the phase space relation between two seg-
ments in a form of a low-dimensional variable that reflects changes in phase relationship throughout the movement. 
Hence, this makes continuous relative phase an appealing variable to assess inter- and intra-limb coordination99. Φ 
was defined for the following joint pairs: (i) right and left thigh pitch angle, (ii) right and left shank pitch angle, and 
(iii) right and left foot pitch angle, for each gait cycle100. Angular position data were first normalized to 100 data 
points,  and centered so that the calculated segment phase angles are oriented around 0° 
(x x t min x t max x t min x t( ) ( ( )) ( ( ( )) ( ( ))) / 2centered i= − − − ). Then, to minimize the error caused by the phase 
portrait method, analytical signals were obtained via Hilbert transform ( t x t iH t( ) ( ) ( )centeredζ = + ). The segment 
phase angle of each data point was calculated using the real part and the imaginary part that are computed through 
the Hilbert transform ( t arctan H t x t( ) ( ( ) / ( ))segment i i iϕ = ). Φ was calculated as the difference between the right 
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and left segment phase angles at each time point Φ ϕ ϕ= −t t t( ) ( ) ( )i rightsegment i leftsegment i . When Φ is 0°, it indicates 
that the phase space relationship between the segments is symmetrical and is called in-phase. On the other hand, 
when Φ is 180°, the two segments are in an anti-phase relation, i.e., out of phase. Φ can capture changes in limb 
coordination across the gait cycle of healthy adults101,102, the effects on inter- and intra-limb limb coordination due 
to cognitive load and walking speed103,104, changes associated with development105 and aging106, neuropathy107, 
injury108, recovery post-injury109,110, and amputation103. Φ was calculated across all gait cycles within each self-
paced overground walking trial.

Figure 2b–d show violin plots of Φ  between the right and left segment pitch angles for thigh, shank, and foot 
for five representative subjects. The obtained Φ  for all three segment pairs hover around 180°, indicating an 
expected out-of-phase relationship between the right and left limb segments characteristic of healthy gait. 
Additionally, the high intra-individual consistency in Φ  between the two days further strengthens our assertion 
about the reliability of our data. This session-to-session reliability of the obtained Φ  point toward the uniqueness 
of individual gait patterns across both sessions111.

While most subjects showed Φ  close to 180°, we found a total of 13 trials across four subjects with Φ  deviat-
ing considerably (e.g., Subject 031, as indicated in Fig. 2d). To understand the cause of these anomalous Φ , we 
explored these trials in further detail. We found altered mean joint angle trajectories across all gait cycles within 
these trials, as well as a greater standard deviation across all gait cycles (see joint angle trajectories from one such 
anomalous trial—for Subject 031—contrasted with a valid trial; Fig. 3). Hence, the continuous phase relation-
ship between the right and left limb segments was also diagnostic of data quality.

Lyapunov exponent (λ1) values reveal highly consistent trajectories over multiple gait 
cycles.  Walking, in part, results from the repetitive rotation of limb segments around a joint (e.g., ankle, knee, 
hip) which is a cyclical process. This repetition creates trajectories in three-dimensional space that can be tracked, 
recorded, and plotted by motion capture equipment and software. One way to study the variability of walking 
trajectories is to inspect how the repetitive rotation of these joints changes over many gait cycles27. That is, do 
limb segments trace out the exact same trajectory over multiple gait cycles? Or, do movement trajectories deviate 
over time? That is, do movements converge to a common trajectory, or do they diverge? The (Largest) Lyapunov 
Exponent (λ1) provides a direct measure of the divergence of trajectories by examining trajectory behavior within 
the so-called reconstructed “state space attractor”—a set of states that a dynamical system tends to evolve toward 
over various initial conditions112–115 (Fig. 4a,b). As such, it is one aspect of measuring the stability of system’s 
time-evolving dynamics. Technically, λ1 measures the rate at which trajectories diverge over gait cycles. This rate 
reflects the unique functional organization of each person’s neuromuscular system116. Changes in this tendency 
to converge or diverge should reflect how a walker adapts to perturbations during locomotion and hence, quali-
tative changes in movement trajectory dynamics could reveal the onset of pathology117–121. We used Wolf et al.’s 
algorithm112 to assess λ1.

Figure 4c–h show violin plots of λ1 for segment pitch angles at the thigh, shank, and foot for five represent-
ative subjects. The obtained λ1 is rather small and within close approximation to the values reported in several 
previous studies122, indicating highly predictable gait cycles characteristic of healthy walking. We would like to 
also note that while some previous studies reported even smaller λ1

123–125, these studies used joint angles for 
estimating λ1 as opposed to segment pitch angles used in the present dataset. Additionally, we observe high 
inter-individual variation in λ1, accompanied by high intra-individual consistency in λ1 between the two ses-
sions. This session-to-session test-retest reliability of the obtained λ1 points toward the uniqueness of individual 
gait patterns across both sessions111.

Several subjects showed large variations in λ1 across trials (e.g., λ1 for the right thigh for Subject 001; Fig. 4d). 
To understand whether this variation reflects anomalous levels of divergence across trajectories, we explored 
such trials in further detail. We found relatively normal mean joint angle trajectories across all gait cycles within 
these trials (see joint angle trajectories from one such pair of trials; Fig. 5). Hence, we posit that these highly var-
iable λ1 reflect overground walking on a looping track, which imposes fewer constraints on gait than a treadmill, 
and evokes greater divergence among linked segment angles in high-dimensional space due to a wider walking 
space and the presence of turns. This heightened sensitivity of λ1 to individuals’ responses to gait constraints also 
means that λ1 could serve as a more reliable metric—or an important member of a set of metrics—for assessing 
gait patterns unique to individuals.

Close-to-one hurst exponent, HfGn, values indicate the pink noise structure in the time series of 
stride length and stride time.  The optimal movement variability hypothesis suggests that human gait 
variability (i.e., the fact that human steps never repeat themselves exactly) exhibits certain characteristics and 
optimal forms typically found in healthy individuals27,28,126. Measurements of physiological, motor, and cognitive 
variability in healthy individuals show varying degrees of long-range correlations127–131, and their loss due to 
aging and disease23–26. The Hurst exponent H captures long-range correlations in terms of the moments of the 
autocorrelation, which diverge for . < ≤H0 5 1fGn

32,132 (Fig. 6a). An fGn time series with HfGn < 0.5 is 
anti-persistent, i.e., an increase will most likely be followed by a decrease and vice-versa. This means that future 
values tend to return to a long-term mean. An fGn time series with HfGn = 0.5 resembles a random walk, implying 
no correlation between the current and future values. An fGn time series with HfGn > 0.5 is persistent, i.e., an 
increase will most likely be followed by another increase and vice-versa. The very notion of the mean is meaning-
less for persistent time series. As mentioned above, biologists and psychologists have encountered the mathemat-
ical structure of HfGn > 0.5 under the label of “1/f noise” or “pink noise” (e.g.133,134). HfGn or alternatively, the fractal 
scaling exponent α, has been used extensively to analyze the temporal structure of gait variability during walking 
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Fig. 2  The right and left segment pitch angles showed an out-of-phase continuous phase relationship. (a) A 
representative sample of the right and left thigh pitch angle used to calculate the phase relationship between the 
right and left limbs. (b–d) Violin plots of the continuous relative phase, Φ , across all gait cycles within a trial 
between the right and left segment pitch angles for five representative subjects. (b) Violin plots of Φ  for thigh 
pitch angle. c. Violin plots of Φ  for shank pitch angle. (d) Violin plots of Φ  for foot pitch angle. Each violin plot 
shows Φ  for the two days (Day 1 on left, and Day 2 on right). As expected, Φ  for all three segment pairs hover 
around 180°, indicating an out-of-phase relationship between the right and left limb segments. Additionally, the 
high intra-individual consistency in Φ  between the two days further strengthens our assertion about the validity 
of our data. Vertical lines represent the interquartile range of relative phase, and colored horizontal bars 
represent the mean of Φ  (n = 9 trials) for the respective subject/day.
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and running, while locomoting overground or on a treadmill135–137. The values of HfGn depend on task constraints 
such as the walking speed138,139 and can distinguish between healthy gait in young adults and altered gait due to 
aging and disease140–142.

We specifically tested two gait parameters—spatial (Stride length) and temporal (Stride time)—to verify the 
presence of pink noise structure characteristic of a healthy, adaptable gait. We assessed the strength of long-range 
correlations in the time series of stride length and stride time following the Bayesian approach developed by 
Tyralis and Koutsoyiannis143. We chose this method because it performs well on short time series, as compared 
to more common methods like detrended fluctuation analysis144,145, which requires much longer time series 
data, and yields HfGn comparable to the more commonly used detrended fluctuation analysis146.

Figure 6b,c represents violin plots of HfGn values for the time series of Stride length and Stride time, respec-
tively. The obtained HfGn values indicate the pink noise structure in stride length and stride time, both of which 
are characteristic of a healthy gait40,147–150. Shuffling the original series yields HfGn values resembling white noise, 
further confirming long-range correlations in the time series of Stride length and Stride time. Additionally, we 
observe high inter-individual variation in HfGn values, accompanied by high intra-individual consistency in HfGn 
values between the two sessions. This session-to-session test-retest reliability of the obtained HfGn values points 
toward the uniqueness of individual gait patterns across both sessions111.

Strengths and limitations.  The present dataset has several strengths that make it unique among existing 
gait datasets. First, the present dataset reproduces many characteristics established in the literature on healthy 
human gait variability. Second, the application of several nonlinear analytical methods require long time series 
that span several thousand samples. An unusually long series of each of these variables (>40,000 samples for 
continuous variables and >2,000 samples for discrete variables, as opposed to ~ 2000 and ~ 200 samples, respec-
tively, typical of existing datasets) makes the present dataset amenable to nonlinear analyses of gait variability 
which would be impractical with short series typical of existing datasets. Third, multiple recordings (n = 18) for 
each subject imply that the present dataset will significantly aid the modeling efforts to assess the uniqueness of 
individual gait patterns. In other words, the present database will aid the exploration of whether each person has 
a distinct “gaitprint” (i.e., gait characteristics) similar to how each person has a distinct fingerprint. If individuals 

Fig. 3  Mean joint angle trajectories across all gait cycles within a self-paced overground walking trial for 
two representative subjects, one with anomalous Φ  between the right and left ankle pitch angles (Subject 031; 
(a,c,e)) and the other with typical Φ  between the right and left ankle pitch angles, as shown in Fig. 4d (Subject 
033; (b,d,f)), as shown in Fig. 2. Shaded areas indicate standard deviation across all gait cycles. Note the altered 
mean joint angle trajectories and greater standard deviation across all gait cycles in the subject with anomalous 
Φ  between the right and left ankle angles (i.e., left vs. right panels).
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Fig. 4  The largest Lyapunov Exponent, λ1, describes the limb segment’s diverging trajectories over multiple 
gait cycles. The motion of thigh, shank, or foot over multiple strides can be depicted as a series of neighboring 
trajectories in a time-delay embedding. The embedding dimension is calculated from the False Nearest Neighbors 
algorithm, which detail the number of time delay copies required to accurately replicate movement trajectory 
dynamics (i.e., an attractor). This example shows an embedding dimension of 3 (original plus 2 copies), for 
viewing purposes. The time, τ, is determined through the Average Mutual Information algorithm. (a) Each of the 
time series (original plus copies) are plotted to provide the reconstructed state space attractor. This is an example 
of the thigh segment angle time series embedded into 3 dimensions. (b) Inset from a showing the calculation of 
the Lyapunov exponent. Conceptually, a single point along a trajectory and its true nearest neighbor are selected, 
shown by a red line connecting two dots in the upper left corner of (b) and the Euclidean distance between these 
points is calculated (dt). These points are then followed along their respective trajectories for a certain number 
of time points (n), followed by distance recalculation (dt’, shown by red lines connecting red dots). A new true 
nearest neighbor is selected, shown by a red line connecting two dots in the bottom right corner of (b) and the 
process is repeated. The log of the ratio of these distances is calculated and then normalized to the time the points 
traversed through the trajectory to yield the Lyapunov exponent. A smaller λ1 indicates higher predictability, 
or less divergence, of the dynamical system. (c–h) Violin plots of λ1 for the segment pitch angles for five 
representative subjects. (c) Left thigh. (d) Right thigh. (e) Left shank. (f) Right shank. (g) Left foot. (h) Right foot. 
Each violin plot shows λ1 for the two days (Day 1 on left, and Day 2 on right). As expected, these λ1 indicate gait 
cycle sensitivity that is dependent on initial conditions and is characteristic of healthy walking. Additionally, the 
high inter-individual variation in λ1 is accompanied by high intra-individual consistency in λ1 between the two 
days, further strengthening our assertion about the validity of our data. Vertical lines represent the interquartile 
range of λ1, and colored horizontal bars represent the mean of λ1 (n = 9 trials) for the respective subject/session.
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have a unique gaitprint, then they should show consistency in gaitprint-defining statistical features across mul-
tiple recordings and sessions. This way, the present database could produce fundamental knowledge critical for 
predicting disease, predicting physiological declines, and improving rehabilitation.

The present dataset also has one fundamental weakness: the motion capture system recording the subjects’ 
motion. The sensors use the earth’s magnetic field to detect motions in the horizontal plane; hence, small varia-
tions in the magnetic field lead to drift; “an unwanted sliding movement on the horizontal plane of the complete 
biomechanical model in the motion capturing software”151. Furthermore, metal and magnetic objects in the 
measurement space can also alter this magnetic field, leading to phantom changes in direction. However, no 
vertical drift is observed, as no external factors aid the calculations in the vertical plane. Although the drift asso-
ciated with the Noraxon Ultium MotionTM is much smaller than observed while using the previous generations 
of inertial sensors152,153, a robust drift correction algorithm is recommended to enhance data accuracy. Drift 
correction is an area of ongoing development154–157, and we recommend implementing whatever state-of-the-art 
drift correction algorithm is available when analyzing the present dataset. However, we strongly believe that 
this weakness does not undermine the purported utility of the present dataset, as we have already shown the 
validity of the present dataset using several linear and nonlinear measures characteristic of healthy human gait 
variability.

Usage Notes
We provide the present dataset as zipped folders in the data repository and also provide the scripts supporting 
analyses in MATLAB, Python, and R working environments; existing MATLAB and Python open-source soft-
ware packages focused on gait could be used to analyze the raw data. For example, GaitPy is a Python library 
that provides functions to read and estimate the clinical characteristics of gait from accelerometer data (https://
pypi.org/project/gaitpy/). Likewise, the Kinematics and Inverse Dynamics toolbox for MATLAB (https://www.
mathworks.com/matlabcentral/fileexchange/58021-3d-kinematics-and-inverse-dynamics) provides functions 
for analyzing joint kinematics and dynamics. Other open-source software packages like biomechZoo158 could 
also be used to process, analyze, and visualize the present dataset. MATLAB and Python functions needed 
to perform nonlinear time series analyses on foot placement variabilities—such as those presented in the 

Fig. 5  Mean joint angle trajectories across all gait cycles within two representative self-paced overground 
walking trials. Both subjects show λ1 close and far, from the mean as shown in Fig. 4. Shaded areas indicate 
standard deviation across all gait cycles. Note that despite significant anomaly in λ1, the mean joint angle 
trajectories and standard deviation across all gait cycles can be atypical or irregular across trials (i.e., left vs. 
right panels).
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“Technical validation” section—can be obtained from the GitHub repository of the Nonlinear Analysis Core at 
the University of Nebraska Omaha (https://github.com/Nonlinear-Analysis-Core/NONANLibrary).

To facilitate the use of these software packages, the present dataset includes a MATLAB script entitled 
GaitPrint.m, which contains the function that computes all the spatiotemporal variables.

Finally, as part of an ongoing project, we plan to make publicly available gait datasets on five other 
populations:

•	 Group 2: Healthy middle-aged adults (36–55 years old)
•	 Group 3: Healthy older-aged adults (56 + years old)
•	 Group 4: Lower-limb amputees
•	 Group 5: Post-stroke patients
•	 Group 6: Patients with peripheral arterial disease (PAD)

Together these gait datasets will support and standardize the decision of researchers, clinicians, and thera-
pists when assessing gait abnormalities or tracking the outcomes of rehabilitation interventions in older adults 

Fig. 6  Hurst exponent, HfGn, values indicate the pink noise structure in stride length and stride time 
characteristic of a healthy gait. (a) The fractional Gaussian noise (fGn) time series for HfGn = 0.1, 0.5, and 
0.9 in blue, red, and yellow, respectively. (b) Violin plots of HfGn values calculated using stride length for five 
representative subjects for the original (red) and shuffled (grey) time series. c. Violin plots of HfGn values for 
stride time for five representative subjects for the original (red) and shuffled (grey) time series. Each violin plot 
shows HfGn values for the two days (Day 1 on left, and Day 2 on right). As expected, HfGn values for both the time 
series of Stride length and Stride time resemble pink noise structure and shuffling the original series yields HfGn 
values resemble white noise. Additionally, the high inter-individual variation in HfGn values is accompanied by 
high intra-individual consistency in HfGn values between the two sessions, further strengthening our assertion 
about the validity of our data. Vertical lines represent the interquartile range of HfGn values, and colored 
horizontal bars represent the mean of HfGn values (n = 9 trials) for the respective subject/session.
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and clinical populations. They will also provide the reference database necessary for investigating whether 
healthy adults show unique individual gait patterns and what happens to these unique gait patterns with frailty 
associated with aging and disease. Users of our work will notice that the currently available dataset includes 
nonconsecutive subject IDs because our six groups were recruited and collected simultaneously. The inclusion 
of Groups 2–6 are to be released in future work.

Code availability
The Matlab code GaitPrint.m, template scripts (MATLAB, Python, R), and all associated functions used for post-
processing of all raw data are available as part of the database on figshare.
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