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When measuring physiological data, the central limit theorem typically implies a consistent variance, resulting
in data that closely follow a Gaussian distribution. However, physiological measurements often deviate from
this expectation, increasing variance due to nonlinear correlations across various scales. The challenge lies in
testing these tails, which comprise only rare and extreme values. We introduce multiscale probability density
function (PDF) analysis, a method that estimates this non-Gaussianity parameter for physiological fluctuations
in each of multiple timescales. We gain valuable insights into the observed distributions with heavier tails and
nonlinear correlations by exploring the relationship between non-Gaussianity and logarithmic scale. To maintain
the fidelity of the original data, we incorporate an adaptive detrending filter into our multiscale PDF analysis. This
filter effectively eliminates trends without distorting the distribution in a way that might risk artifactual signatures
of non-Gaussianity. Additionally, we explain why multiscale PDF analysis is especially well suited for examining
data that follow lognormal distributions. In the final stretch, we demonstrate how multiscale PDF analysis can
provide fresh perspectives on heart rate variability and postural control. This innovative approach can facilitate
diagnoses in health and disease while also deepening our comprehension of how constraints influence human
physiological performance.

DOI: 10.1103/PhysRevResearch.5.043157

I. INTRODUCTION

Adaptive behavior means meeting task demands without
becoming rigidly locked in. It involves balancing short-term
and long-term demands, requiring switching between tasks
and constraints [1–3]. For example, we may interrupt writ-
ing to answer a phone call and return to writing afterward.
This flexibility is observed in humans and in bacteria, cells,
and parasites [4–10], foraging wild animals [11–13], human
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hunter-gatherers [14,15], economic markets [16–18], human
behavioral organization [19–23], and various other complex
systems [24–26].

The capacity of adaptive behavior to switch irregularly
between multiple modes is a form of intermittency (or het-
erogeneity of variance)—a mathematical way to describe
subtle irregularities that characterize the free-ranging aspect
of adaptive behavior [27,28]. In the realm of dynamical
systems, particularly in the context of turbulent flows, the
Pomeau-Manneville scenario emerges as a prominent con-
cept, elucidating the journey towards chaos, often referred
to as turbulence, triggered by intermittency [29,30]. One of
the widely explored manifestations of intermittency is the
on-off intermittency, characterized by a nonperiodic oscilla-
tion between static or laminar behavior and abrupt, chaotic
bursts of oscillation: random alternation between phases with
extremely low movement amplitudes and phases with high
movement amplitudes [31,32]. In simpler terms, intermittency
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FIG. 1. Intermittent non-Gaussian fluctuations. (a) Independent and identically distributed Gaussian fluctuations. (b) Gaussian intermittent
fluctuations with long-range correlated variance. (c) Independent and identically distributed non-Gaussian fluctuations. (d) Non-Gaussian
intermittent fluctuations. In this process, the variance shows long-range correlations.

means the variance in heterogeneity across time, as shown
in Fig. 1(d). For instance, intermittency in heart rate vari-
ability reflects cardiac sympathetic activity due to external
contexts [33,34]. Posture is similarly intermittent; postural
dexterity entails swaying to support optic flow and eye and
head movement [35,36]. Beyond satisfying local constraints
of maintaining a stable stance, while the body sways to
explore the surroundings, excessive sway topples the body,
and insufficient sway leaves it poorly poised for ongoing
events [37–39]. In these instances, the key characteristic of
intermittency is its ability to produce a considerable number
of extreme responses while maintaining an integral, coher-
ent process. This cascadelike pattern allows for adaptation
to ongoing changes in constraints on function, even though
the responses may fall within the average range of other re-
sponses.

Modeling intermittency is challenging since the ability to
switch between different modes of activity may seem in-
compatible with the rule-following of an “internal” predictive
model [40–46]. The goal of modeling is to create independent
symbols that can be computationally described [47]. How-
ever, context-sensitive intermittency may result from multiple
causal factors that are not independent, but interact. Therefore
modeling intermittency in physiology requires independent
symbols representing the inadequacy of summed independent
causal factors rather than encoding the measurement series
through a set of independent symbols representing indepen-
dent causal factors. A lengthy and relentless debate exists
on how to model measurements to test whether fluid, inter-
mittent processes depend on strongly nonlinear interactions
and not independent factors [48,49]. The Gaussian probability
density functions (PDFs)—the summed consequence of many
independent random factors—have been a reliable workhorse

for modeling intermittency in physiology composed of inde-
pendent factors [50]. However, the failure of Gaussianity or
independence has been linked to adaptive context-sensitive
behavior, and a different class of modeling is needed to
organize the mounting quantitative evidence of this relation-
ship [51,52].

II. NON-GAUSSIANITY AS A MEASURE OF
INTERMITTENCY

Adaptive behavior involves frequent variations, allowing
for exploration of more extreme regions of the state space
beyond the average goal position, as described by Kelso and
co-workers [53,54]. As a result, intermittent behaviors do
not conform to a Gaussian distribution with short tails but
instead exhibit long and heavy tails. PDFs can assess the
degree to which a phenomenon is locked into the average
position versus how fluidly it moves between local tasks and
exploration beyond local constraints. The smoothness of the
peak-to-tail transition in the PDF reveals the extent to which
the phenomenon is non-Gaussian.

Gaussian distributions result from adding many inde-
pendent variables, but interactions between variables in
cascades promote intermittent uneven growth of variance
with timescale. Multiplicative processes such as cascades
produce lognormal distributions, which differ from normal
distributions in that the product of independent factors gen-
erates the former. This leads to longer, heavier tails than
Gaussian distributions due to nonlinear correlations [55,56].
However, testing these tails can be challenging, as rare, ex-
treme values sparsely populate them and may be influenced
by measurement artifacts, nonstationarity, or other sources of
non-Gaussianity (Fig. 1) [57–60]. Fortunately, an analytical
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method for estimating non-Gaussianity has emerged from
research on hydrodynamic turbulence. This method involves
querying distribution regions that are better populated at mul-
tiple timescales [61,62].

Multiscale PDF analysis allows us to elaborate this
marginal difference in variance into a powerful tool for numer-
ical estimation of non-Gaussianity. The theory and research
on hydrodynamic cascades suggest that we can, in empirical
measurements, find signatures of cascade dynamics through
the change of this marginal difference between lognormal
and normal variance across multiple timescales. Multiscale
PDF analysis addresses the change of non-Gaussianity across
scales to control for spurious effects, for example, effects of
multiple-sized events due to nonstationarity.

III. MULTISCALE PDF ANALYSIS TO QUANTIFY
NON-GAUSSIAN INTERMITTENT
FLUCTUATIONS IN PHYSIOLOGY

This tutorial aims to introduce multiscale PDF analysis
to quantify and explain intermittent fluctuations in physiol-
ogy. Multiscale PDF analysis has proven helpful beyond fluid
dynamics, with applications in discerning the endogenous
dynamics underlying cardiac physiology [33,34,63–65] (see
also Refs. [66–68]) and human postural control [69–72]. For
example, non-Gaussianity in heart rate variability has been
linked to increased sympathetic activity [73,74]. In contrast,
non-Gaussianity in postural sway has been found to exhibit
distinct signatures of both endogenous and exogenous pos-
tural demands [69–72]. Multiscale PDF analysis can help
distinguish the specific contributions of various constraints to
the interactivity that intermittency entails. By modeling non-
Gaussianity at multiple scales, our models can precisely grasp
cascadelike interactivity, allowing us to explain intermittent
physiological fluctuations.

This work showcases the multiscale PDF analysis by out-
lining the optimal approaches for estimating non-Gaussianity
across various scales, accounting for event-size heterogeneity

and nonstationarity, common issues in standard investigations.
We also provide an in-depth description of surrogate testing
that verifies whether observed non-Gaussianity reflects non-
linear temporal correlations. To illustrate the methodology,
we offer several simulations and empirical physiological time
series.

IV. THE ESTIMATOR OF NON-GAUSSIANITY, λ2

Intermittent fluctuations with heterogeneity in variance can
be modeled by assuming a doubly stochastic process x(t )
described by

x(t ) = ξ (t )eω(t ), (1)

where ξ (t ) is a Gaussian random variable with zero mean and
ω(t ) is the other Gaussian random variable independent of
ξ (t ). eω(t ) in Eq. (1) describes the fluctuation of local stan-
dard deviations, which results in the non-Gaussian distribution
of x(t ).

This framework forms the basis of Castaing’s PDF model,
introduced as a model of the velocity difference between two
points in fully developed turbulent flows [61]. In addition, this
framework also encompasses the Beck-Cohen superstatistical
distributions introduced as a model of complex nonequi-
librium systems [75,76]. The standardized PDF of x(t ) is
given by

fλ(x) =
∫ ∞

0

1√
2πλ

exp

(
− (ln σ + λ2)2

2λ2

)

× 1√
2πσ

exp

(
− x2

2σ 2

)
d (ln σ ), (2)

where λ2 is the non-Gaussian parameter. λ2 → 0 in Eq. (2)
yields a Gaussian distribution. In contrast, the larger values of
λ2 yield fatter non-Gaussian tails of the PDF (Fig. 2).

The time series’ non-Gaussian parameter, λ2 (assuming
unit variance, i.e., σ = 1), can be estimated using a moment-
based estimator

λ̂2
q = 2

q(q − 2)

{
ln

(√
π〈|x|q〉
2q/2

)
− ln �

(
q + 1

2

)}
(q �= 0, 2)

λ̂2
0 = lim

q→0
λ2

q = −〈ln |x|〉 − γ + ln 2

2
(q = 0)

λ̂2
2 = lim

q→2
λ2

q = −〈x2 ln |x|〉 − γ + ln 2

2
− 1 (q = 2), (3)

where λ̂2
q is the estimated value of the non-Gaussian parameter

for the qth absolute moment, λ2, angular brackets mean the
statistical average, � is the gamma function, and the moment
q > −1.

The other non-Gaussian parameter corresponding to the
variance of ω(t ) in Eq. (1) is given by the log-amplitude-based
estimator

λ̂2 = 〈(ln |x| − 〈ln |x|〉)2〉 − π2

8
; (4)

the details have been provided in previous work [75,76].

A. Relationship between the estimator of non-Gaussianity, λ2,
and kurtosis, a canonical measure of non-Gaussianity

in glassy systems

A canonical measure of non-Gaussianity in glassy systems
is kurtosis, K = 〈x4〉

σ 4 [77,78]. The quantity K is a key indica-
tor for assessing the extent to which the distribution of x(t )
deviates from the Gaussian distribution. K > 0 signifies an
expansion in the x(t ) distribution, implying that significant
events are more heavily weighted than the Gaussian distribu-
tion. It is essential to note that kurtosis provides little insight
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FIG. 2. Non-Gaussian intermittent fluctuations. (a) Simulated time series with varying degrees of non-Gaussianity, represented by the
parameter λ2 defined by Eq. (1). (b) The corresponding theoretical and empirical PDFs are plotted in linear-log coordinates. As λ2 increases, the
PDF becomes more sharply peaked and has heavier tails. Conversely, as λ2 decreases, the PDF resembles a Gaussian distribution, approaching
a perfect Gaussian distribution as λ2 approaches zero. The solid lines on the graph represent the numerical integration of Eq. (2), while the
symbols show the estimated PDFs obtained from the time series in (a). The PDFs have been vertically shifted for ease of presentation, and the
vertical axis is given in arbitrary units.

into the precise shape of the peak; its unambiguous interpre-
tation lies in its ability to describe the extremity of tails. This
interpretation relates to the presence of outliers, in the case
of sample kurtosis, or the likelihood of generating outliers, as
seen in the kurtosis of a probability distribution.

The kurtosis is equivalent to our moment-based estimator
in Eq. (3) with q = 4. Substituting x

σ
for x in Eq. (3), given

that Eq. (3) assumed unit variance, we get

λ̂2
q = 2

q(q − 2)

{
ln

(√
π〈| x

σ
|q〉

2q/2

)
− ln �

(
q + 1

2

)}
.

When q = 4,

λ̂2
4 = 1

4

{
ln

(√
π〈| x

σ
|4〉

4

)
− ln �

(
5

2

)}

= 1

4

{
ln

(√
π〈| x

σ
|4〉

4

)
− ln

3
√

π

4

}

= 1

4
ln

√
π

4

〈∣∣ x
σ

∣∣4〉
3
√

π

4

= 1

4
ln

1

3

〈x4〉
σ 4

= ln
1

3
K ;

that is,

1
3 K = eλ̂2

4 . (5)

To compare the accuracy of the moment-based non-Gaussian
parameter [Eq. (3)] and kurtosis [Eq. (5)], we generated inde-
pendent and identically distributed non-Gaussian time series

with different theoretical values of λ2 using the standardiza-
tion of Eq. (1), as in Fig. 2:

x(t ) = ξ (t )eλω(t )−λ2
, (6)

where ξ (t ) is a Gaussian random variable with zero mean and
unit variance and ω(t ) is the other Gaussian random variable
with zero mean independent of ξ (t ). Figure 3 shows the esti-
mated values of λ̂2

q averaged over 1024 iterations. If the time
series is sufficiently long [n ≈ 106 and n ≈ 105 in Figs. 3(a)
and 3(b), respectively], λ̂2

q provides a consistent estimation of
non-Gaussianity until higher order q. λ̂2

q for 0 < q < 1 still
provides a consistent estimation of non-Gaussianity when the
time series length n ≈ 104 [Fig. 3(c)]. Only for time series
with n ≈ 103 does λ̂2

q show both considerable variability and
dependence on q [Fig. 3(d)]. However, when q = 4, λ̂2 is
extremely sensitive to the PDF tails. In other words, when
q = 4, λ̂2 is mainly determined by a small number of ex-
treme outliers. Thus the kurtosis-based estimation accuracy of
non-Gaussianity is low compared with that of λ̂2 for smaller
q moments.

B. Contribution of the observed values in the estimation of the
non-Gaussian parameter λ̂2

The multiscale PDF analysis is a robust approach for inves-
tigating cascadelike intermittency due to its ability to capture
the broader midsection of the PDF effectively. In contrast, the
maximum likelihood estimation (MLE) modeling approach
primarily focuses on the tails of the distribution. While MLE
is commonly employed for identifying non-Gaussianity, it
tends to be sensitive to outliers and can mistakenly identify
light-tailed distributions as heavy-tailed ones [58], such as
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FIG. 3. Sample mean of moment-based estimator of non-Gaussianity, λ̂q
2
, for different theoretical values of λ2. The sample mean is

numerically obtained across 1024 iterations. Values given in the key on the right indicate the theoretical values of λ̂q
2
. The error bars indicate

the sample standard deviation. (a) Time series’ length n = 106, (b) n = 105, (c) n = 104, and (d) n = 103.

the lognormal distribution [79–81]. In contrast, the multiscale
PDF analysis prioritizes the midsection of the PDF and ex-
amines whether its bell-like shape aligns with non-Gaussian
distributions. This method employs the qth-order absolute
moment, where higher and lower values of q correspond to
smaller and larger fluctuations. A low value of q spreads out
the midsection of the bell-shaped curve while compressing the
tails. Using q effectively accentuates the well-populated mid-
section, offering a diagnostic tool to identify non-Gaussianity
without relying on heavy tails.

The weighting assigned to the estimator λ̂2 relies on both
the absolute moment and the position of the non-Gaussian
distribution. When the moment order is close to zero or neg-
ative, the emphasis is placed on the central portion of the
distribution. Conversely, higher orders of moment allocate
greater significance to the distribution’s tails. To assess these
weights in the moment-based estimation of λ2, we computed
the contributions of the non-Gaussian distribution to the esti-
mated values of λ2 using the following expression:

w(x) dx = M(x) f (x) dx∫ ∞
−∞ M(x) f (x) dx

, (7)

where M(x) is the moment estimator and f (x) is the PDF
of x. The relative contribution of various sections of the
PDF depends less on q for smaller values of λ2 compared
with larger values [e.g., see Figs. 4(a) and 4(d); see also
Figs. 4(b) and 4(c)]. In the case of large λ2, the bulkier
midsection of the PDF plays the most significant role in the
moment-based estimation of λ2 for small positive values of
q, particularly notable for q = 0.25. However, as q increases,
the estimation gradually becomes more influenced by outliers.
Similar patterns are observed in the log-amplitude-based esti-
mation of λ2, with the bulkier midsection of the PDF having
a disproportionate contribution. This trend persists even for
negative values of q (e.g., q = −0.25), but in such cases, the

estimation completely disregards outliers while overempha-
sizing the contribution of the bulkier midsection.

The qth-order absolute moment helps address the long-
standing challenge of estimating non-Gaussianity. By empha-
sizing fluctuations of different sizes, it allows for assessing
the presence of distinct non-Gaussianity regimes within the
same time series. While the multiscale PDF analysis already
captures a significant portion of the heterogeneity in cascade-
like intermittency by examining multiple timescales, it has
its limitations. The assumption that small events occur over
short timescales and large events occur over long timescales
is not always accurate. Intermittency can lead to abrupt and
frequent large events within short timescales, while longer
timescales remain relatively quiet. q offers a complementary
perspective on the heterogeneity of fluctuations present in
non-Gaussianity. This broader approach allows for a more
comprehensive understanding of the diverse manifestations of
non-Gaussian behavior within the time series.

C. Random cascade process

We used a simple cascade model called the random cascade
process generated using the multiplicative lognormal model to
test the proposal of the multiscale PDF analysis. The numer-
ical procedure to generate a sample time series is as follows:
First, a time series {ξ (t )}2m

t=1 of a Gaussian noise with zero
mean and variance σ 2

0 is generated, where m is the number
of cascade steps. In the first cascade step ( j = 1), the whole
interval is divided into two equal subintervals and ξ (t ) in
each subinterval is multiplied by random weights exp[ω(1)(k)]
(k = 0, 1), where Y ( j) are identically distributed independent
random values. In the framework of Kolmogorov’s refined
similarity hypothesis, the PDF of ω( j) is assumed to be an
infinitely divisible distribution G0(ω). In the next cascade step
( j = 2), each subinterval is further divided into two equal
subintervals, which is followed by the application of random
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FIG. 4. Relative contributions of different parts of the PDF to the log-amplitude- and moment-based estimations of the non-Gaussian
parameter, λ̂2 and λ̂2

q, for (a) λ2 = 0, (b) λ2 = 0.2, (c) λ2 = 0.4, and (d) λ2 = 0.8. The dashed line denotes a Gaussian distribution for
comparison. Relative contr., relative contribution.

weights exp[ω(2)(k)] (k = 0, 1, 2). The same procedure is re-
peated, and after m steps, the time series x(t ) is

x(t ) = ξ (t ) exp
m∑

j=1

ω( j)

(⌊
t − 1

2m− j

⌋)
, (8)

where 	·
 is the floor function. If the PDF of ω( j) is an
infinitely divisible distribution G0(ω), the time series x(t ) is
described by the multiplicative lognormal model as x(t ) =
ξ (t ) exp ω(t )

(m)
, where ω(t )

(m) = ∑m
j=1 ω( j) and its PDF is

given by m-fold convolutions of G0(ω). Moreover, if we
approximate the distribution of the local sum of x(t ) by a
Gaussian, the local sum 	sn y at scale sn = 2m−n is approxi-
mately given by 	sn y = ξ

sn exp ωsn , where ξ
sn = ∑sn

k=1 ξk and
ωsn = ∑n

j=1 ω( j). In this model, the non-Gaussian parameter

λ̂2 of 	sn y is estimated as

λ2 ≈ μ
(0)
2 (N − log2 sn) ∼ − ln s, (9)

where μ
(0)
2 is the variance of ω( j) and s is the scale (length) of

the local sum.

D. The Savitzky-Golay detrending filter

Multiscale PDF analysis involves detrending the nonsta-
tionary trends present in time series. This detrending process
is crucial for maintaining the reproductive property of the
normal distribution while preventing any distortion in the
estimated PDF. However, the detrending procedures em-
ployed in detrended fluctuation analysis [82–85] and previous
multiscale PDF analyses, such as piecewise-regression-based
methods [34,63,64,69–74], utilize nonlinear filters. These fil-
ters lack the reproductive property of normal distribution.
Consequently, when employing these nonlinear filters in mul-
tiscale PDF analysis, the accurate characterization of the
normal distribution is compromised.

To overcome these challenges, we have adopted the
Savitzky-Golay detrending filter [86,87], which ensures
that the time series retains the reproductive property of
the normal distribution during the detrending process. The
Savitzky-Golay filter is an advanced version of the simple
moving-average filter. It computes the filtered time series
by evaluating the value of the least-squares polynomial at
the central point within each subinterval, utilizing a win-
dow length of s. The Savitzky-Golay filter relies on two
parameters: the order of the least-squares polynomial, m,
and the length of the subinterval, s. Notably, m must be
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FIG. 5. The multiscale PDF analysis for the multiplicative cascade process. (a) The relationship between non-Gaussianity, λ̂2
s , and the

shape of the PDF at progressively longer timescales, s, plotted on linear-log coordinates. Solid lines indicate numerical integration of Eq. (2)
for the corresponding λ̂2 values, while symbols indicate estimated PDFs derived from the standard deviation (SD), 	sy(t )/σs. A dashed line is
included to denote a Gaussian distribution for comparison purposes. The PDFs have been vertically shifted for ease of presentation, and thus
the vertical axis is provided in arbitrary units. (b) The inverse relationship λ̂s

2 ∼ − log s that is characteristic of cascade-type multiplicative
processes. The thick and thin traces represent the relationship between λ̂s

2
and log s for the original cascade series and a shuffled version of

the series, respectively.

an even number, while s must be an odd number. One key
advantage of the Savitzky-Golay detrending filter is that it
can be expressed as a linear convolution, thereby preserv-
ing the reproductive property of the normal distribution. Our
previous study [88] demonstrated the superior detrending ca-
pabilities of the Savitzky-Golay filter compared with other
conventional methods: It effectively removes higher-order
polynomial trends from the original measurement series (refer
also to Refs. [89–91]).

To apply Savitzky-Golay detrending, the smoothly varying
component ỹs(t ) included in the integrated measurement se-
ries y(t ) = ∑t

i=1 x(i) is approximated by the Savitzky-Golay
smoothing filter and removed from y(t ). The increments with
timescales s of the integrated time series after detrending are
then calculated as

	sy(t ) = (y(t + s) − ỹs(t + s)) − (y(t ) − ỹs(t )). (10)

Next, using the standardized values of the increments 	sy(t ),
λ̂2 is estimated, as shown in Fig. 5. Notably, λ̂2 ∼ − ln s,
as derived for the random cascade process in the previous
section. Figure 6 shows the sample mean of the moment-based
estimator, λ̂2

0.5, across a range of timescales, s, computed for
multiplicative cascades with different theoretical values of λ2.

Let us delve into the specifics of Gaussian processes to
underscore the pivotal role of detrending using the Savitzky-
Golay filter in multiscale PDF analysis. Detrending becomes
superfluous in the case of nonstationary Gaussian processes
devoid of extended trends. In such scenarios, the application
of detrending to the time series exerts no discernible influ-
ence on the precision of λ̂2, especially its dependence on the
q exponent [Figs. 7(a)–7(f)]. Conversely, protracted trends in
Gaussian processes impact the precision of λ̂2, particularly

when examining longer timescales. Thankfully, the utilization
of the Savitzky-Golay detrending method enables us to attain
a reasonably accurate estimation of λ̂2, specifically offering
greater stability in the estimation of λ̂2 across various q values
[Figs. 7(g)–7(l)].

FIG. 6. Sample mean of the moment-based estimator, λ̂2
0.5, across

timescales, s, computed for multiplicative cascades with different
theoretical values of λ2. The sample mean is numerically obtained
across 1024 iterations. The error bars indicate the 95% confidence
interval.
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FIG. 7. Detrending the time series is critical for multiscale PDF analysis: The case of Gaussian processes. Long-term trends lead to a less
accurate estimation of λ̂2, but the Savitzky-Golay (SG) detrending provides a fairly accurate estimation of λ̂2. (a) and (b) A nonstationary
Gaussian process with no long-term trends and the corresponding integrated time series. (c)–(f) PDF and moment-based estimator of
non-Gaussianity λ̂2 for the time series in (a) without detrending (gray) and after SG detrending, at timescales s = 11 [(c) and (d)] and s = 101
[(e) and (f)]. (g) and (h) A nonstationary Gaussian process with a long-term trend and the corresponding integrated time series. (i)–(l) PDF
and moment-based estimator of non-Gaussianity λ̂2 for the time series in (g) without detrending gray) and after SG detrending, at timescales
s = 11 [(i) and (j)] and s = 101 [(k) and (l)].

Next, let us examine the case of multiplicative cas-
cade processes, which are a natural fit for multiscale PDF
analysis. Multiplicative cascades are inherently nonstationary
and devoid of long-term trends, rendering detrending unnec-
essary. Consequently, whether the time series is detrended
or not has no bearing on the estimation of λ̂2 [Figs. 8(a)–
8(f)]. However, when a long-term cascade trend is present in
multiplicative cascades, the accuracy of λ̂2 diminishes, partic-
ularly at longer timescales. Nevertheless, the utilization of the
Savitzky-Golay detrending method yields a reasonably accu-
rate estimation of λ2 [Figs. 8(g)–8(l)]. Despite the challenge
posed by the long-term trend in a multiplicative cascade, the
Savitzky-Golay detrending technique effectively preserves the
accuracy of the estimation.

E. Log-Poisson versus lognormal distributions

The non-Gaussian parameter λ2 is meaningful when
considering the non-Gaussian shape within a multiplica-
tive lognormal distribution framework. However, if the

multiplicative lognormal framework cannot adequately ap-
proximate the observed non-Gaussian shape, the q depen-
dence of λ̂2

q is not constant, leading to a more complex
interpretation. To delve further into this matter, we examine
a log-Poisson cascade process [75,92]. In the log-Poisson
cascade process, ω( j) in Eq. (8) is

ω( j) = C(r, ν) rPν, (11)

where Pν is an independent Poisson random variable with
mean variance ν, r is a real-valued parameter, and C(r, ν) =
−ν( exp(2r) − 1)/2. In the case of Poisson processes, the log
amplitude from Eq. (4) offers a more interpretable estimation
of non-Gaussianity, as illustrated in Fig. 9.

F. Surrogate testing

To ensure that the relationship between λ̂2 and ln s obtained
from multiscale PDF analysis accurately reflects cascadelike
intermittency, it is crucial to address the issue of non-
linear interactions across scales explicitly. Neglecting this
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FIG. 8. Detrending the time series is critical for multiscale PDF analysis: The case of multiplicative cascades. Long-term trends lead to
a less accurate estimation of λ̂2, but the Savitzky-Golay (SG) detrending provides a fairly accurate estimation of λ̂2. (a) and (b) A nonsta-
tionary cascade process with no long-term trends and the corresponding integrated time series. (c)–(f) PDF and moment-based estimator of
non-Gaussianity λ̂2 for the time series in (a) without detrending (gray) and after SG detrending, at timescales s = 11 [(c) and (d)] and s = 101
[(e) and (f)]. (g) and (h) A nonstationary cascade process with a long-term trend and the corresponding integrated time series. (i)–(l) PDF
and moment-based estimator of non-Gaussianity λ̂2 for the time series in (g) without detrending (gray) and after SG detrending, at timescales
s = 11 [(i) and (j)] and s = 101 [(k) and (l)].

investigation could lead to the same ambiguity encountered
in previous treatments of non-Gaussianity. While cascadelike
interactivity can generate non-Gaussian patterns, it is impor-
tant to acknowledge that other mechanisms can also give rise
to such patterns, making it challenging to identify cascadelike
interactivity definitively. Therefore it is necessary to compare
the λ2-vs-ln s curves for both the original and surrogate se-
ries to confirm that the observed non-Gaussianity stems from
nonlinear interactions across scales. We recommend employ-
ing the well-established iterated amplitude-adjusted Fourier
transform (IAAFT) surrogate testing method, which preserves
the series’ linear autocorrelation and original values. This
approach allows us to discern the extent to which the non-
Gaussianity observed in the original series can be attributed to
cascadelike interactivity and nonlinear temporal correlations
relative to the surrogate series. This issue has been extensively
discussed in recent studies [69–72], and for further details,
readers are encouraged to consult Ref. [93] for comprehensive
information on this topic.

In constructing an IAAFT surrogate for a given time
series, the initial step involves employing a Fourier trans-
form to separate the series into two distinct components: the
amplitude and the phase spectrum. It is worth emphasizing the
significance of preserving the amplitude spectrum, which is
directly linked to the linear autocorrelation established by the
Wiener-Khinchin theorem [94]. Maintaining the integrity of
the amplitude spectrum is vital for ensuring the effectiveness
of the IAAFT surrogate. These surrogates retain the same
linear correlations as the original series by generating a new
series that no longer adheres to the original phase sequence.

Subsequently, we introduce randomization to the phase
spectrum in the next step. The Fourier-transform phase spec-
trum establishes a mapping between the phases and their
corresponding frequencies in the original time series. By
randomizing the phase spectrum, we effectively disrupt this
mapping, allowing the same estimated phases to be paired
with any available frequency. Notably, the phase spectrum
contains residual information about the sequence, which goes
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FIG. 9. Two examples showing that λ̂2 is the parameter of the lognormal model. If a time series does not conform to this model, interpreting
λ̂2 becomes meaningless. In such cases, we can use the log amplitude from Eq. (4) as a comparable measure of non-Gaussianity. (a) and (e)
Time series from a non-Gaussian process called the log-Poisson model. (b) and (f) Integrated time series. (c) and (g) PDF of the time series.
(d) and (h) Log-amplitude- and moment-based estimators of non-Gaussianity, with the moment-based estimator computed for a range of
qth-order absolute moments. Here, multipl., multiplicative.

beyond what the linear autocorrelation can fully explain as
it also encompasses nonlinear correlations. In contrast, the
amplitude spectrum primarily captures the linear correlations
inherent in the time series.

In the third step, we perform an inverse Fourier transform
on both the original amplitude and the randomized phase
spectrum. This process generates a random time series that has
not been previously measured but possesses identical linear
correlations to the original time series. It is crucial to rec-
ognize that while this new time series shares the same linear
correlations, it lacks the original nonlinear correlations due to
the randomization of the phase spectrum on which it is based.
The similarity between this inverse Fourier transform and the
original measurement series is limited to their linear correla-
tions alone. Consequently, additional steps are necessary to
reintegrate the original measured values into this similarly
structured linear correlation framework.

In the fourth step, the IAAFT surrogate is carefully aligned
with the histogram of the original series. This involves replac-
ing the original values with those from the inverse Fourier
series while maintaining their linear correlations. The IAAFT
method ranks both series, sorting the values from largest to
smallest, and subsequently replaces the jth-ranked value of
the inverse Fourier series with the corresponding jth-ranked
value of the original series. This rank-based replacement pro-
cedure ensures that the surrogate series accurately reflects the
peaks and valleys of the original series, thereby preserving its
linear correlations. By undergoing this step, we inch closer to
achieving a linear approximation of the original series. The
surrogate series retains the linear autocorrelation obtained in
the previous step and reinstates the original values, including
their mean and variance.

In the final step, the IAAFT method produces an iterative
convergence process that gradually refines the surrogate series
toward the original series. The researcher has the flexibility
to choose a benchmark that determines the desired level of
similarity between the final IAAFT surrogate and the am-
plitude spectrum of the original series. It is essential to
acknowledge that the preceding rank-matched replacement
step might have altered the amplitude spectrum, notably if
the histogram of the original series deviates from a Gaussian
distribution. For instance, the surrogate inverse Fourier series
may exhibit more pronounced peaks in heavy-tailed distribu-
tions. Conversely, suppose there is an overabundance of small
values near zero. In that case, the valleys in the inverse Fourier
series might become shallower following rank matching, po-
tentially distorting the representation of oscillations in the
original series. In cases where the convergence of the IAAFT
process is not achieved, the software continues iterating until
the maximum number of specified iterations is reached.

In summary, surrogate testing addresses the crucial issue
of nonlinear interactions across scales inherent in cascade-
like interactivity. While multiscale PDF analysis primarily
focuses on capturing the non-Gaussian patterns associated
with cascadelike intermittency, surrogate testing enhances the
empirical evidence of cascadelike intermittency by examining
the presence of nonlinearity. Through the IAAFT procedure,
a new time series is generated, replicating the amplitude spec-
tra and preserving the linear autocorrelation while disrupting
the phase spectra, indicating potential nonlinear interactions
across scales in the original sequence. For each measurement
series, we can generate a set of surrogate series representing
likely linear models of the original series. By comparing
the non-Gaussianity of the original series with that of the
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FIG. 10. IAAFT surrogate analysis allows one to determine
whether the observed λ̂2-vs-ln s curve can be explained by cas-
cadelike interactivity. By comparing the λ̂2 values estimated for the
original series with those of the corresponding IAAFT surrogate at
a given timescale, we can determine the extent to which cascadelike
interactivity contributes to non-Gaussianity relative to linear sources
for that timescale.

surrogate series using a one-sample t-test, we can detect the
presence of nonlinearity. As illustrated in Fig. 10, the dis-
crepancy in the estimated λ̂2 values between the original time
series and the corresponding IAAFT surrogate at a specific
timescale indicates the contribution of cascadelike interactiv-
ity over linear sources of non-Gaussianity for that particular
timescale. This approach provides valuable insights into the
interplay between the analyzed system’s nonlinear interac-
tions and cascade dynamics.

V. APPLICATIONS OF MULTISCALE PDF ANALYSIS

A. Heart rate variability in congestive heart failure

We conducted a multiscale PDF analysis on the long-
term ambulatory heart rate variability (HRV) data of 280
individuals, comprising 69 patients with congestive heart
failure (CHF) who survived (mean ± SD age, 64 ± 15 yr;
27 women), 39 patients with CHF who did not survive (70 ±
14 yr; 20 women), and 115 healthy adults (47.7 ± 18.2 yr; 25
women). The primary end point of our study was all-cause
mortality, with the majority of deaths (34 out of 39) attributed
to heart-related causes. We obtained the data from previously
published studies [64]. Figures 11(a)–11(c) display the R-R
interval (R-wave peak to R-wave peak; RRi) time series x(t )
of a healthy subject and two patients with CHF (one sur-
vivor and one nonsurvivor), while Figs. 11(d)–11(f) represent
the same data after detrending at three distinct timescales.
The PDF curves of the healthy subject remained relatively
consistent across all timescales [Fig. 11(g)]. Conversely, the
PDF curves for patients with CHF exhibited more tapered
centers and fatter tails at smaller scales [Figs. 11(h) and 11(i)],

indicating greater intermittent deviations at shorter timescales.
Additionally, as the timescale increased, we observed a rapid
convergence of the PDFs towards a Gaussian distribution
solely among patients with CHF.

The deformation of the non-Gaussian PDF can be eluci-
dated by examining the relationship between the estimator
λ̂2

s and timescale s. While all groups exhibit a general linear
decrease from the peak in λ̂2

s , the groups primarily differ in
peak height and timescale. Healthy subjects show minimal
variation in λ̂2 across a wide range of timescales, result-
ing in an almost zero value of the λ̂2-vs-ln s slope over
shorter timescales. The peak in λ̂2 occurs around s = 10–20 s,
followed by a gradual decline across medium to longer
timescales. In contrast, patients with CHF, particularly non-
survivors with sympathetic overdrive, exhibit considerably
higher peaks around s = 10–20 s. As the timescale surpasses
20 s, the decrease in λ̂2 follows an almost linear decay for both
CHF groups, with a more monotonic decline in nonsurviving
patients with CHF. Notably, this pattern resembles that ob-
served in the cascade model of intermittent turbulence. Hence,
if we disregard the specific timescale and peak height and
focus solely on the linear slopes, the λ̂2-vs-ln s slope for pa-
tients with CHF would be notably more negative than that for
healthy controls. Specifically, the negative non-Gaussianity
estimates of HRV in patients with CHF with sympathetic
overdrive, decaying within the 20–200-s timescale range, sug-
gest a sympathetic origin for HRV intermittency: During these
timescales, HRV reflects cardiovascular regulation influenced
by neural and humoral factors [73].

Figure 12 clearly shows that the λ̂2
25 for patients

with CHF is slightly but significantly higher [mean ±
standard error of the mean (SEM) = 0.39 ± 0.030] than that
of healthy controls (0.19 ± 0.014, t278 = 8.30, p < 0.001).
Additionally, λ2

25 is significantly higher for patients with CHF
who did not survive (0.48 ± 0.057) than for those who sur-
vived (0.35 ± 0.033, t106 = 2.15, p = 0.034). Because λ̂2

25
for the corresponding surrogate RRi time series did not
differ among the three groups (p > 0.05), the differences
between these groups can be attributed to differences in cas-
cadelike interactivity in HRV rather than linear sources of
non-Gaussianity. Lower values of λ2

25 can be used as a proxy
for healthy cardiovascular functioning, as previously reported
in patients with acute myocardial infarction (AMI) taking
(antisympathetic) beta blockers [95].

Recognizing that physiological time series may deviate
from the conventional patterns observed in theoretical cas-
cade simulations holds significant importance. For instance,
in the case of HRV, a relatively Gaussian pattern is ob-
served at shorter timescales, while stronger non-Gaussianity
emerges at longer timescales. Non-Gaussianity may intensify
with timescales due to the inherent capacity of physio-
logical processes to exploit or manifest constraints. In the
context of healthy HRV, we observe a gradual increase in
non-Gaussianity over shorter timescales, potentially reflect-
ing the influence of constraints that regulate non-Gaussian
behavior. However, in the presence of CHF, the nonmono-
tonic nature of non-Gaussianity becomes more pronounced.
CHF leads to an elevation in the peak of non-Gaussianity,
positioning it predominantly at the shortest timescales. Con-
sequently, if physiological time series exhibit nonmonotonic
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FIG. 11. Multiscale PDF characterization of heart rate variability. (a)–(c) Representative examples of time series of nearest-neighbor
intervals b(t ). (d)–(f) Time series of 	9y(t )/σ9 (top), 	159y(t )/σ159 (middle), and 	2507y(t )/σ2507 (bottom). (g)–(i) Standardized PDFs (in
logarithmic scale) of 	sy(t )/σs (from top to bottom) for s = 7, 11, 17, 25, 41, 63, 101, 159, 251, 397, 629, 999, 1581, 2507 s, where σs denotes
the SD of 	sy(t ). Solid lines indicate numerical integration of Eq. (2) for the respective λ2 values. Symbols indicate estimated PDFs from
the time series shown in (d)–(f). The PDFs have been shifted vertically for the convenience of presentation; thus the vertical axis is given in
arbitrary units. The left panels [(a), (d), and (g)] are data for a healthy individual (a 45-yr-old man). The center panels [(b), (e), and (h)] are
data for a 66-yr-old woman with congestive heart failure (CHF) who died 60 days after the measurement. The right panels [(c), (f), and (i)] are
data for an 82-yr-old woman who survived CHF.

behaviors, such as the presence of peaks, it becomes benefi-
cial to supplement the fitting of simple linear slopes with a
careful assessment of peak height and location. Identifying
specific timescales at which healthy and stable functioning

constraints give way to non-Gaussianity could potentially
hold diagnostic value [64]. This ability of the multiscale PDF
analysis to provide valuable insights even when the changes
in non-Gaussianity with timescale deviate from the canonical
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FIG. 12. Timescale dependence of the non-Gaussianity pa-
rameter λ̂2 for the original HRV series (thick lines) and their
corresponding IAAFT surrogates (thin lines). The results are for
patients with congestive heart failure (CHF), both for the survivors
(n = 69) and nonsurvivors (n = 39). Age-matched controls were
selected from a database of healthy subjects (n = 172). Error bars
indicate 95% confidence intervals of the group averages. The gray
patch covers the timescales, s, for which λ̂2 differs across the three
groups, and the white vertical line indicates s = 25 s.

expectations derived from cascade modeling highlights its
versatility and applicability beyond the confines of traditional
cascade-modeling paradigms.

B. Postural sway in Parkinson’s disease

Our daily tasks often require us to stand upright, feet firmly
planted on the ground, while keeping our focus on a target.
Although seemingly straightforward, this action involves a
sophisticated interplay of perceptual and motor processes that
span various levels of complexity. At a finer scale, mechanore-
ceptors detect joint angles, photoreceptors respond to light
stimuli, and ocular muscles work in tandem to maintain a
stable visual image. Zooming out to a larger scale, we en-
counter higher-order structures with visual and mechanical
information intertwined, resulting in an immersive pattern of
data, such as optic flow. Within this medium scale, a hier-
archical system of reflex arcs comes into play, coordinating
with muscle groups to create synergies, all under the supervi-
sion of a central executive that plans activities and provides
sensory correction. This cascade becomes evident in the pos-
tural center of pressure (CoP), where the body’s mechanical
pressures converge on the ground: The upright stance presents
a web of interdependent factors that support the engagement
of our once-stationary bodies with the surrounding world.
This cascade-dynamical structure can be observed in the CoP
and provides multiscaled sensitivity, enabling us to carry out
planned activities with precision and adaptability [96–103].

We conducted a multiscale PDF analysis on the Euclidean
displacement series of the CoP obtained from a sample of 32
individuals with Parkinson’s disease (mean ± SD age, 66 ±
10 yr; 8 women) in both on-medication and off-medication
conditions, 22 healthy older adults (67 ± 8 yr; 11 women),
and 27 healthy younger adults (28 ± 5 yr; 12 women). The
CoP data, collected at a rate of 100 Hz, were acquired from
publicly available data sets [104,105]. During the experiment,
participants maintained a stable upright stance with their eyes
open for 30 s. Figures 13(a)–13(c) display the time series
of Euclidean displacements in the CoP for a representative
healthy young adult, healthy older adult, and patient with
Parkinson’s on medication. Figures 13(d)–13(f) represent the
same data after detrending at three distinct timescales. Both
healthy young adults and healthy older adults exhibited a
similar deviation from the Gaussian distribution at shorter and
longer timescales, gradually converging towards a Gaussian
form in the medium timescales [Figs. 13(g) and 13(h), respec-
tively]. In stark contrast, individuals with Parkinson’s disease
on medication consistently displayed a non-Gaussian form
in postural sway across all timescales, indicating significant
intermittent deviations or bursts in postural sway at shorter
timescales [Fig. 13(i)].

The distinction in the estimator λ̂2 between healthy adults
and individuals with Parkinson’s disease became evident pri-
marily in the shortest timescales (Fig. 14). Individuals with
Parkinson’s disease exhibited a substantial increase in λ̂2

compared with their healthy counterparts, irrespective of age
or medication status. The λ̂2-vs-ln s curves for the surro-
gate series did not display this trend, indicating that the
observed differences stemmed from variations in cascadelike
interactivity rather than linear sources of non-Gaussianity.
These findings underscore the capability of multiscale PDF
analysis in discerning clinical disparities in postural sway.
Furthermore, they shed light on the contrasting nature of
non-Gaussianity profiles across multiple timescales between
Parkinson’s disease and healthy aging.

C. Postural sway across task constraints

While the previous example showcases the potential of
multiscale PDF analysis in discerning clinical disparities, it is
essential to note that empirical measurements of clinical dif-
ferences can sometimes be exaggerated and highly dependent
on the specific analysis employed. The discrepancies between
clinical and healthy populations can be so pronounced that any
analysis will likely yield noticeable distinctions. To highlight
the sensitivity of multiscale PDF analysis to more subtle vari-
ations in intermittency in physiology, we showcase another
example that delves into the realm of healthy upright standing,
where the range of variation is narrower and more nuanced.

The previous example involving postural CoP empha-
sized the significance of intermittency, a widely recognized
characteristic of postural control [69–72,100,106–108]. In-
termittency refers to statistical instability or unevenness
observed over time or space and, despite its counterintuitive
nature, is considered crucial for maintaining an upright stance.
However, an ongoing debate persists regarding the underlying
control mechanisms responsible for generating intermittency.
One perspective posits that intermittency arises from discrete
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FIG. 13. Multiscale PDF characterization of postural CoP in individuals with Parkinson’s disease and age-matched healthy controls.
(a)–(c) CoP Euclidean displacement time series b(t ). (d)–(f) Detrended 	90y(t )/σ90 (top), 	330y(t )/σ330 (middle), and 	1270y(t )/σ1270

(bottom). (g)–(i) Standardized PDFs of 	sy(t )/σs (top to bottom) for s = 7, 11, 17, 25, 41, 63, 101, 159, 251, 397, 629, 999, 1581, 2507 ms,
where σs is the SD of 	sy(t ). Solid lines show numerical integration of Eq. (2) for λ̂2 values. Symbols represent estimated PDFs from the time
series in (a), with vertical shifting for clarity. The left panels [(a), (d), and (g)] show data for a healthy younger adult: a 24-yr-old woman. The
center panels [(b), (e), and (h)] are data for a healthy older adult: a 63-yr-old man. The right panels [(c), (f), and (i)] show data for a patient
with Parkinson’s on medication (med): a 70-yr-old woman.

switching between different control modes, where constraints
on sway engagement or disengagement play a mediating
role [109–113]. According to this viewpoint, constraints are
disengaged when the sway is minimal and poses no immediate

threat to upright stability, resulting in increased variability in
sway. Randomness in sway implies a stochastic sequence of
constraint engagement and disengagement, leading to a short-
lag negative autocorrelation amidst uncorrelated variability.
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FIG. 14. Non-Gaussianity, λ̂2, vs timescale, s, for original CoP
Euclidean displacement series (thick lines) and their IAAFT surro-
gates (thin lines) for younger and older adults, as well as individuals
with Parkinson’s disease on and off medication while standing
upright with eyes open. The error bars represent 95% confidence in-
tervals of the group averages. The gray patch indicates the timescales
with different λ̂2 between healthy adults (younger and older) and
individuals with Parkinson’s disease.

This type of intermittency exhibits less of a cascadelike be-
havior and is less suitable for multiscale PDF analysis [71].

The alternative interpretation of intermittency in postu-
ral control, which portrays feedback-based corrections as
unfolding in a cascading manner across various timescales, of-
fers a more nuanced understanding, as postural control can ex-
hibit two distinct behaviors: “trembling” around equilibrium
points and “rambling,” where shifts occur between different
equilibrium points [114,115]. Rambling entails the integration
of diverse information and necessitates active mechanical pro-
cesses [116–118]; passive reflex mechanisms [119,120]; and
anticipatory [121–123], feedback [124,125], and exploratory
responses [126,127]. Coordinating all these information
sources across different spatial and temporal scales requires
a precise cascade structure, to which the multiscale PDF anal-
ysis is uniquely attuned [72,128].

This illustration highlights how multiscale PDF analysis
enriches our understanding of the role of cascade dynam-
ics in postural control. This method is crucial in capturing
the scale-dependent structure of cascade dynamics, which
is vital in coordinating corrective movements. For instance,
postural corrections may exhibit a cascadelike pattern or neg-
ative short-lag autocorrelation. However, this cascade must
vary across scales and reflect the boundary at which pos-
tural control transitions to feedback-based control. During
short-scale postural sway, fluctuations occur freely within the
base of support, resulting in low λ values that increase at
certain timescales before eventually declining, resembling the

behavior of a cascade. In the case of a relatively stable stance,
the λ̂2-vs-log s curve should exhibit a quadratic shape. How-
ever, destabilizing the support surface or closing one’s eyes
diminishes the scale dependence of λ, prompting a search
for new equilibrium points and leading to a linear decay
akin to scale-invariant cascades. Therefore multiscale PDF
analysis provides valuable insights into the significance of
scale-dependent structure in postural control and the critical
role of cascade dynamics in this intricate process.

We performed PDF analysis on the CoP Euclidean dis-
placement series of 22 older adults (mean ± SD age, 67 ±
8 yr; 11 women) and 27 healthy younger adults (28 ± 5 yr;
12 women) standing upright under three distinct conditions:
(i) eyes open on a rigid surface, (ii) eyes open on a foam
sheet, and (iii) eyes closed on a foam sheet. The data used
for this analysis were obtained from a publicly available data
set [104]. Figures 15(a)–15(c) depict the time series of Eu-
clidean displacements in the CoP for a representative older
adult in the three conditions above standing upright with eyes
open on a rigid surface, eyes open on a foam sheet, and eyes
closed on a foam sheet. Figures 15(d)–15(f) represent the
same data after detrending at three distinct timescales. When
standing on a rigid surface with eyes open, postural sway ex-
hibited a PDF with a similar deviation from the Gaussian form
at both shorter and longer timescales, gradually converging
towards the Gaussian form at medium timescales [Fig. 15(g)].
However, when standing on a foam sheet with eyes open or
closed, postural sway exhibited significant intermittent de-
viations or bursts at shorter timescales, resulting from the
introduction of novel task constraints that can destabilize pos-
ture [Figs. 15(h) and 15(i)].

The λ2-vs-ln s curves revealed notable distinctions be-
tween younger and older adults in all three task conditions,
with the most significant differences observed at the shortest
timescales, where the introduction of novel task constraints
can trigger intermittent deviations or bursts in postural sway
(Fig. 16). These findings demonstrate the effectiveness of
multiscale PDF analysis in identifying the boundary where
postural control can naturally fluctuate and the point at which
it necessitates feedback-based control. Furthermore, this an-
alytical approach proves equally valuable in discriminating
between clinical-patient populations and healthy populations
and detecting subtle variations in healthy upright standing.

VI. DISCUSSION

This work explains the multiscale PDF analysis for quan-
tifying non-Gaussian intermittent physiological fluctuations.
While non-Gaussianity is a known empirical characteristic
of intermittent fluctuations in physiology, its assessment has
been ambiguous, mainly based on the heaviness of PDF
tails. Additionally, PDF tails provide inadequate support for
parameter estimation due to small-sample bias and the inabil-
ity to represent nonlinear correlations or polynomial trends.
Multiscale PDF analysis overcomes many existing limitations
by modeling the better-populated portion of the PDF using
lognormal variance, modifying this variance by detrending
the underlying sequence, and examining how this detrended
lognormal variance grows with scales. In summary, multi-
scale PDF analysis is a promising new approach for studying
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FIG. 15. Multiscale PDF characterization of postural CoP in an older adult (63-yr-old man) standing upright with eyes open on a rigid sur-
face [left panels: (a), (d), and (g)], eyes open on a foam sheet [middle panels: (b), (e), and (h)], eyes closed on a foam sheet [right panels: (c), (f),
and (i)]. (a)–(c) CoP Euclidean displacement time series b(t ). (d)–(f) Detrended 	90y(t )/σ90 (top), 	330y(t )/σ330 (middle), and 	1270y(t )/σ1270

(bottom). (g)–(i) Standardized PDFs of 	sy(t )/σs (top to bottom) for s = 7, 11, 17, 25, 41, 63, 101, 159, 251, 397, 629, 999, 1581, 2507 ms,
where σs is the SD of 	sy(t ). Solid lines show numerical integration of Eq. (2) for λ̂2 values. Symbols represent estimated PDFs from the time
series in (a), with vertical shifting for clarity.

intermittent fluctuations in physiology, offering a powerful
new avenue for empirical applications.

We have thoroughly explained the multiscale PDF analysis
from theoretical and empirical perspectives. Theoretically, we

have introduced the algorithm for the analysis and elabora-
tions to ensure greater generality of results. For example, the
traditional approach of using lognormal variance is best suited
for the lognormal model. However, to extend to alternative
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FIG. 16. Non-Gaussianity, λ̂2, vs timescale, s, for original CoP
Euclidean displacement series (thick lines) and their IAAFT surro-
gates (thin lines) for younger and older adults standing upright with
eyes open on a rigid surface, eyes open on a foam sheet, and eyes
closed on a foam sheet. The error bars represent 95% confidence in-
tervals of the group averages. The gray patch indicates the timescales
with different λ̂2 between healthy adults and older individuals.

models such as the log-Poisson model, we have derived a log-
cumulant approach that may be more resilient for a broader
range of processes. We have utilized simulation data to de-
termine the best practices for selecting measurement series’
lengths and timescales. Additionally, we have examined de-
trending as it may remain a challenging issue for measurement
series with increasingly longer-term trends.

We have elucidated the application of the multiscale PDF
analysis in conjunction with surrogate testing. This step as-
sumes paramount importance due to the potential influence
of detrending challenges on non-Gaussianity estimates, which
could inadvertently reflect linear temporal correlations. Con-
sequently, employing surrogate series to validate that the
observed non-Gaussianity signifies nonlinear temporal cor-
relations becomes indispensable. Although non-Gaussianity
is a vital characteristic of cascadelike interactivity, it does
not exclusively define it. The concept of “polydispersity” in

the literature, which quantifies heterogeneity and variety, has
underscored that non-Gaussianity becomes a genuine hall-
mark of cascadelike interactivity only when it coexists with
and logically follows nonlinear correlations, thereby serving
as a predictive factor [129].

Regarding empirical applications, we have illustrated that
congestive heart failure and postural control instability during
upright standing exhibit strong linear decays in λ̂2, consis-
tent with traditional predictions from the cascade-theoretic
scholarship. Of course, physiological dynamics under var-
ious constraints, whether from measurement circumstances
or systemic weakness, may not fully conform to the canon-
ical expectations from cascade-based theorizing across all
timescales. Nonetheless, we have suggested potential ways
in which the nonmonotonicities in λ̂2-vs-log s relationships
could provide diagnostic information about the cascadelike
interactivity underlying healthy functioning [101,130–134].

The human body operates as a complex network of in-
terconnected physiological systems that interact continuously
to coordinate functions and maintain health. These inter-
actions happen at various levels and timescales, involving
synchronized activities and signaling pathways [135–139].
It is not enough to merely have well-functioning individual
systems. It is equally vital to ensure their seamless interaction
for healthy functioning. Any disruption in the coordination
between these systems can result in dysfunction or even
complete organ failure, as evidenced in sepsis and multiple
organ failure [140–143]. Despite advancements in systems
biology and integrative physiology, we still lack a compre-
hensive understanding of how these diverse systems interact
and integrate to produce physiological states in health and
disease. The burgeoning field of network physiology, dedi-
cated to unraveling these questions, stands to reap substantial
benefits through the adoption of analytical techniques such as
multiscale PDF analysis. Furthermore, the field could greatly
enhance its insights by refining this method and extending its
scope to detect non-Gaussian patterns. The analysis of these
non-Gaussian patterns should not be confined to individual
signals but should encompass the intricate web of interactions
across the various subsystems of the body.
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