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Multifractality in stride-to-stride
variations reveals that walking
involves more movement tuning
and adjusting than running

Taylor J. Wilson1, Madhur Mangalam1*, Nick Stergiou1,2 and
Aaron D. Likens1*
1Division of Biomechanics and Research Development, Department of Biomechanics, Center for
Research in Human Movement Variability, University of Nebraska at Omaha, Omaha, NE, United States,
2Department of Physical Education and Sport Science, Aristotle University, Thessaloniki, Greece

Introduction: The seemingly periodic human gait exhibits stride-to-stride
variations as it adapts to the changing task constraints. The optimal movement
variability hypothesis (OMVH) states that healthy stride-to-stride variations exhibit
“fractality”—a specific temporal structure in consecutive strides that are ordered,
stable but also variable, and adaptable. Previous research has primarily focused on
a single fractality measure, “monofractality.” However, this measure can vary
across time; strideto-stride variations can show “multifractality.” Greater
multifractality in stride-tostride variations would highlight the ability to tune
and adjust movements more.

Methods: We investigated monofractality and multifractality in a cohort of eight
healthy adults during self-pacedwalking and running trials, both on a treadmill and
overground. Footfall data were collected through force-sensitive sensors
positioned on their heels and feet. We examined the effects of self-paced
walking vs. running and treadmill vs. overground locomotion on the measure
of monofractality, α-DFA, in addition to the multifractal spectrum width, W, and
the asymmetry in the multifractal spectrum, WAsym, of stride interval time series.

Results:While the α-DFAwas larger than 0.50 for almost all conditions, α-DFAwas
higher in running and locomoting overground than walking and locomoting on a
treadmill. Similarly, W was greater while locomoting overground than on a
treadmill, but an opposite trend indicated that W was greater in walking than
running. Larger WAsym values in the negative direction suggest that walking
exhibits more variation in the persistence of shorter stride intervals than
running. However, the ability to tune and adjust movements does not differ
between treadmill and overground, although both exhibit more variation in the
persistence of shorter stride intervals.

Discussion: Hence, greater heterogeneity in shorter than longer stride intervals
contributed to greater multifractality in walking compared to running, indicated by
larger negative WAsym values. Our results highlight the need to incorporate
multifractal methods to test the predictions of the OMVH.
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Highlights

• Multifractality offers a compelling analytical method to
describe how correlations across consecutive stride intervals
during locomotion vary across time.

• Stride-to-stride variations show greater multifractality during
walking compared to running and locomoting overground
compared to a treadmill.

• Greater multifractality reveals that walking involves more
movement tuning and adjusting than running.

• Greater multifractality in stride-to-stride variations reveals
that locomoting overground allows more freedom to tune
and adjust movements than on a treadmill.

1 Introduction

Human locomotion varies from one stride to the next as it
adjusts to the demands of one’s environment. As the person starts
walking or running, the stride interval increases to an average above
zero. As the person maintains a steady pace, the average of the stride
intervals holds steady, but as the foot is placed in each strike to
maintain the self-selected pace, the stride interval varies from one
stride to the next. The standard deviation, SD, of the stride interval
time series can be used to quantify how the stride intervals vary on
average (Figure 1A). Of course, the variations in stride intervals
sometimes grow longer as stride intervals grow longer. The
coefficient of variation, CV, controls for this possibility by scaling
the SD relative to the central tendency, that is, SD divided by the
mean (Figure 1B). Another way to describe the relationship between
mean and SD is to calculate the root mean square, RMS. Whereas SD
summarizes deviation around the mean and CV controls this
summary for the size of the measurements, RMS expresses how
much bulk variation there is in stride intervals, that is, both the
central tendency’s difference from zero and the amount of variation
(Figure 1C). As the person maintains a steady pace, consecutive
stride intervals show progressively more variation. Indeed, upon
examining the stride-to-stride variations in greater detail, the stride
intervals at one point might correlate with stride intervals at another
time. Stride intervals will be similar, with greater similarity likely
between two strides closer in time. If we consider longer timescales,
there is also more room for the stride intervals to vary. So, temporal
correlations of stride intervals will decay. However, an important
question is how slowly those temporal correlations decay. For
instance, a gradual adjustment in foot placement to improve
balance may mean that stride intervals now have long-range
relationships with stride intervals much later, as the body enacts
the slow change in gait.

Monofractality, as measured by the α-DFA, yielded by the so-
called detrended fluctuation analysis (DFA), offers a compelling
analytical method to describe how those temporal correlations
between stride intervals decay across longer separations in time.
Specifically, α-DFA relates with how the SD-like variations in stride
intervals grow across many timescales, encoding how the correlation
among sequential stride intervals might decay slowly across longer
separations in time (Figure 2). The α-DFA reveals the degree of
persistent correlations (0.5 < α-DFA < 1.0; large values in the time
series are typically followed by large values and vice versa) or anti-

persistent correlations (0 < α-DFA < 0.5; large values in the time
series are typically followed by small values and vice versa) in stride-
to-stride variations over time. In addition, a stride interval time
series whose α-DFA is 0.5 has a frequency spectrum representing
“white noise”—a process with equal intensity at different
frequencies, giving it a constant power spectral density. In
contrast, a stride interval time series whose α-DFA is 1 has a
frequency spectrum representing “pink noise”—a process with a
frequency spectrum such that the power spectral density is inversely
proportional to the signal’s frequency.

Evidence of monofractality in stride-to-stride variations has
been the mainstay of the optimal movement variability
hypothesis (OMVH) (Harrison and Stergiou, 2015; Stergiou
et al., 2006; Stergiou and Decker, 2011). In this theoretical
model, unhealthful and less adaptable systems exhibit either

FIGURE 1
Schematic portrayal of the three typical descriptors of variability.
(A) Standard deviation, SD. (B) Coefficient of variation, CV. (C) Root
mean square, RMS. Those descriptors produce measurement
summaries that emphasize their additive components—the
mean and SD, both of which descriptors assume a summing together
of very many independent random factors. Y-axis is shown in arbitrary
units.
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variations that are very similar over time, resulting in a stiff,
inflexible, and highly predictable behavior, or variations that are
very dissimilar and random, resulting in an erratic, unfocused, and
unexpected behavior (i.e., anti-persistent correlations or white
noise). In contrast, healthy and highly adaptable systems display
optimal variability. Monofractality in stride-to-stride variations
closely describes this ideal state as it implies a temporal structure
in consecutive strides that are ordered, stable but also variable, and
adaptable (i.e., persistent correlations or pink noise). Many studies
have also reported monofractality in stride-to-stride variations in
walking (Bollens et al., 2010; Chien et al., 2015; Ducharme et al.,
2018; Ducharme and van Emmerik, 2018; Fairley et al., 2010;
Hausdorff et al., 1995; Hausdorff et al., 1996; Jordan et al., 2009;
Terrier and Dériaz, 2011; Wilson and Likens, 2023) and running
(Agresta et al., 2019; Bellenger et al., 2019; Brahms et al., 2020; Fuller
et al., 2016; Fuller et al., 2017; Hoos et al., 2014; Jordan et al., 2006;
Lindsay et al., 2014; Mann et al., 2015a; Mann et al., 2015b; Meardon
et al., 2011; Mo and Chow, 2019; Nakayama et al., 2010; Wilson and
Likens, 2023), and locomoting under various manipulations of task
constraints both on treadmill (Agresta et al., 2019; Bellenger et al.,
2019; Bollens et al., 2010; Chien et al., 2015; Ducharme et al., 2018;
Ducharme and van Emmerik, 2018; Fairley et al., 2010; Fuller et al.,
2016; Fuller et al., 2017; Hausdorff et al., 1995; Hausdorff et al., 1996;
Jordan et al., 2006; Jordan et al., 2007; Jordan et al., 2009; Lindsay
et al., 2014; Mann et al., 2015a; Mann et al., 2015b; Meardon et al.,

2011; Mo and Chow, 2019; Nakayama et al., 2010; Terrier and
Dériaz, 2011; Wilson and Likens, 2023) and overground (Bollens
et al., 2010; Hoos et al., 2014; Brahms et al., 2020). However, stride-
to-stride variations show a loss of monofractality in older adults
(Hausdorff et al., 1997; Hausdorff et al., 2001a; Kobsar et al., 2014)
and pathological populations (Hausdorff et al., 1997; Hausdorff
et al., 2001a; Hausdorff, 2009). Critically, this loss of monofractality
in stride-to-stride variations has been related to fall risk (Hausdorff
et al., 2001b; Hausdorff, 2007; Paterson et al., 2011; Toebes et al.,
2012; Johansson et al., 2016). Therefore, the predictions of the
OMVH are strongly supported by the monofractality in stride-to-
stride variations observed in both healthy adults and adults with a
compromised movement system.

However, most of the above-mentioned work has focused on the
monofractality of stride-to-stride variations. Addressing the
possibility that the monofractality of stride-to-stride variations
might vary according to time and context requires a different
approach. Indeed, a growing body of work suggests that
monofractality itself shows variations across experimental
contexts and time with the same context (Ihlen and Vereijken,
2010; Dutta et al., 2013; Ihlen and Vereijken, 2013; Cavanaugh et al.,
2017). The time-varying monofractality is termed as
“multifractality.” For example, α-DFA might represent the
dominant monofractality governing the entire stride interval time
series, but there will inevitably be waxing and waning of temporal

FIGURE 2
Schematic portrayal of the measure of monofractality, α-DFA, yielded by the detrended fluctuation analysis (DFA). α-DFA relates how the SD-like
variation grows across many timescales, statistically encoding how the correlation among sequential measurements might decay slowly across longer
separations. Detrending of those variations over progressively longer timescales removes the mean drift across each of those timescales.
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correlations around this general α-DFA value. Hence, constructing a
“multifractal spectrum” whose width W indicates the diversity of
temporal correlations in the same stride interval time series
produces an estimation of multiple α-DFAs (Figure 3). Of course,
human locomotion uses subtle, adaptive tunings and adjustments to
ongoing changes. Expectedly, the stride-to-stride variations’
temporal structure will change over time as the participant
flexibly acts to maintain a steady gait. Hence, a multifractal
spectrum width gives us a more precise look at how the human
locomotion system coordinates its movement across time flexibly.

In the context of gait, multifractality in stride-to-stride
variations increases under faster or slower-paced walking relative
to self-paced walking (Scafetta et al., 2003) and during asymmetric
walking (Ducharme and van Emmerik, 2019), suggestive of more
movement tuning and adjusting. Stride-to-stride variations during
walking show less multifractality in individuals with neurological
diseases like Parkinson’s (Dutta et al., 2013; Dutta et al., 2016) and
ALS (Chatterjee, 2020), suggesting that those individuals have
reduced capacity to tune and adjust movements as they move

from one stride to the next. Yet, while multifractal outcomes
hold significance in the context of the OMVH, the comparison
between multifractal and monofractal outcomes during treadmill
and overground walking and running remains uncharted territory.
This gap in knowledge leaves us pondering whether the apparent
monofractal behavior of stride-to-stride variations truly represents a
monofractal pattern or conceals a subtler interplay between shorter
and longer stride intervals influenced by the intricate web of
organismic, task-related, and environmental constraints. This
knowledge is important for (i) appropriately identifying the
precise nature of the changes in the variability in stride-to-stride
variations found in older adults and pathological populations in
future experiments and (ii) implementing a more effective
rehabilitation intervention based on harnessing human
locomotion variability (e.g., exercises that selectively alter shorter
vs. longer strides).

This study examined the effects of self-paced walking vs.
running and treadmill vs. overground locomotion on standard
deviation, SD, a measure of monofractality, α-DFA, multifractal
spectrum width, W, and asymmetry in the multifractal spectrum,
WAsym, of stride interval time series, to investigate whether stride-to-
stride variations are similarly sensitive to various task constraints.
We hypothesized that monofractality and multifractality in stride-
to-stride variations would provide different insights into the ability
to continually tune and adjust our movements during self-paced
walking and running under various task constraints. We predicted
that the greater inertia to maintain speed across gait cycles in
running compared to walking would be associated with more
persistent stride-to-stride variations, indicated by larger α-DFA,
and lesser ability to tune and adjust movements, indicated by
smaller W. We also predicted that because of the increased
presence of shorter stride intervals typically found in walking
than running, greater heterogeneity in shorter stride intervals
than longer stride intervals would contribute to greater
multifractality in walking compared to running, indicated by
larger WAsym. However, we made no directional prediction about
how monofractality and multifractality in stride-to-stride variations
would differ between walking or running on the treadmill and
overground. Finally, we predicted the effects of treadmill vs.
overground on walking and running would be the same.
Ultimately, we expected this work to illuminate the intricate
dynamics of stride-to-stride variations and their responses to
diverse constraints.

2 Methods

2.1 Participants

Eight adults (5 women; mean ± 1s.d. age: 30.5 ± 11.5 years)
participated in exchange for a monetary reward. All participants (i)
were able to provide informed consent; (ii) were able to walk
independently without an assistive device; (ii) did not self-report
any neurological disease; and (iv) did not self-report any lower limb
disability, injury, or disease. Monte Carlo simulation across
5,000 iterations using the method described by Kuznetsov and
Rhea. (2017) revealed that with the length of the stride interval
time series of ~ 800, expected mean α-DFA of 0.75 and 0.98 for

FIGURE 3
Schematic portrayal of the multifractal spectrum width, W, and
asymmetry in the multifractal spectrum, WAsym. While α-DFA is the
best single, mean description of the temporal structure for the whole
series, peering more deeply reveals that the monofractality is
changing over time. The multifractal spectrum offers the probability
distribution of more local measures of monofractality across time, αs,
and plots for each one as a frequency measure indicating how much
of the time series exhibits each value of α (Ihlen and Vereijken, 2010;
Ihlen, 2012; Ihlen and Vereijken, 2013; Kelty-Stephen et al., 2013;
Kelty-Stephen et al., 2022). The relationship between the Holder/
singularity exponent, h, and the dimension D(h) defines the
multifractal spectrum. The range of h defines the multifractal
spectrum width, W. In addition to estimating the heterogeneity in the
fractality in terms of the multifractal spectrum width, inferences can
be made from the shape of the multifractal spectrum—the rightward
vs. leftward asymmetry—whether it is heterogeneity in the smaller
amplitudes (or shorter stride intervals) or larger amplitudes (or longer
stride intervals) that contribute to the heterogeneity of the fractality.
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walking and running, respectively, inter-participant variability of
0.09 (Choi et al., 2015), trial-level variability of 0.1, and unaccounted
error of 20% of true inter-subject variability, a minimum N = 7
participants is needed to detect a difference of 0.1 between two
conditions (medium effect) at a Type I error rate of 5% with a power
of > 80%. Therefore, our sample size of N = 8 participants was
expected to be enough to detect differences in the α-DFA between
walking and running.

Each participant gave informed written consent with full
knowledge of the study objectives and details of the experimental
procedure. The Institutional Review Board of the University of
Nebraska Medical Center approved the present study (IRB # 511-
16-EP) following the Declaration of Helsinki.

2.2 Experimental design, procedure, and
protocol

Participants performed treadmill walking (TW) and treadmill
running (TR) on a Bodyguard Commercial 312C Treadmill
(Priority1Fitness Inc., Launceston, England), which has a
maximum speed of 12.0 mph and increases/decreases in speed by
0.1 mph. Participants also performed overground walking (OW)
and overground running (OR) in the Health and Kinesiology
building of the University of Nebraska at Omaha’s indoor track,
which extends 200 m looping track and consists of inner, middle,
and outer lanes.

Participants wore a Trigno™ 4 Contact FSR (Force Sensitive
Resistor) sensor (Delsys Inc., Boston, MA) on each foot. The first
and second channels registered relative pressure at the heel and
midfoot, respectively, whereas the third and fourth channels were
not utilized. The two FSR leads trailed around the lateral malleolus
bone of each foot, placed on the heel and midfoot, and taped for
security. The FSR sensor and the remaining two FSR leads were
placed and strapped around the belly of the gastrocnemius muscle of
the ipsilateral leg. A Trigno™ Personal Monitor (TPM)
datalogger—a physiological wireless monitoring device—attached
to the participant’s body stored the relative pressure data registered
by the Trigno™ 4 Contact FSR sensors.

Participants performed four 20-min trials across 2 days. The first
day consisted of walking and running either on the indoor track or
the treadmill. The second day, separated by at least two but less than
7 days, consisted of performing on the surface that was not
completed on the first day. Two familiarization trials were
conducted on the treadmill day to estimate the participant’s
preferred walking and running speeds based on a previously
established protocol (Martin et al., 1992). The treadmill speed
was increased by 0.1 mph every 2 s until the participant
indicated (based on their subjective assessment) that the speed
was too fast to walk/run comfortably. The treadmill speed was
then reduced by 0.1 mph every 2 s until the participant indicated
(based on their subjective assessment) that the speed was too slow to
walk/run comfortably. Three “fast speeds” and three “slow speeds”
were recorded and averaged to determine the participant’s preferred
walking and running speeds. Once the preferred walking speed was
estimated, the participant walked for 20 min. After 5–10 min rest,
the participant’s preferred running speed was estimated, following
which the participant ran at that speed for 20 min.

Heel strikes were identified based on the timestamp
corresponding to the peak pressure of each foot strike from the
FSRs. Stride intervals were calculated by taking the peak of nth heel
strike of the left foot minus the peak of (n − 1)th heel strike of the
same foot for all heel strike times in the time series. The trials yielded
stride interval time series of different lengths. To keep the length of
the stride interval time series constant across participants, the first
983 strides for walking and 1,527 strides for running were selected.

2.3 Assessing monofractality in stride-to-
stride variations

Detrended fluctuation analysis (DFA), as described by Peng et al.
(1994), Peng et al. (1995), assessed monofractality in stride-to-stride
variations. DFA computes the exponent α-DFA, quantifying the
strength of temporal correlations across scales using the first-order
integration of time series xt of length N, where t ∈ N.

Xt � ∑N
i�1

xi − 〈x〉( ), (1)

where 〈x〉 is the grand mean of the time series. It computes the root
mean square (RMS; i.e., averaging the residuals) for each linear trend
Yt fit to non-overlapping n-length bins to build fluctuation function

f n( ) �

�������������
1
N

∑N
t�1

Xt − Yt( )

√√
, (2)

for n < N/4. On standard scales, f(n) is a power law

f n( ) ~ nα, (3)
where α is the scaling exponent estimable using logarithmic
transformation

logf n( ) � α log n. (4)
Higher α, or better yet, α-DFA, corresponds to stronger temporal
correlations. An α-DFA = 0.5 indicates a random time series
characterized as additive white Gaussian noise (awGn), where
each stride is completely uncorrelated with any previous stride.
An α-DFA < 0.5 indicates anti-persistence in stride-to-stride
variations, that is, shorter stride intervals and vice versa typically
follow longer stride intervals. An 0.5 < α-DFA < 1 indicates longer
stride intervals, and vice versa typically follows persistence in stride-
to-stride variations, that is, longer stride intervals. A bin size range of
[4,N/4] was used for the DFA in the present study, which is standard
practice while using DFA (Jordan et al., 2006; Damouras et al., 2010;
Farag et al., 2013; Likens et al., 2015; Likens and Stergiou, 2020).

2.4 Assessing multifractality in stride-to-
stride variations

Multifractal wavelet leader (MFWL) analysis, as described in
Wendt and Abry (2007), assessed multifractality in stride-to-stride
variations. MFWL is based on the possibility that the stride interval
time series could be broken down into a frequency domain using
Fourier transforms to measure the changes in stride-to-stride
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variations (Ferree and Hwa, 2003; Ihlen and Vereijken, 2010).
Fourier transforms fit sine and cosine waves to the time series
data and detects correlations between the fitted waves and the time
series under analysis. This fitting emphasizes the variation in shorter
and longer stride intervals in the frequency domain. For instance,
variation in longer stride intervals will be more apparent by fitting
large amplitude sine and cosine waves to the stride interval time
series. In contrast, variation in shorter stride intervals will be more
apparent by fitting smaller amplitudes of sine and cosine waves to
the stride interval times series. Although this analytical methodmust
give pertinent information about the variety of shorter and larger
strides, sudden changes in strides are sometimes missed by this
analysis but can be detected by wavelet coefficients (Ihlen and
Vereijken, 2010; Mandelbrot, 2013).

Not unlike the sine and cosine waves in Fourier transforms,
wavelet coefficients detect correlations between the time series and a
template waveform, which is defined as the mother wavelet, ψ0(t)
(Wendt and Abry, 2007). The collection of mother wavelet templates
characterizes the ψ0(t).

ψj,k t( ) � 2−jψ0 2−jt − k( ), j ∈ N, k ∈ N, (5)

where j is the scales (milliseconds, seconds, minutes, etc.), k is the
shift of the wavelet (e.g., one to 4 seconds, two to 5 seconds, etc.), t is
the time at which wavelet is applied, and N is the time series length.
The mother wavelet is fitted for each specific moment t of the time
series at each specific scale j. After the mother wavelet is fitted for all
scales and shifts, the wavelet coefficients are obtained such that each
row of ψj,k is transposed and multiplied by X, which provides a
measure of the covariation between the wavelet ψj,k and the vector of
the time series X.

dX j, k( ) � 〈ψj,k|X〉, (6)

such that dX(j, k) is the coefficient that measures the correlation
between the scaled mother wavelet and the original time series
during each moment.

Once the wavelet coefficients have been identified, the wavelet
leaders LX(j, k) are defined. After computing each wavelet
coefficient, dX(j, k), the absolute value (amplitude) of each
coefficient at each scale is saved. The wavelet coefficient at the
scale of observation is then compared with the two wavelet
coefficients at the next finer scale of observation, defined as the
dyadic interval, in which the wavelet coefficient at each finer scale of
observation is half the size of the coarser scale of observation. The
maximum wavelet coefficient of the dyadic interval is saved for that
specific dyadic interval. The observation of wavelet coefficients is
then shifted (shift in k), and determining the maximum wavelet
coefficient for each dyadic interval on that specific observation scale j
is repeated. Finally, each maximum wavelet coefficient for each
dyadic interval on that specific scale j is compared, in which the
maximum value of all maximum wavelet coefficients is taken as the
wavelet leader for that scale. Thus, there is one wavelet leader
neighborhood of observation, which is defined as

LX j, k( ) � maxλ′∈3λj,k〈ψj,k|X〉, (7)

where LX(j, k) is a matrix of each maximum wavelet coefficient, dX(j,
k), in the neighborhood of observation, λ′ ∈ 3λj,k.

The wavelet leaders are then related to the power law

SL q, 2j( ) � 1
nj

∑Nj

k�1
LX j, k( )q � Fq|2j|ζ q( ), (8)

where nj ≈ n/2j is the number of wavelet leaders at each scale j and
ζ(q) is the spectrum of q exponents where small values of q are
defined by the regular appearance of intermittent periods with little
variability, and large values of q are defined by the regular
appearance of intermittent periods with large variability. When
q = 2, ζ(q) behaves like α-DFA and defines the average fractal
behavior of the time series.

The Holder/singularity exponent, h, defined as the measure of
the time series’ regularity, detects the amount and time when
discontinuity occurs in a time series, and the dimension, D(h), is
then calculated by the Legendre transform of ζ(q).

h � dζ q( )
dq

, (9)
D h( ) � qh − ζ q( ) (10)

The relationship between h and D(h) defines the multifractal
spectrum, and the range of h defines the multifractal spectrum
width, W.

W � max h( ) −min h( ). (11)
To determine asymmetry in the multifractal spectrum, the
multifractal spectrum is separated into two lateral parts by the
maximum magnitude, h at max(Dh). Variation in the structure

FIGURE 4
Assessing multifractal spectrum width, W, and asymmetry in the
multifractal spectrum,WAsym of stride-to-stride variations. Multifractal
spectrum of stride interval time series was created by plotting the
singularity Dimension, D(h), as a function of the Holder/
singularity exponent, h. Themultifractal spectrumwidth is determined
as W = max(h) − min(h). Variation in shorter stride intervals was
determined as hRight = max(h) − h at max(Dh), whereas variation in
longer stride intervals was determined as hleft = h at max(Dh) −max(h).
WAsym was determined as WAsym = hLeft − hRight, with a positive WAsym

indicative of more variation in longer stride intervals, while a negative
WAsym indicative of more variation in shorter stride intervals.
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of shorter stride intervals is defined by max(h) − h at max(Dh),
denoted as hRight. Variation in the structure of longer stride intervals
is defined by h at max(Dh) −min(h), denoted by hLeft. Asymmetry in
the multifractal spectrum, WAsym, reflecting the variation of the
structure between shorter and longer stride intervals, is defined as

WAsym � hLeft − hRight, (12)
where a positive WAsym is indicative of more variation in longer
stride intervals, while a negative WAsym is indicative of more
variation in shorter stride intervals (Figure 4).

2.5 Statistical analysis

Although commonly used in most scientific literature, the
dichotomous interpretation of the frequentist p-value has been
criticized in recent years for theoretical, practical, and ethical
reasons (Dixon, 2003; Cumming, 2008; Wetzels et al., 2011;
Cohen, 2016; Wagenmakers et al., 2018b). Therefore, a Bayesian
analytical approach was used, which focuses on weighing evidence
in favor of both the null and alternative hypotheses. Four two-way
Bayesian repeated measure ANOVAs with default priors
(Wagenmakers et al., 2018a; Wagenmakers et al., 2018b) were
performed to investigate the effects of locomotion mode (walking
vs. running) and surface (treadmill vs. overground) on the temporal
structure of stride-to-stride variations: standard deviation, SD, the
measure of monofractality, α-DFA, estimated using the DFA, the
multifractal spectrum width, W, estimated using MFWL analysis,
and the multifractal spectrum width asymmetry, WAsym, estimated

using MFWL analysis. In the present study, objective Bayesian
ANOVAs with default Cauchy priors were implemented.

As one alternative to the p-value in the frequentist statistics,
the Bayesian approach employs and interprets the Bayes Factor
(BF10), defined as the ratio of the information in favor of the
alternative hypothesis compared to the null hypothesis or vice
versa. For example, a BF10 = 2 means the alternative hypothesis is
two times more likely than the null hypothesis. To interpret the
proceeding results, the following BF10 intervals are defined as the
strength of evidence in support of the alternative hypothesis: 1 <
BF10 < 3 represents anecdotal (i.e., weak or limited) evidence, 3 ≤
BF10 < 10 represents substantial evidence, 10 ≤ BF10 < 30
represents strong evidence, 30 ≤ BF10 < 100 represents very
strong evidence and 100 ≤ BF10 represents decisive evidence.
BF10 = 1 indicates no evidence in favor of either the null or
alternative hypothesis. Alternatively, the following BF10
intervals are defined as the strength of evidence in support of
the null hypothesis: 1/3 ≤ BF10 < 1 represents anecdotal
evidence, 1/10 ≤ BF10 < 1/3 represents substantial evidence,
1/30 ≤ BF10 < 1/10 represents strong evidence, 1/100 ≤ BF10 < 1/
30 represents very strong evidence, and BF10 < 1/100 represents
decisive evidence (Wetzels et al., 2011). An important qualifier is
that interpretive ranges are not meant to be absolute boundaries.
Treating BF10 as such reintroduces many of the same problems
associated with p-values. Post hoc tests investigated between-
trial differences in the SD, α-DFA,W, andWAsym. Posterior odds
were corrected for multiple comparisons (Westfall et al., 1997).
All statistical analyses were performed in JASP 0.18.1 (Love
et al., 2019).

FIGURE 5
Line graph depicting the effects of locomotionmode (walking vs.
running) and surface (treadmill vs. overground) on the standard
deviation, SD, of stride-to-stride variations. Light blue and light red
circles indicate SD values for individual participants in the
respective conditions. Vertical bars indicate 95% Credible Intervals
(N =8 participants).

FIGURE 6
The effects of locomotion mode (walking vs. running) and
surface (treadmill vs. overground) on the measure of monofractality,
α-DFA, in stride-to-stride variations. Light blue and light red circles
indicate α-DFA values for individual participants in the respective
conditions. Vertical bars indicate 95% Credible Intervals (N =8
participants).
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3 Results

Visual inspection indicated that the standard deviation, SD, of
stride-to-stride variations were greater for walking than for running
and for treadmill locomotion than for overground locomotion
(Figure 5). There was very strong evidence that walking
produced greater SD of stride-to-stride variations than did
running (BF10 = 69.515) and limited evidence that treadmill and
overground SD were, on average, nearly equivalent (BF10 = 0.491).
There was also anecdotal evidence suggesting no additional
locomotion mode × surface interaction effect concerning
influencing SD (BF10 = 0.581).

The values of the measure of monofractality, α-DFA, of stride-
to-stride variations were consistently larger than 0.50 across walking
and running, even approaching 1 for a few participants (Figure 6),
indicating strong persistence in stride-to-stride variations, both on
the treadmill and overground surface. There was substantial
evidence that α-DFA was higher when running compared to
walking (BF10 = 8.976) and weak evidence that overground
locomotion produced higher α-DFA (BF10 = 1.500) than
treadmill locomotion; however, those effects appear to be
modified by an interaction α-DFA (BF10 = 3.206) such that
differences in α-DFA between walking and running are most
evident during treadmill locomotion where α-DFA when walking
(BF10 = 5.22) appears lower than when running (BF10 = 3.28).

Visual inspection of Figure 7 suggests the locomotion mode and
surface may jointly influence the multifractal spectral width, W, of
stride-to-stride variations, which was greater for walking than for
running, with weak evidence supporting the presence of an
interaction effect, (BF10 = 2.428). Additionally, substantial

evidence indicated that walking produced greater W of stride-to-
stride variations (BF10 = 3.815) than running and that overground
locomotion produced greater W (BF10 = 1.359) than did treadmill
locomotion; however, due to the interaction, no further
interpretation is needed. Post hoc tests revealed that as expected
from Figure 7, there was substantial evidence that overground
walking produced greater W than did overground running
(BF10 = 3.16). In contrast, there was weak evidence that treadmill
running and walking produced comparable W (BF10 = 0.72).

Visual interpretation of Figure 8 is less clear than those depicting
other measures of stride-to-stride variations. Asymmetry in the
multifractal spectrum width, WAsym, of stride-to-stride variations
was mostly negative for walking (i.e., rightward skew in the
multifractal spectrum) and close to zero for running, and there is
some indication that walking produced greater WAsym than did
running. That trend implies more variability in the fractal structure
involving large fluctuations in stride intervals. In line with the visual
inspection, there is weak evidence that WAsym was greater while
running than when walking (BF10 = 1.458), as well as weak evidence
that treadmill and overground locomotion produced similar WAsym

(BF10 = 0.518). The evidence regarding the combined effect of
locomotion mode and surface on WAsym was inconclusive
(BF10 = 0.936).

4 Discussion

To investigate whether stride-to-stride variations are similarly
sensitive to various task constraints, we examined the effects of self-
paced walking vs. running and treadmill vs. overground locomotion
on standard deviation, SD, a measure of monofractality, α-DFA,

FIGURE 7
The effects of locomotion mode (walking vs. running) and
surface (treadmill vs. overground) on the multifractal spectrum width,
W, of stride-to-stride variations. Light blue and light red circles
indicate W values for individual participants in the respective
conditions. Vertical bars indicate 95% Credible Intervals (N = 8
participants).

FIGURE 8
The effects of locomotion mode (walking vs. running) and
surface (treadmill vs. overground) on the asymmetry in themultifractal
spectrum width, WAsym, of stride-to-stride variations. Light blue and
light red circles indicateWAsym values for individual participants in
the respective conditions. Vertical bars indicate 95% Credible Intervals
(N =8 participants).
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multifractal spectrum width, W, and asymmetry in the multifractal
spectrum,WAsym, of stride interval time series. The results supported
our hypothesis that monofractality and multifractality in stride-to-
stride variations provide different insights into the ability to
continually tune and adjust our movements during self-paced
walking and running. For instance, we found greater α-DFA
values for running than walking, possibly due to the greater
inertia in running. In contrast, we found greater W values for
walking than running, suggesting the greater ability to tune and
adjust movements during walking than during running. This latter
finding was strongly supported by the large SD in stride-to-stride
variations for walking compared to running. We also found a more
leftward skew in the multifractal spectrum encoded by more
negative WAsym for walking than running, indicative of more
variability in the fractal structure involving smaller fluctuations
in stride intervals. The multifractal spectrum for running was
mostly symmetric, most likely due to the relative absence of
shorter stride intervals.

The effects of the locomotion mode were observed to have an
interesting interaction with the locomotion surface. Specifically, our
study found that walking on a treadmill resulted in smaller α-DFA
values than walking overground, whereas walking overground was
associated with larger W values than walking on a treadmill.
Essentially, walking overground demonstrated greater persistence
in stride-to-stride variations, but this persistence also exhibited more
pronounced waxing and waning. This contrasts with the locomotion
mode, where lesser persistence during walking waxed and waned,
while greater persistence during running was relatively stable.
Hence, the interconnectivity between persistence and waxing/
waning tendencies for the locomotion surface underscores a
more nuanced perspective on how diverse task constraints can
affect various statistical aspects of stride-to-stride variations,
providing a window into the tuning and adjustments of movements.

Our study revealed that walking is noisier than running in terms
of stride-to-stride variations and has a higher standard deviation.
Specifically, we found that walking resembles white noise, while
running is closer to pink noise, indicating stronger temporal
correlations. Additionally, the multifractal spectrum, which
measures the variety in the fractality of the stride-to-stride
variations, supports this trend by showing greater variety in
fractality during walking but less during running. These findings
raise the question of why stronger temporal correlations in running
are associated with less variety in those correlations, while weaker
temporal correlations in walking are associated with more variety.
Our proposed explanation is that running allows less time for
consecutive strides, which limits the ability to make adjustments
compared to walking. This time constraint reduces the variability of
temporal correlations during running while allowing for a greater
ability to tune and adjust movements during walking. Further
research can be conducted to test this hypothesis. Overall, our
study sheds light on the differences in stride-to-stride variability
between walking and running and provides a basis for exploring the
underlying mechanisms of these variations.

Critically, embedding the single stride in the multiscaled structure
encoded by the multifractal spectrum provides an interesting
perspective regarding interpretation based on the optimal movement
variability hypothesis. The optimal movement variability hypothesis
posits that healthy adults exhibit stride-to-stride variations that balance

stability and flexibility, enabling them to adapt to the demands of the
task and environment (Stergiou et al., 2006; Stergiou and Decker, 2011;
Harrison and Stergiou, 2015). Accordingly, healthy individuals persist
in stride-to-stride variations, whereby shorter strides tend to follow
shorter strides, and longer strides tend to follow longer ones. Previous
research has consistently reported such persistence across walking and
running tasks (Hausdorff et al., 1996; Hausdorff et al., 2001a; Jordan
et al., 2006; Bollens et al., 2010; Fairley et al., 2010; Terrier and Dériaz,
2011; Lindsay et al., 2014; Mo and Chow, 2019). Similarly, we observed
an 0.5 < α-DFA < 1.0, indicative of persistence in stride-to-stride
variations during self-paced walking and running on the treadmill and
overground surfaces. However, our study reveals that persistence is not
a static trait but a variable subject to additional constraints (walking
produced a wider multifractal spectrum, i.e., greater W, of stride-to-
stride variations than running, and overground locomotion produced a
wider multifractal spectrum, i.e., greaterW, than treadmill locomotion).
Specifically, stride-to-stride patterns can demonstrate less persistence,
which may be transient (e.g., smaller α-DFA but largerW for running).
Conversely, stride-to-stride variations can exhibit greater persistence,
but the persistencemay bemore or less variable (e.g., greater α-DFA but
smaller W for running). Therefore, these findings add a more detailed
and nuanced understanding of movement patterns to monofractal
formalism. In contrast to monofractal formalism, which provides a
reference range to distinguish between healthy and unhealthy
variability, multifractal formalisms offer measures of variability that
provide a more detailed and nuanced understanding of movement
patterns. Therefore, the present study suggests that multifractal
formalisms may enable a more comprehensive analysis of the
underlying processes governing movement variability, which could
have significant implications for clinical applications, athletic
performance, and theoretical arguments about optimal forms of
movement.

However, it is important to acknowledge several limitations in
our study. Firstly, the overground walking and running trials were
conducted on a looping track with constant and regular turns, in
contrast to the straight-line locomotion on the treadmill. At the
same time, one might argue that turning requires more intricate
movement tuning and adjustments; we did not observe significantly
larger asymmetry in the multifractal spectrum for overground
locomotion than treadmill locomotion. Therefore, this factor is
unlikely to influence our results and their interpretations
substantially. Secondly, our study has a narrow focus on stride-
to-stride variations. A more comprehensive understanding of the
specific movement adjustments made during running, as compared
to walking, as we have suggested, would benefit from a deeper
analysis of full-body kinematics and the intricate musculoskeletal
adjustments required to accommodate the stride-to-stride
adaptations. In conclusion, while our study has certain
limitations, particularly regarding the track layout and the
exclusive emphasis on stride-to-stride variations, these findings
provide valuable insights into the multifaceted dynamics of
locomotion.

The clinical implications of our findings are noteworthy. Aging
and pathological populations have been shown to exhibit a loss of
monofractality in stride-to-stride variations (Hausdorff et al., 1997;
Hausdorff et al., 2001a; Kobsar et al., 2014), which is closely
associated with increased fall risk (Hausdorff et al., 2001b;
Hausdorff, 2007; Paterson et al., 2011; Toebes et al., 2012;
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Johansson et al., 2016). This phenomenon has been well-
documented in older adults and individuals with neurological
diseases such as Parkinson’s. Furthermore, individuals with
neurological diseases, particularly Parkinson’s, have demonstrated
diminished multifractality in their stride-to-stride variations during
walking (Dutta et al., 2013; Dutta et al., 2016). The multifractal
spectral characteristics of stride-to-stride variations in walking and
running provide a valuable means of assessing an individual’s
capacity for movement tuning and adjustments. Consequently,
these descriptors have the potential to serve as quantitative tools
for evaluating the effectiveness of rehabilitative interventions aimed
at restoring natural stride-to-stride variations in older adults and
clinical populations with gait disorders. Our results offer a
promising avenue for clinicians and researchers to refine their
approaches and track improvements in gait dynamics, ultimately
enhancing the quality of care and intervention strategies for
individuals at risk of falls or affected by neurological conditions.

The present study is the first to compare monofractal and
multifractal measures of stride-to-stride variations between
walking and running on the treadmill and overground surfaces.
Therefore, no published results contrast the present findings. While
the current results indicate that self-imposed constraints (walking
vs. running) critically influence the temporal structure of stride-to-
stride variations in terms of its multifractality, the effects of
externally imposed constraints are only subtly apparent
(treadmill vs. overground). Future research could include
multiple overground environments to determine differences or
lack thereof, compared to a treadmill environment to understand
better how externally imposed constraints on the multifractality in
stride-to-stride variations and what it entails in terms of balance for
individuals with different life histories (e.g., young vs. old, healthy vs.
diseased). The outcomes of the present and future studies will help
identify the precise nature of the loss or change of variability in
stride-to-stride variations in older adults and pathological
populations in future experiments and to implement a more
effective rehabilitation intervention based on the principles of the
optimal movement variability hypothesis (e.g., exercises that
selectively alter the statistics of shorter vs. longer strides).
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