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Abstract

Walking exhibits stride-to-stride variations. Given ongoing perturbations, these variations

critically support continuous adaptations between the goal-directed organism and its sur-

roundings. Here, we report that stride-to-stride variations during self-paced overground

walking show cascade-like intermittency—stride intervals become uneven because stride

intervals of different sizes interact and do not simply balance each other. Moreover, even

when synchronizing footfalls with visual cues with variable timing of presentation, asyn-

chrony in the timings of the cue and footfall shows cascade-like intermittency. This evidence

conflicts with theories about the sensorimotor control of walking, according to which internal

predictive models correct asynchrony in the timings of the cue and footfall from one stride to

the next on crossing thresholds leading to the risk of falling. Hence, models of the sensori-

motor control of walking must account for stride-to-stride variations beyond the constraints

of threshold-dependent predictive internal models.

Introduction

Human movement performance requires a subtle mixture of stability and adaptability. As the

best musicians and athletes know, each performance depends on building solid foundations

through repeated practice and an ongoing openness to new and often unforeseen perturba-

tions. Even the most rigorous, repetitive training must allow the body to navigate unplanned

perturbations and then to fold the inevitable deviations into a continuing trajectory toward

task completion. Perfect replication is almost impossible, even with a lifetime of practice. More

importantly, given the uncertainty of context, perfect replication might even be unwelcome, as

it might hamper expert performance. Instead, expert performance might often exploit variabil-

ity to continually tune movements and fit the situation. In this sense, variability is not an

PLOS ONE

PLOS ONE | https://doi.org/10.1371/journal.pone.0290324 August 24, 2023 1 / 35

a1111111111

a1111111111

a1111111111

a1111111111

a1111111111

OPEN ACCESS

Citation: Mangalam M, Kelty-Stephen DG,

Sommerfeld JH, Stergiou N, Likens AD (2023)

Temporal organization of stride-to-stride variations

contradicts predictive models for sensorimotor

control of footfalls during walking. PLoS ONE

18(8): e0290324. https://doi.org/10.1371/journal.

pone.0290324

Editor: Andrea Tigrini, Polytechnic University of

Marche: Universita Politecnica delle Marche, ITALY

Received: May 11, 2023

Accepted: August 4, 2023

Published: August 24, 2023

Peer Review History: PLOS recognizes the

benefits of transparency in the peer review

process; therefore, we enable the publication of

all of the content of peer review and author

responses alongside final, published articles. The

editorial history of this article is available here:

https://doi.org/10.1371/journal.pone.0290324

Copyright: © 2023 Mangalam et al. This is an open

access article distributed under the terms of the

Creative Commons Attribution License, which

permits unrestricted use, distribution, and

reproduction in any medium, provided the original

author and source are credited.

Data Availability Statement: All relevant data are

within the manuscript and its Supporting

information files.

https://orcid.org/0000-0001-6369-0414
https://orcid.org/0000-0001-7332-8486
https://orcid.org/0000-0002-4972-0872
https://doi.org/10.1371/journal.pone.0290324
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0290324&domain=pdf&date_stamp=2023-08-24
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0290324&domain=pdf&date_stamp=2023-08-24
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0290324&domain=pdf&date_stamp=2023-08-24
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0290324&domain=pdf&date_stamp=2023-08-24
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0290324&domain=pdf&date_stamp=2023-08-24
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0290324&domain=pdf&date_stamp=2023-08-24
https://doi.org/10.1371/journal.pone.0290324
https://doi.org/10.1371/journal.pone.0290324
https://doi.org/10.1371/journal.pone.0290324
http://creativecommons.org/licenses/by/4.0/


obstacle to stability but instead complementary support ensuring an ongoing adaptive fit

between the organism and the environment [1–5].

Walking is a flagship example of how stability and adaptability complement each other. At

first glance, walking appears strictly periodic, with an inverse pendulum of the upper body

wielding two pendular legs below it, in antiphase. Indeed, periodic models of walking can

explain a significant proportion of the stride-to-stride variations characteristic of walking [6–

8]. These models decompose gait into a linear combination of independent oscillators whose

contributions add together with minimal interactive interference. Of course, we expect all

good models to have residuals because variability may exceed the modeled stability. However,

standard practice assumes the “ergodicity” of the proposed components and their combined

action. Consequently, these pendular dynamics among separable parts amount to an expecta-

tion that residuals will be uncorrelated, allowing the average trajectory to be representative

across time and individuals.

Ergodicity pertains to the degree of representativeness in our summary descriptions of the

behaviors we are interested in, across various sampling methods. A system is ergodic when the

average of one individual exemplar of the system across time resembles the average for a sam-

ple of exemplars (Fig 1, top left). Ergodicity is not plain stationarity, here meant to imply a

constant mean (M), and standard deviation (SD) over time. While both ergodicity and statio-

narity imply the stability of M and SD, unlike stationarity, ergodicity is directly concerned

with the representative relationship between the individual case and the larger sample. Hence,

a system can be stationary—that is, its M and SD remain stable over time—yet break ergodicity

(Fig 1, top right). Conversely, a non-stationary system will necessarily break ergodicity (Fig 1,

bottom). In gait, ergodicity amounts to the resemblance between individual strides and a time

average of strides. Even stationary processes can fail to be ergodic [9–13]. Notably, while statio-

narity presumes the M and SD of stride intervals remain the same across many strides, ergo-

dicity presumes any single stride is comparable to any other stride or predictable from any

average.

Ergodicity as a foundation for predictive models of gait control

Ergodicity and its failure become essential for predictive-model-based explanations of gait

because the representativeness of a gait cycle or stride lies at the heart of all predictive models

for sensorimotor control. One or more variants of these models are often referred to as inter-

nal models, forward models, internal forward models, or corollary inverse models [14–20].

Models, in general, formalize a process in bare forms that capture the fundamental, most reli-

able essence of the unfolding dynamics (e.g., the “template”), while the details of the movement

can vary based on the walking environment (i.e., “anchor” [21]). Besides all quibbling over any

internal agent or observer for whom a model “re-presents” information, modern explanations

of gait rely on the premise of a representative, basic template for the control of gait. Whether

written in terms of dynamics, kinematics, or task [22–24], the representativeness of this model

is the foundation for any model supporting predictive control. The so-called noisiness of

neurophysiology and its capacity for clogging the movement systems with delays in informa-

tion transfer has been relentlessly cited as justifications for predictive models for sensorimotor

control [14–20]. To be clear, we do not wish to say that the ergodicity of the gait dynamics and

predictive control of gait are equivalent. We wish to assert that ergodicity is essentially a

requirement of predictive control: prediction requires representativity, and representativity is

not available if the more profound constraint of ergodicity fails to hold.

Control by predictive models respects a similar principle; let the pendular dynamics of the

legs unfold undisturbed until deviation requires correction. The similarity of Newtonian

PLOS ONE Temporal organization of stride-to-stride variations contradicts predictive models of walking

PLOS ONE | https://doi.org/10.1371/journal.pone.0290324 August 24, 2023 2 / 35

Funding: This work was supported by the Center

for Research in Human Movement Variability at the

University of Nebraska at Omaha, funded by the

NIH award P20GM109090. The funders had no

role in study design, data collection and analysis,

decision to publish, or preparation of the

manuscript.

Competing interests: The authors have declared

that no competing interests exist.

https://doi.org/10.1371/journal.pone.0290324


physics across all terrains allows all templates to assume similar rules for the harmonic oscilla-

tors enlisted for locomotion. Deviations require correction, but only those sufficient in magni-

tude to exceed some predetermined threshold. Predictive models contain certain limits,

known as thresholds, which signify the maximum safe variation from the predicted outcome.

Fig 1. Illustration of ergodic and nonergodic processes. Tossing a fair coin multiple times in a sequence is an ergodic process (top
left). In this case, the ensemble average across multiple coin-toss trajectories (red vertical patch) is equivalent to the time average for

each and every single trajectory of coin toss (green horizontal patch). A first-order autoregressive process is also ergodic after a few

initial points in the time series top right. In this case as well, the ensemble average across multiple trajectories (red vertical patch) is

equivalent to the time average for each and every single trajectory (green horizontal patch). In contrast, higher-order autogressive

processes break ergodicity (bottom). In this example, a marble is taken out from a pot containing red and green marbles and an

additional marble of the same color is added. Consequently, the probability of drawing a green ball diverges based on the initial few

moves. In this case, the ensemble average across multiple trajectories (red vertical patch) differs from the time average for each and

every single trajectory (green horizontal patch).

https://doi.org/10.1371/journal.pone.0290324.g001
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If the movement or change in a certain parameter exceeds these thresholds, then the risk of

falling significantly increases. Essentially, these thresholds act as a safety measure, preventing

any drastic or potentially dangerous deviations from the expected results. Predictive models

are expressions of probabilities, and the thresholds are implicit statements about the likelihood

of a fall. Below thresholds, movements are free to vary and thought to reflect the sum of many

independent random sources of variance. Above the thresholds, movements are corrective

interventions meant to reverse excessive deviation. Hence, the typical predictive model reflects

a constrained form of variation. More technically, this theorizing often invokes control by a

predictive model that blends expectations of uncorrelated additive white Gaussian noise

(awGn) combined with short-lag, negatively autocorrelated corrections [14, 20].

The precise blending of uncorrelated awGn with negative short-lag autocorrelation is funda-

mental to information-processing views of movement coordination in general [25, 26]. Predic-

tive modeling has now become an essential component of several theories related to movement

coordination. This is because sensory input and corrections are processed through the neural

structure that is characterized by noisy, lagging transmissions. In other words, predictive model-

ing allows modeling movement coordination despite these limitations in neural processing [27,

28]. Furthermore, confidence in the representativeness of the gait cycle goes hand in hand with

the overall confidence that neuronal activity might be equally ergodic, equally representative

from one action potential to another, and so delivering the same laggy, noisy contribution in all

cases. Certainly, the evidence from nervous systems at rest is that neuronal dynamics are ergodic

[29]. Fundamentally, the ergodicity required of the predictive model at the longer timescale of

the task, is equally required at shorter timescales of single neuronal spikes.

Challenges to explanation by predictive models accrue from multiple sources. For instance,

when locomotion begins, the neural events associated with footfalls are neither independent

nor predictable [29], implying broken ergodicity [30–36]. Moreover, stride-to-stride variations

are also not awGn but are more consistent with fractional Gaussian noise (fGn; awGn is a spe-

cial case of fGn which lacks any temporal correlations) [37–39]. Of course, fGn can result from

models that incorporate inertial tendencies into independent random sources of variance [40–

44], and that could make predictive modeling more feasible (although see [45, 46]). However,

despite attempts to generate a predictive model that would produce fGn in stride-to-stride var-

iations (e.g., [6]), these attempts ignore two critical points. First, ergodicity breaks progres-

sively as temporal correlations increase [9–11, 13]. This effect would make any average

estimate (e.g., of prior performance over short or long time scales) progressively more unsta-

ble. This destabilization of average estimates would render such models less capable of project-

ing reliable predictions of fall risk, thus loosening their predictive grip on the actual behavior.

Second, analysis of movement variations in numerous tasks suggests that evidence of fGn-like

monofractality is only the tip of an iceberg, with multifractality—time varying fractal proper-

ties—playing a much larger role than previously thought [47, 48].

In order to deploy predictive models for gait, one must consider the various forms of

unpredictable deviation from the mean. For instance, the awGn model involves deviations that

converge on a mean, requiring minimal vigilance under the risk thresholds. On the other

hand, the fGn model reflects a standard deviation that can grow at a rate faster than predicted

by the central limit theorem. The term “monofractal” is used to describe a statistical scenario

where a given time series can follow only one power-law exponent H for the growth of stan-

dard deviation, and where the exponent H may have a fractional value. However, analyses

reveal that gait is actually multifractal, exhibiting multiple power-law exponents for the growth

of standard deviation across various timescales and deviation sizes [49–57]. Consequently, pre-

dictive models that assume a monofractal scaling estimate of strides in gait (e.g., [6]) tend to

systematically underestimate the actual multifractality of stride-to-stride variations.
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Worse yet for predictive models, multifractal fluctuations suggest that a predictive model

can not simply focus on one step at a time. Multifractal fluctuations arise from an interdepen-

dence across scales [47, 58, 59], emphasizing the risk of stride-to-stride variations breaking

ergodicity [60–62]. The seemingly pendular regularity of gait could make this point feel

strange. However, gait might break ergodicity but only weakly and not so strongly as to upset

upright posture. Indeed, ergodicity breaking may be less of a dichotomy than previously imag-

ined and offer more of a continuum. Biological functions are widely known to exhibit weak

ergodicity breaking [63]. And we might see this weak ergodicity breaking through the lens of

comparably weakened evidence of multifractality. Gait comprises strides whose series unfold

across time with a statistical profile that nearly matches the conditions of fGn, for which esti-

matable power-law exponents are fewer, suggesting a less multifractal structure. The relatively

narrower range of fractal exponents relating standard deviation to timescale in the gait stride

time series supports an expectation that stride-to-stride variations produce weak ergodicity.

Ergodicity breaking may be weak enough to invite predictive models, but it may be persistent

enough to frustrate us with the ultimate unpredictability of individual strides.

As we have said, prediction needs ergodicity: predicting the next stride requires an uncorre-

lated, ergodic structure among strides. The empirical evidence—fractal and multifractal alike

—of nonergodicity in stride-to-stride variations poses severe challenges for predictive models.

First, monofractal or multifractal strains of nonergodicity will thwart a predictive model

expecting uncorrelated deviations and entailing a negative response to superthreshold devia-

tions. The premise for internal predictive models proposed to control gait is that deviations

are uncorrelated in time and require only a corrective response to superthreshold deviations.

This premise fails to hold in the empirical record of the stride-to-stride variations. Second,

fractality in the stride-to-stride variations suggest that the deviations follow from long-past

events in the fractal case. Likewise, multifractality in the stride-to-stride variations suggest that

the deviations follow the interactions of events over multiple scales of the past in the multifrac-

tal case. Hence, we might enforce control as a negative short-lag autocorrelation to correct

recent events above a risk threshold in predictive models. But this control will not address

deviations from a longer-range fractal or multifractal process. Negative short-lag autocorrela-

tions inherent to predictive models expecting uncorrelated strides provides an inadequate

solution to deviations that unfold across scales.

We acknowledge the anticipatory aspect of movement coordination but doubt the necessity

or feasibility of internal predictive models. We might have found explanations of prospective,

anticipatory control of gait—and movement more generally—on a different foundation. The

plain and simple fact is that our body shows a remarkable capacity to look forward in steering

locomotion and adjusting to upcoming perturbations and threats to stability [64–70]. Some of

the earliest investigations of behavioral synchrony with isochronous auditory cues found the

mean synchronization error—asynchrony—was negative, indicating that participants do not

simply react to the cue but tap before the cue onset [71]. Negative mean asynchrony has only

continued to provide critical evidence for the predictive modeling: it can seem like we predict

because we can respond before the cue—in gait [72–82] but also in movement more generally

[83–85]. According to many of these accounts, maintaining synchrony requires prediction

because of differences in sensory delays between receiving sensory feedback from tapping or

stepping and sensory stimulation by the cue [72, 73, 86]. However, is anticipation necessarily

from predictive modeling? The potential fragility of ergodicity at the neural, motoric, and task

performance levels puts unforgiving constraints on this possibility. Denying anticipatory

movement coordination seems as counter-productive as proposing internal predictive models

could somehow do the mathematically impossible and predict an ergodic process in the raw

measurements.
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Ergodicity as a foundation for linearization-based models of gait control,

with or without prediction

Then again, the science of gait control is already well versed in the challenges of prediction and

has wisely responded to these challenges with advanced modeling of gait control that depends

less on the maybe-not-representable history and more on each current gait cycle [87, 88]. It

might seem at first glance that our concern for ergodicity leaves these modeling strategies free

from critique so long as they relax the requirement of prediction. However, we restate: that

ergodicity is not the whole of prediction but is instead a broader concern that would be

required to support prediction. Ergodicity extends beyond prediction, though, and is more

generally the support for all models of gait that operate by linearization of the measured pro-

cess. These relatively prediction-agnostic modeling strategies lean sooner on the parameter

dynamics and have arrived at evolutionary optimal settings that distinguish stable from unsta-

ble manifolds to avoid the representativity of state dynamics [88]. Moreover, rather than leav-

ing control mechanisms contingent on crossing state-dependent thresholds, the control

mechanisms can be contingent on the contours of these distinct manifolds. This position is

strategic because it attempts to invest its confidence not in the ergodicity of short-term behav-

ior but in the ergodicity of a longer-term evolutionary path.

Nevertheless, we suspect that the ergodic requirements of this mode of control which is

manifold-driven and is agnostic to prediction are no less firm, and we can identify at least

three points where ergodicity breaking would pose challenges for even such prediction-lean

modeling. First, the background commitment to the proposed evolutionary optimum runs

aground recent theorizing that suggests the evolutionary record exhibits sufficient discontinu-

ity, divergence, and emergence to thwart ergodic characterization (e.g., [89, 90]). Modern

appeals to ergodicity in neurobiology within the organism lifespan report an expectation only

of “local” ergodicity (e.g., [91])—an expectation that does not meet with extensive empirical

support across the developmental trajectory [92]. On evolutionary time, the appeal to physical

constraints of biological tissue and genetic coding can make an ergodic time scale available to

empirical and theoretical work provided the domain is finite and discretely countable (e.g.,

genetic exploration involving a discrete alphabet of nucleotides and amino acids) [93]. When

we consider the influence of ecological changes in the coevolutionary process, the present

manifestations of ergodicity within stationary states along the evolutionary trajectory seem to

obscure a dynamic internal structure of fluctuations. This concealed complexity is primed to

unleash the next major advancement or catastrophe, intertwined with a cascade of interdepen-

dent factors (e.g., [94]). As a result, contemporary theories of evolutionary optimization strive

to acknowledge the necessity of multiple potential wells with intricately patterned boundaries.

In this scenario, achieving ergodicity necessitates embracing the existence of multiple possibili-

ties, thereby negating any straightforward notion of ergodicity in its core essence. The evolu-

tionary perspective thus can manage ergodic description at the cost of requiring Ptolemaic

epicycles to describe nonergodic Keplerian truths [90]. At each point, at each time scale, there

is a perpetual deferring of the ergodicity to a narrower view, for example, so that we may have

ergodicity to suit at least the modeling frame under consideration but not ergodicity at all

scales. Ultimately, the expectation of ergodicity in biological evolution appears sooner to be a

convenience assumed without thorough empirical confirmation and without much empirical

grounds for presuming it beyond the empirical record [95].

Indeed, for present purposes, the physical constraints of gait are explicit for modern

humans and current ecological constraints. So the preceding caution about ergodicity breaking

thwarting evolutionary optimality could be moot. Indeed, evolutionary optima are not fixed

points but expressions of adaptivity, and we understand that the manifold-themed modeling
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makes explicit room for the contextual variations that complicate the preceding issue of evolu-

tionary optima. However, our second and third subsequent points remain, hinging on the fact

that, even without explicit predictive mechanisms, the prediction-agnostic modeling strategies

appealing to stable vs. unstable manifolds still operate upon the empirical gait dynamics. Our

second point that parsing a system’s phase space trajectory into stable vs. unstable manifolds

rests on the ergodicity of the underlying measure [96]. Furthermore, this ergodic measure

must be smooth everywhere for stable- vs. unstable-manifold modeling. The multifractal fluc-

tuations regularly found in strides or asynchronies with metronome onsets [47, 49–57, 97]

would not be sufficiently differentiable to qualify as smooth [98].

Our third and last point is that if the current stable- vs. unstable-manifold modeling is

indistinguishable from uncontrolled manifold modeling (UCM; [99]), then it is concerning

for ergodicity considerations that UCM is a linearization using the Jacobian matrix. Indeed,

the Jacobian matrix makes the exact requirement of smoothness and bidirectional differentia-

bility, as highlighted in our second point. However, the explicit recognition of equivalence

among linearization strategies reaches a profound point about ergodicity. Linearization

depends on a decomposition into separate constituent components whose independence is the

reason they may be summed up to produce their model predictions [48, 92, 100]. Some inde-

pendent parameters might be nonlinear, for example, harmonic, polynomial, or exponential,

but general linear modeling refers to that broad class of strategies in which stable parameters

sum together to produce the outcome [101]. Ergodicity is required to ensure that a sum will

remain the same across space or time; the invariance of the summation is what allows us to

generalize from one ensemble of linear models to a single linear process of the same form. It is

ergodicity that allows us to generalize from an ensemble of trajectories along the uncontrolled

manifold and guarantee successful task completion for an individual trajectory following the

average of that ensemble. No matter whether gait control predicts, linearization is a neat com-

promise that presumes to bargain with the fundamental nonergodicity of perceiving acting

systems. By assuming ergodicity where we cannot, this bargain surrenders any capacity we

might have—as scientists—to predict over any but the shortest time scales. The sun is setting

on the general linear model of nonergodic processes, and the alternatives warrant cogent

consideration.

In summary, whether they involve explicit prediction, models that encode behavioral pro-

cesses using linearization depend on ergodicity. We have only called specific attention to pre-

dictive models because they appeal to cognitive-psychological processes of anticipation.

Anticipation is a power typically not attributed to physical systems—or at least not to the New-

tonian mechanics attributed to gait. The physical constraints implicit in presumed evolution-

ary optima [88, 93] may soften the requirement for any psychological powers of anticipation.

Nevertheless, we are attempting to open the discourse for introducing a chaotic sort of physics

that does support anticipatory synchronization without a biological-evolutionary premise

[102]. These more chaotic physical constraints afford higher-dimensional elaborations whose

nonlinearity may thwart linearization and suggest a cascade-like mechanism affording nonlin-

ear interactions across time scales that would break ergodicity and support anticipation. Thus,

we might embody gait that both breaks ergodicity and has a route to anticipation. The ergodic-

ity breaking would only reduce the applicability of gait control resting on linearization.

Beyond ergodicity: Cascade-dynamical routes forward to anticipatory gait

control

Fortunately, alternative proposals exist that embrace the so-called noisiness of neurophysiol-

ogy and its incident delays in information transfer [103]. Exclusive foundation on predictive
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models would make anticipation “weak” in the sense of being prone to limitations of a predic-

tive model. Models of so-called “strong” anticipation have eschewed predictive models in

favor of foundations in long-range, multi-scaled coupling amongst random fluctuations that

could support more adaptive behavior [104–107]. Perceiving-acting organisms may use none-

rgodic support instead of predictive models. We see great promise in recent attempts to estab-

lish control systems on stochastic foundations [108–110]. Not all stochastic foundations will

naturally do: awGn will not generate adaptive corrections to superthreshold deviations. But

fractal and multifractal deviations may carry within themselves a solution to the problem of

superthreshold deviations. Their long-range correlations are not simply a statistical novelty:

they reflect a movement system rich in potentially cascade-like nonlinear interactions across

timescales. Cross-scale interactions may support model-free anticipation more robust to ergo-

dicity breaking [111]. In particular, those cascade-like processes generate multifractal nonline-

arities missing in their corresponding surrogates [112, 113]. Surrogates are synthetic time

series with an identical linear temporal structure to the original, but they are missing any of

the nonlinearities present in the original time series. Importantly, such a multifractal nonline-

arity supports dexterous movement coordination across time, even under unpredictable cir-

cumstances [1, 106, 114–117].

When we remove or diminish the capacity to predict subsequent strides, perceiving-acting

organisms appear to respond to nonergodic and unpredictable environmental cues with none-

rgodic variations in their behavior [118–120]. They even tune the multifractality of movement

variations to the multifractality of unpredictable contextual circumstances in other motor con-

texts [105, 106, 115]. It could be that the negative mean asynchrony we, as scientists, identify

as anticipation in the locomoting perceiving-acting organism rests on a longer-term substrate

of gait fluctuations that carry fractal and multifractal profiles. The anticipatory behavior we see

and sometimes interpret as prediction may not be predictable and ergodic. However, it is pos-

sible that the interactions across timescales implicated in cascade dynamics could shepherd the

short-term dynamics of each step through the longer-term undulations of variation as partici-

pant attention and engagement waxes and wanes across the temporal extent of the task. How-

ever, negative mean asynchrony might depend on the long-range—specifically multifractal—

structure of nonergodic stride-to-stride variations.

Walking exhibits stride-to-stride variations. Given ongoing perturbations, these variations

critically support continuous adaptations between the goal-directed organism and its sur-

roundings. Here, we report that stride-to-stride variations during self-paced overground walk-

ing show cascade-like intermittency—stride intervals become uneven because stride intervals

of different sizes interact across time and do not simply cancel each other out. Moreover, even

when synchronizing footfalls with visual cues with variable presentation timing, we report that

asynchronies between visual cues and footfalls show cascade-like intermittency. This evidence

conflicts directly with theories about the sensorimotor control of walking, according to which

internal predictive models correct asynchrony between cue and footfall only from one stride to

the next on crossing thresholds leading to the risk of falling. Hence, models of the sensorimo-

tor control of walking must account for stride-to-stride variations beyond the constraints of

threshold-dependent predictive internal models.

We tested the above ideas in an experimental study of cued walking using visual cues with

various temporal structures in healthy adults. Our experimental design allowed us to directly

examine whether the temporal organization of stride-to-stride variations during overground

walking contradicts the predictive models for sensorimotor control. We put forward the fol-

lowing hypotheses. First, we predicted that stride-to-stride variations would be nonergodic,

especially in the unperturbed case of self-pacing; that is, individual stride intervals will not

resemble the average of stride intervals over the long run (Hypothesis 1a). As participants
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coordinated with cues bearing more of the nonergodic temporal structure (e.g., pink noise),

we expected ergodicity breaking in stride interval time series (Hypothesis 1b) and in the time

series of asynchronies between visual cues and footfalls (Hypothesis 1c). We also expected the

extent of ergodicity breaking in both time series to depend on the extent of ergodicity breaking

in the visual cues (Hypothesis 1d). Second, we predicted that the time series of stride intervals

and asynchronies between visual cues and footfalls would be fractal (Hypothesis 2a) and multi-

fractal (Hypothesis 2b) rather than identically distributed, randomized or independently

sequenced noise with the same values and probability distribution. Third, we predicted that

the multifractal nonlinearity in asynchronies between visual cues and footfalls would correlate

with the negative mean asynchrony comparing footfalls to cues (Hypothesis 3).

Results

This study involved ten participants completing five walking trials on a 200-meter indoor

track (Fig 2). The first trial was self-paced walking (SPW). The next four required synchroniz-

ing footfalls with visual cues displayed on a small video screen mounted on eyeglass frames as

an oscillating horizontal bar. Footswitch sensors detected heel-strike events. Bar-oscillation

timing in the four trials was manipulated using different pacing signals, including pink noise

pacing signal (PPS), shuffled pink noise pacing signal (SPPS), Gaussian distributed random

pacing signal (GRPS), and uniformly distributed random pacing signal (URPS; Fig 3, top). In

all four paced-walking conditions, the average and standard deviation of the timing of the

Fig 2. Experimental setup. Participants completed five overground walking trials on a 200 m indoor track. The first

trial was self-paced walking (SPW). The next four trials required participants to time their right heel strikes with

oscillations of a horizontal bar presented on a mini HDMI video screen mounted on eyeglass frames. Footswitch

sensors placed under both heels identified heel-strike events. The timing of the oscillations in these four trials varied

according to four signals: pink noise pacing signal (PPS), shuffled pink noise pacing signal (SPPS), Gaussian

distributed random pacing signal (GRPS), and uniformly distributed random pacing signal (URPS). The order of the

four paced-walking trials was randomized for each participant.

https://doi.org/10.1371/journal.pone.0290324.g002
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visual cues were adjusted to match each participant’s average and standard deviation of stride-

to-stride intervals recorded during SPW. Each trial resulted in three-time series of approxi-

mately 600 strides—namely the time series of (i) cues, (ii) footfalls, and (iii) asynchronies

between visual cues and footfalls.

Paced walking yielded negative mean asynchrony between visual cues and

footfalls

Despite the homogeneity of variance in the pacing signals (URPS; Fig 3, top), paced walking

resulted in greater heterogeneity in stride-to-stride variations, as illustrated by stride intervals

(URPS; Fig 3, middle) and asynchronies between visual cues and footfalls (URPS; Fig 3, bot-
tom). Despite the stride-to-stride heterogeneity, participants successfully synchronized their

footfalls with the visual cues. Across all pacing signals, participants timed their footfalls in

anticipation of visual cues instead of the actual cueing events. Notably, we observed negative

mean asynchrony, irrespective of the pink noise pacing signal’s deterministic yet unpredictable

temporal structure. Mean asynchrony did not differ across the four paced-walking conditions

(B ± SE = 0.0078 ± 0.0054, t38 = 1.4576, P = 0.15318, 95%CI = [−0.0030, 0.0187]), showing no

significant differences in negative value (Ms ± SDs = −150 ± 50 ms, −143 ± 49 ms, −141 ± 60

ms, and −200 ± 59 ms for PPS, SPPS, GRPS, and URPS, respectively). Hence, negative mean

asynchrony is not simply typical of coordination with isochronous cues [71–73, 76–79, 82] but

may extend to coordination with temporally unpredictable cues.

Fig 3. Paced walking yielded negative mean asynchrony between visual cues and footfalls irrespective of the temporal structure of cue intervals.

Time series and probability distributions of cue intervals (top), stride intervals (middle), and asynchrony in the timings of visual cues and footfalls

(bottom) for a representative participant. Despite the deterministic temporal structure of the pink noise pacing signal (PPS) and nondeterministic or

random structure of the shuffled pink noise pacing signal (SPPS), Gaussian distributed random pacing signal (GRPS), and uniformly distributed

random pacing signal (URPS), mean asynchrony in the timings of visual cues and footfalls was always negative.

https://doi.org/10.1371/journal.pone.0290324.g003
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Asynchronies between visual cues and footfalls broke ergodicity We quantified the ergodic-

ity of each time series of cue intervals, stride intervals, and asynchronies between visual cues

and footfalls using a dimensionless statistic of ergodicity breaking EB, known as the Thiruma-

lai-Mountain metric [121, 122]. EB is an inverse metric of ergodicity, reflecting how the long-

range persistence failure of variance to converge, in effect, undermines (or “breaks”) the repre-

sentativity of a sample, thereby undermining ergodicity. This EB statistic subtracts the squared

total-sample variance, hd
2
ðxðtÞÞi2, from the average squared subsample variance, h½d

2
ðxðtÞÞ�2i,

and divides the resultant by the squared total-sample variance, hd
2
ðxðtÞÞi2:

EBðxðtÞÞ ¼ h½d2ðxðtÞÞ�2i� hd2ðxðtÞÞi2

hd2ðxðtÞÞi2
; where δ2(x(t)) is sample-to-sample variance and this relationship

is effectively the variance of the sample variance divided by the squared total-sample variance.

As noted above, EB is inversely related to ergodicity. Ergodicity is evident as rapid decay of EB
to 0 for progressively larger samples, that is, EB! 0 as t!1. For instance, for Brownian

motion EBðxðtÞÞÞ ¼ 4

3

D

t , where Δ is the time lag [123, 124] (also see [125]). Slower decay indi-

cates less ergodic systems in which trajectories are less reproducible. No decay or convergence

to a finite asymptotic value indicates strong ergodicity breaking [9]. Thus, EB-vs.-t curves

allow testing whether a given time series fulfills or breaks ergodic assumptions and how

strongly it breaks ergodicity.

Given the finite-size constraint on our samples, we do not expect convergence to zero but

focus instead on the rate of decay in EB between original time series and shuffled counterparts

as evidence of ergodicity breaking. Shuffled versions are apt for comparison because ergodicity

hinges on whether an individual sequence exemplifies an average of sequences. Shuffling

breaks sequence, producing additive white Gaussian noise (awGn) distributing independently

around a mean. By the design of the study, the original pink noise pacing signal showed shal-

lower decay in EB with t compared to its shuffled counterpart ((EBðxðtÞÞÞ ¼ 0:74 D

t and 1:09 D

t ,

where Δ = 4; Fig 4, top), suggestive of ergodicity breaking due to the long-range temporal

structure [10, 11, 13] In contrast, for all other cue signals, EB was more suggestive of ergodicity,

with original cue interval series showing rapid decay in EB with t comparable to shuffled coun-

terparts for SPPS (EBðxðtÞÞÞ ¼ 0:97 D

t and 1:19 D

t ), GRPS (EBðxðtÞÞÞ ¼ 1:00 D

t and 0:99 D

t ), and

URPS (EBðxðtÞÞÞ ¼ 1:36 D

t and 1:11 D

t ).

Overall, stride intervals only showed ergodicity breaking in response to nonergodic visual

cues (Fig 4, middle). There was a rapid decay in EB with t comparable to its shuffled counter-

part suggestive of ergodicity in the original stride interval time series during self-paced walking

(EBðxðtÞÞÞ ¼ 0:95 D

t and 0:98 D

t ) and while synchronizing footfalls with both the Gaussian dis-

tributed random pacing signal (EBðxðtÞÞÞ ¼ 1:01 D

t and 1:01 D

t ) and uniformly distributed ran-

dom pacing signal (EBðxðtÞÞÞ ¼ 0:92 D

t and 1:00 D

t ). However, synchronizing footfalls with the

nonergodic pink noise and shuffled pink noise pacing signals broke ergodicity, resulting in a

shallower decay of EB with t compared to its shuffled counterpart for both PPS

(EBðxðtÞÞÞ ¼ 0:57 D

t and 1:00 D

t ) and SPPS (EBðxðtÞÞÞ ¼ 0:62 D

t and 1:18 D

t ).

Finally, irrespective of stride-interval ergodicity, asynchronies between visual cues and foot-

falls broke ergodicity across all pacing conditions (Fig 4, bottom), with the original time series

showing a much shallower decay in EB with t compared to their shuffled counterpart: pink

noise pacing signal (EBðxðtÞÞÞ ¼ 38 D

t and 1:21 D

t ), shuffled pink noise pacing signal

(EBðxðtÞÞÞ ¼ 0:07 D

t and 1:04 D

t ), Gaussian distributed random pacing signal

(EBðxðtÞÞÞ ¼ 0:57 D

t and 1:01 D

t ), and uniformly distributed random pacing signal

(EBðxðtÞÞÞ ¼ 0:27 D

t and 1:10 D

t ). That is, the average of all stride intervals was not representa-

tive of a typical stride and hence, is not amenable to predictive modeling and, likewise,
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asynchrony between visual cue and footfall from one stride to the next is also not amenable to

predictive modeling.

Asynchronies between visual cues and footfalls showed persistence in variation.

Despite its ergodicity, stride-to-stride variations during self-paced walking exhibited specific

temporal structure. There were specifically correlations between present values of stride inter-

vals with past stride intervals at several lags. The Hurst exponent, HfGn, describes the gradual

decay of correlations between stride intervals across longer separations in time (Fig 5). These

temporal correlations resemble fractional Gaussian noise (fGn) whose power-law decay of

autoregressive coefficient ρ with lag k as rk ¼
1

2
ðjkþ 1j

2H
� 2jkj2Hþjk � 1j

2H
Þ, and following

HfGn, the moments of the autocorrelation diverge for 0.5 <HfGn� 1. HfGn encodes the degree

of long-range persistence (0.5<HfGn< 1.0; large values are followed by large values and vice

versa) or long-range antipersistence (0 <HfGn< 0.5; large values are followed by small values

and vice versa). As stated above, time series with HfGn = 0.5 or 1 can be considered as having

the Fourier power spectrum consistent with “white noise” or “pink noise,” respectively. Stride

intervals in healthy adults exhibit long-range temporal correlations that fall into the pink noise

classification [37, 38, 54], and aging and neuropathy lead to a loss of this pink noise structure

Fig 4. Asynchronies between visual cues and footfalls broke ergodicity irrespective of ergodic properties of the cue intervals and

stride intervals. Log-log plots of ergodicity breaking factor EB vs. time t for the time series of cue intervals (top), stride intervals (middle),

and asynchronies between visual cues and footfalls (bottom) averaged across all participants. The stride intervals for self-paced walking

(SPW) appeared ergodic, showing only a slightly shallower decline in EB vs. t for the original time series as opposed to its shuffled version

at medium to longer timescales. Cue intervals, stride intervals, and asynchronies between visual cues and footfalls broke ergodicity more

clearly for the pink noise pacing signal (PPS) and shuffled pink-noise pacing signal (SPPS) with the shallow and steep decline of EB-vs.-t
curves for the original and shuffled time series, respectively. In contrast, despite cue and stride intervals exhibiting ergodicity for the

Gaussian distributed random pacing signal (GRPS) and uniformly distributed random pacing signal (URPS), asynchronies between visual

cues and footfalls in both conditions broke ergodicity, although to a lesser extent for GRPS.

https://doi.org/10.1371/journal.pone.0290324.g004
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[39, 126–128]. We computed HfGn using detrended fluctuation analysis [129, 130] to investi-

gate whether stride interval time series and time series of asynchronies between visual cues

and footfalls show long-range antipersistence or persistence. Both possibilities pose a challenge

to predictive modeling accounts. Antipersistence (0 <HfGn< 0.5) will imply a similar negative

autocorrelation by which predictive control corrects superthreshold asynchrony, and that

might seem less contradictory than the accumulation of asynchrony in the persistent case.

However, the challenge is that fGn-type correlations are long-range, whereas predictive model-

ing’s negative autocorrelation is strictly short-lag, limiting the predictive focus to just-previous

footfalls.

By the design of the study, the pink noise pacing signal was highly persistent (M ± SD HfGn

= 0.99 ± 0.08; t9,2 = 15.3838, P = 9.0569 × 10−8, 95%CI = [0.4065, 0.5467]; Fig 6, top), whereas

each of the other pacing signals was not persistent (SPPS: HfGn = 0.53 ± 0.02, t9,2 = 2.2927,

P = 0.0476, 95%CI = [0.0005, 0.0772]; GRPS: HfGn = 0.53 ± 0.02, t9,2 = −0.6806, P = 0.5131,

95%CI = [−0.0372, 0.0200]; and URPS: HfGn = 0.51 ± 0.01, t9,2 = −0.1704, P = 0.8685, 95%CI =

[−0.0313, 0.0269]). Self-paced walking showed persistence in stride intervals (HfGn =

0.86 ± 0.14; t9,2 = 6.6569, P = 9.2999 × 10−5, 95%CI = [0.2331, 0.4731]), confirming past

research [38, 131, 132]. Synchronizing footfalls with the PPS accentuated the persistence in

stride intervals (HfGn = 0.97 ± 0.09, B ± SE = 0.1080 ± 0.0398, t45 = 2.7165, P = 0.0093, 95%CI =

[−0.0279, 0.1881]; Fig 6, middle), but all other pacing signals prompted persistence to a lesser

degree (SPPS: HfGn = 0.64 ± 0.084, B ± SE = −0.2216 ± 0.0398, t45 = −5.5748, P = 1.3295 × 10−6,

95%CI = [−0.3017, −0.1416]; GRPS: HfGn = 0.64 ± 0.06, B ± SE = −0.2194 ± 0.0398, t45

= −5.5189, P = 1.6072 × 10−6, 95%CI = [−0.2995, −0.1393]; and URPS: HfGn = 0.58 ± 0.07, B ±

Fig 5. Schematic portrayal of the Hurst exponent HfGn. The fractal-scaling exponent HfGn provides the first entree to

describe cascade dynamics underlying our data. Specifically, HfGn relates how SD-like fluctuations grow across many

timescales, encoding how the correlation among sequential measurements might decay slowly across longer

separations in time. Detrending fluctuations over progressively longer timescales removes mean drift across each of

these timescales.

https://doi.org/10.1371/journal.pone.0290324.g005
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SE = −0.2823 ± 0.0398, t45 = −7.1017, P = 7.2009 × 10−6, 95%CI = [−0.3624, −0.2023]). The

effect of each pacing signal was consistent with previous reports where persistent visual cues

accentuating the persistence in stride intervals and random visual cues attenuating the persis-

tence in stride intervals observed during self-paced walking [119, 120].

Irrespective of whether the pacing signal was persistent or not, asynchronies between visual

cues and footfalls showed persistence in each paced-walking condition (PPS: M ± SD HfGn =

1.00 ± 0.10; t9,2 = 13.8829, P = 2.2057 × 10−7, 95%CI = [0.2077, 0.5664]; SPPS: HfGn =

0.86 ± 0.22; t9,2 = 4.5783, P = 0.0013, 95%CI = [0.1692, 0.4996]; GRPS: HfGn = 0.83 ± 0.17; t9,2 =

5.5744, P = 3.4541 × 10−4, 95%CI = [0.1920, 0.4543]; and URPS: HfGn = 0.77 ± 0.09; t9,2 =

7.8018, P = 2.7032 × 10−5, 95%CI = [0.1803, 0.3275]; Fig 6, bottom). The persistence in asyn-

chrony across all paced-walking conditions is an early glimmer of challenges to the predictive

modeling accounts of stride-to-stride control of stepping. Specifically, the predictive modeling

accounts suggest entailing asynchronies between visual cues and footfalls that blend uncorre-

lated Gaussian noise and perturbation-contingent short-lag negative correlation. We find here

that the asynchronies are negative and extend across long ranges instead of being short-lag

and positive.

Fig 6. Asynchronies between visual cues and footfalls showed persistence irrespective of persistence in cue or stride intervals. The

Hurst exponent, HfGn, encoding the persistence in measured fluctuations is the slope of log-log plots of fluctuation function, f(n), as a

function of Bin size, n, in cue intervals (top), stride intervals (middle), and asynchronies between cues and footfalls (bottom) for a

representative participant. The stride intervals for self-paced walking (SPW) showed strong persistence—HfGn close to 1 (thick vs. thin grey

lines), indicating that large fluctuations are followed by large fluctuations and vice versa. Synchronizing footfalls with the pink noise pacing

signal (PPS) accentuated the persistence in stride intervals while walking in synchrony with the shuffled pink noise pacing signal (SPPS),

Gaussian distributed random pacing signal (GRPS), and uniformly distributed random pacing signal (URPS) abated the persistence in

stride interval—HfGn smaller than 1 but still greater than 0.5, despite all these latter cue signals being completely uncorrelated across time,

i.e., HfGn close to 0.5. Contrary to the prediction of strong short-lag antipersistence following the predictive modeling accounts of stride-to-

stride control of stepping), asynchronies between visual cues and footfalls showed strong long-range persistence across all paced-walking

conditions, with the PPS condition showing the strongest persistence among all conditions.

https://doi.org/10.1371/journal.pone.0290324.g006
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However, persistence is not necessarily more than a passing nuisance to modeling. Persistence

fails to perturb the predictive modeling accounts of stride-to-stride control of stepping [6]

because, on its own, even long-range persistence might be a strictly linear and so time-symmetric

feature [48]. It is mathematically possible that such persistent signals are invariant across time

[42]—that would be the way to preserve the predictive model. But this elaboration narrows the

margin to fit a short-lag negative autocorrelation, and the predictive model might become more

difficult to sustain if the long-range correlations exhibit nonlinearity in how they vary across

time. Therefore, we next searched for the potential signature of nonlinearity in the observed vari-

ations in cue intervals, footfalls, and asynchronies between visual cues and footfalls.

Asynchronies between visual cues and footfalls showed cascade-like

intermittency

We know people adapt to continuous changes by making small, adaptive tunings and modifi-

cations. So, when participants adapt their actions to match their footfalls with visual cues, we

should anticipate that the temporal structure of stride intervals will alter over time. Conse-

quently, the persistence in stride intervals—and in asynchronies between visual cues and foot-

falls—might vary across time, resulting in an assortment of Hurst exponents. While HfGn

represents the dominant persistent structure governing the entire time series, long-range cor-

relations will inevitably wax and wane around this generalized HfGn value. Hence, we can esti-

mate the multiple local fractal-scaling exponents α and construct the so-called “multifractal

spectrum” whose width Δα indicates the diversity of long-range correlations in the same time

series (Fig 7). Hence, the multifractal spectrum width gives us a first look at how flexibly an

individual coordinates its footfalls across time while walking. We might even draw a concep-

tual analogy between Δα and SD—whereas HfGn gives an average-like summary description of

long-range correlations, Δα is not unlike SD or even a range insofar as it expresses the amount

of variation around the average-like HfGn.

Diversity in the temporal structure can reflect both linear and nonlinear correlations. In the

former case, variation across time is homogeneous and time-symmetric, that is, the same

sequence is governed by the same HfGn backward and forward. However, as the central limit

theorem expects variation of the sample mean for samples of a given size around a population

mean, we can expect the fractal-scaling exponents to vary with series length. Therefore, a por-

tion of the multifractal spectrum represents uniform fluctuation across time and has a linear

origin. In the latter case of nonlinear sources of heterogeneity, variation in temporal structure

could reflect a progression from the start of the walking to its middle and finally to its conclu-

sion. In this latter case, a varying temporal structure is not just sampling error but may reflect

the structured accumulation of errors suggesting that the interaction of movements is span-

ning multiple timescales. Fortunately, we can use a t-statistic, tMF—which we refer to as the

“multifractal nonlinearity,” to distill out two different parts of the multifractal spectrum width:

the first predictable from the linear structure and the second revealing a nonlinear structure

due to nonlinear interactions across timescales. Specifically, tMF takes the subtractive differ-

ence between Δα for the original time series and that for the 32 iterative amplitude-adjusted

Fourier transform (IAAFT) surrogates, dividing by the standard error of Δα for the surrogates.

IAAFT randomizes original values of the time series time-symmetrically around the autore-

gressive structure, generating surrogates having randomized phase ordering of the original

time series’ spectral amplitudes while preserving linear temporal correlations [133, 134]. tMF>

1.98 is interpreted as evidence of nonlinear interactions across timescales as in an intermittent

cascade model. Beyond strictly dichotomous treatment, greater tMF indicates stronger evidence

of cascade-like intermittency.
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Stride intervals and asynchronies between visual cues and footfalls exhibited multifractality

consistent with nonlinear correlations not otherwise reducible to the cue signals. Only the pink

noise pacing signal contained nonlinear interactions across timescales indicative of cascade-like

intermittency (M ± SD tMF = 26.43 ± 13.54; Fig 8, top) as compared to no significant multifrac-

tal nonlinearity in the other cue signals (SPPS: tMF = −11.73 ± 2.40; GRPS: tMF = −10.07 ± 9.72;

URPS: tMF = −3.90 ± 4.99). Stride intervals during the self-paced walking showed strong evi-

dence of cascade-like intermittency (tMF = 37.33 ± 34.52), confirming the previous reports of

multifractality in stride-to-stride variations [50–52]. Curiously, nonlinear interactions in the

pink noise pacing signal did not affect nonlinear interactions in stride intervals (tMF =

37.26 ± 18.15, B ± SE = −0.0707 ± 14.4550, t45 = −0.0049, P = 0.9961, 95%CI = [−29.1840,

29.0420]; Fig 8, middle). Instead, the task of synchronizing footfalls with uncorrelated pacing

signals amplified the nonlinear interactions in stride intervals (SPSS: tMF = 67.14 ± 50.69, B ±
SE = 46.8200 ± 14.4550, t45 = 3.2391, P = 0.0023, 95%CI = [17.7070, 75.9330]; GRPS: tMF =

84.15 ± 32.94, B ± SE = 34.4020 ± 14.4550, t45 = 2.3800, P = 0.0216, 95%CI = [5.2886, 63.5150];

and URPS (tMF = 71.73 ± 35.91, B ± SE = 29.8120 ± 14.4550, t45 = 2.0625, P = 0.0050, 95%CI =

[0.6990, 58.9250]). In sum, synchronizing footfalls to cues with a temporal structure compara-

ble to the SPW prompts no change in gait, but synchronizing footfalls to cues with less of the

inherent structure of the SPW tax the movement system and prompt novel coordination across

timescales, perhaps requiring new nonlinear interactions not needed for synchronizing to the

SPW-like cues.

Fig 7. Schematic portrayal of Δα and tMF. While HfGn is the best single, average description of temporal structure for

the whole time series, the fractal structure might change across time as indicated by local scaling exponents α. Δα
indicates the width of a spectrum of fractal exponents across time f(α) indicating how much of the time series exhibits

each value of α. The one-sample t-statistic tMF takes the subtractive difference between Δα for original time series and

an average Δα for 32 surrogates, dividing by the standard error of Δα for the surrogates. tMF> 1.98 is interpreted as

evidence of nonlinear interactions across timescales resembling an intermittent cascade.

https://doi.org/10.1371/journal.pone.0290324.g007
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Nonlinear interactions across timescales were a generic feature of asynchronies between

visual cues and footfalls across all cue signals irrespective of differences in nonlinear interac-

tions (PPS: M ± SD tMF = 73.58 ± 33.78; SPPS: tMF = 44.52 ± 23.57; GRPS: tMF = 42.57 ± 31.98;

URPS: tMF = 31.58 ± 20.96; Fig 8, bottom). The evidence of multifractality indicates variation

in the long-range correlations across time beyond strictly linear temporal correlations. Practi-

cally, the time-symmetric possibility that linear models of power-law autocorrelation could

leave each timescale unperturbed by variations at other timescales. To be clear: the strictly lin-

ear models of power-law autocorrelation would have allowed the predictive modeling to greet

each new step with the same logic. Nonlinear interactions across scales indicate that each cur-

rent step is the latest front in a cascade tumbling forward from the first steps. No step is com-

parable to the next, making short-lag responsivity an unreliable foundation for the stride-to-

stride control of stepping. No single step occurs in a vacuum; instead, every step unfolds from

the rich substrate of events that interact across many scales of time. Given this rich heredity

wherein each step inherits the influence of steps at many time scales past, the control of gait

may thus require less explicit intervention on each step. The coordination of each step unfolds

implicitly through the ongoing accumulation of multiscaled events in gait. In this formulation,

Fig 8. Asynchrony between visual cues and footfalls showed cascade-like intermittency irrespective of intermittency in cue and

stride intervals. Multifractal spectra f(α) comprising a wide array of local fractal-scaling exponents, α across the series. The

multifractal spectrum width, Δα, encodes the heterogeneity of persistence in fluctuations in measurements across shorter and longer

separations in time, in cue intervals (top), stride intervals (middle), and asynchrony between visual cues and footfalls (bottom) for a

representative participant. Stride intervals during the self-paced walking (SPW) showed wider than surrogate spectrum—tMF>>

1.98 (colored vs. grey lines), indicating strong nonlinear temporal correlations due to nonlinear interactions across timescales.

Among the cue signals, only the pink noise pacing signal (PPS) exhibited nonlinear interactions across timescales, the corresponding

stride intervals showed strong signatures of cascade-like intermittency indicated by wider than surrogate spectra. Hence, the SPPS,

GRPS, and URPS could not fully break the nonlinearity in stride intervals. Contrary to the prediction of the linear relationship

between following the predictive modeling accounts of stride-to-stride control of stepping, asynchronies between visual cues and

footfalls showed cascade-like intermittency across all paced-walking conditions, most strongly in the PPS condition.

https://doi.org/10.1371/journal.pone.0290324.g008
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the negative mean asynchrony is not a time-invariant outcome of time-invariant physiological

mechanisms—instead, it is the time-varying coordination across timescales in ongoing gait

variability.

Finally, we offer Fig 9 as a composite portrait of the linear and nonlinear features reviewed

above.

Stronger cascade-like intermittency was correlated with larger negative

mean asynchrony

We had predicted that cascade processes in the motor sequence of asynchronies between visual

cues and footfalls would facilitate anticipatory stepping (Hypothesis 3), that is, that individual

trials’ negative mean asynchrony might correlate specifically with corresponding trials’ multi-

fractal nonlinearity tMF of the asynchronies—and not with any simpler linear portrayal of the

stride-to-stride variations. We examined the relationship between the mean negative asyn-

chrony (between visual cues and footfalls) and (i) the magnitude of variation, quantified by the

standard deviation SD; (ii) persistence in variation, quantified by the Hurst exponent HfGn;

and (iii) cascade-like intermittency of variation, quantified by the multifractal nonlinearity

tMF. We did not find any relationship between mean negative asynchrony with SD or with

HfGn of asynchronies in any of the four paced-walking conditions (Ps all>0.05; Fig 10). Inter-

estingly, mean negative asynchrony and tMF of asynchronies negatively correlated in response

to the pink noise pacing signal (Pearson’s r = −0.8071, P = 0.0048) and the Gaussian

Fig 9. Summary of the outcome variables. M ± SEM values of linear and nonlinear measures of variability in cue intervals (top), stride intervals

(middle), and asynchrony in the timings of visual cues and footfalls (bottom), across all participants (N = 10). Grey lines indicate values for individual

participants.

https://doi.org/10.1371/journal.pone.0290324.g009
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distributed random pacing signal (r = −0.6815, P = 0.0300) but not the other two conditions

(Ps> 0.05). These results bear our earlier points about the implications of cascade-like inter-

mittency. The amount of negative mean asynchrony is not a fixed result from stable, time-

invariant patterns of temporal correlations—instead, negative mean asynchrony is sensitive to

the interactions unfolding over multiple timescales of the stride sequence. These correlations

between multifractal nonlinearity tMF and negative mean asynchrony suggest anticipatory pro-

cesses arising by cascade processes in the motor sequence.

Discussion

The present results reveal evidence strongly at odds with the established explanations of gait

control through predictive modeling. There were no predictable patterns in the empirical evi-

dence related to walking and the cues that lead to negative mean asynchronies between cues

and footfalls. We confirmed that self-paced walking broke ergodicity in the long run. The tem-

poral organization of stride-to-stride variations during overground walking mimicked the

ergodicity-breaking or ergodicity-preserving properties of the cue signal. However, the asyn-

chronies that should be the primary focus of predictive modeling have none of the predictabil-

ity. Across the board, no matter the ergodicity of the cue signal, asynchronies were ergodicity-

breaking. This evidence undermines any notion that deviations in gait can be predictable. As

stressed in the Introduction of this paper, the failure of representativity in ergodicity breaking

amounts to a failure of any attempt to model and then predict. As if this ergodicity breaking

were not problematic enough for the predictive-modeling account, all strides and asynchronies

showed long-range correlations consistent with fractal scaling. This finding is at odds with the

predictive-modeling expectations that stride-to-stride variations should be uncorrelated and

that control should manifest as a short-lag negative autocorrelation. The fractal-like pattern of

asynchronies varied across time, manifesting as a multifractal structure beyond what could be

reduced to a linear structure. Hence, contrary to linear explanations of fractality in gait [6], the

fractal structure of gait is fundamentally at odds with linearity and predominantly reflects the

role of nonlinear interactions across time scales. However unpredictable as cues and asynchro-

nies were, the nonlinear interactions across scales appeared to hold the key to how humans

Fig 10. Stronger cascade-like intermittency was correlated with larger negative mean asynchrony. The relationships of mean negative

asynchrony between visual cues and footfalls with the magnitude of variation, i.e., SD, of asynchronies (left), persistence, i.e., HfGn, of

asynchronies (center), and strength of cascade-like intermittency, i.e., tMF, of asynchronies across all participants (N = 10). The negative mean

asynchrony showed no relationship with the magnitude of variation and persistence in asynchronies but was significantly larger for a participant

with a stronger cascade-like intermittency in asynchronies for walking in synchrony with the pink noise pacing signal (PPS) and Gaussian

distributed random pacing signal (GRPS).

https://doi.org/10.1371/journal.pone.0290324.g010
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could coordinate their gait with unpredictable cues: the estimable degree of multifractality

attributable to nonlinearity correlated significantly with negative mean asynchrony. Hence,

the negative mean asynchrony that prevailing accounts have repeatedly attributed to predictive

modeling may reflect the role of cascading dynamics capable of coordinating events at multiple

time scales. Gait control might extend beyond so-called “weak” anticipation prone to limita-

tions of a predictive model and might rest on so-called “strong” anticipation founded in long-

range, multi-scaled coupling amongst random fluctuation [104–107].

We tested three hypotheses about the predictability of deviations in gait and about its impli-

cations for anticipatory control of gait. First, we predicted that stride-to-stride variations

would be nonergodic, especially in the unperturbed case of self-pacing; that is, individual stride

intervals will not resemble the average of stride intervals over the long run (Hypothesis 1a).

However, when we perturb gait by asking participants to entrain strides to visual cues having

variable timing of presentation, we expected stride intervals to show ergodicity breaking

(Hypothesis 1b) and the same for asynchronies between visual cues and footfalls (Hypothesis

1c), with less ergodicity breaking in response to cues with ergodic temporal structure (e.g.,

Gaussian or uniformly distributed uncorrelated noise, as well as shuffled pink noise; Hypothe-

sis 1d). Second, we predicted that stride intervals and asynchronies between visual cues and

footfalls would be fractal (Hypothesis 2a) and multifractal (Hypothesis 2b) rather than identi-

cally distributed, randomized, or independently sequenced noise with the same values and

probability distribution. Third, we predicted that the multifractal evidence of nonlinearity in

asynchronies between visual cues and footfalls would correlate with the negative mean asyn-

chrony comparing footfalls to cues (Hypothesis 3). The results supported all hypotheses with

two exceptions. First, the expected cue-sensitivity of ergodicity breaking made stride intervals

ergodic in synchrony with the GRPS and URPS, and second, multifractal nonlinearity was not

associated with negative mean asynchrony in the SPPS and URPS.

Our first hypothesis was primarily opening the question of whether the individual footfalls

in gait are sufficiently representative, from one gait cycle to the next, to support a predictive

model. We tested this hypothesis using the Thirumalai-Mountain (TM) metric—the gold stan-

dard in contemporary statistical physics for evaluating the degree of ergodicity breaking [10–

13, 122]. A relatively coarse way to begin to understand ergodicity is as the equivalence of

group averages with time averages [124, 135–138]. When these Thirumalai-Mountain metric

estimates of ergodicity breaking for original and shuffled time series diverge from one another

across time, the amount of divergence between them signifies how much the original time

series breaks ergodicity.

Ergodicity breaking in gait was pervasive but sensitive to cue structure. For instance, self-

paced walking (SPW) was only weakly nonergodic (Hypothesis 1a) and only across longer

timescales. The cues we used exhibited a range of temporal correlations, one time series gener-

ated to exhibit fractional Gaussian noise (fGn), known in the engineering literature as “pink

noise” [40]. This pink noise pacing signal (PPS) exhibited temporal correlations (HfGn> 0.5),

contrasting with the three types of uncorrelated cues signals: shuffled pink noise, Gaussian dis-

tributed randomized (i.e., exemplifying awGn), and uniformly distributed randomized pacing

signals (SPPS, GRPS, and URPS, respectively). Each of these uncorrelated pacing signals

removed specific parts of the fGn structure in PPS. The SPPS kept an originally fGn time

series’ probability distribution but decorrelated the sequence by shuffling. The GRPS had

uncorrelated intervals with Gaussian probability distribution. Lastly, the URPS had uncorre-

lated intervals with uniform probability distribution. These three uncorrelated signals were

intended to be indistinguishably different from PPS, and in fact, they all showed no difference

of their HfGn from 0.5 or of their multifractal spectrum widths from that of their linear surro-

gates. Consistent with Hypothesis 1b, stride interval time series broke ergodicity even in

PLOS ONE Temporal organization of stride-to-stride variations contradicts predictive models of walking

PLOS ONE | https://doi.org/10.1371/journal.pone.0290324 August 24, 2023 20 / 35

https://doi.org/10.1371/journal.pone.0290324


coordination with cues both for PPS and SPPS conditions. However, the cue-sensitivity

expected in Hypothesis 1d was so strong as to imply that ergodic cues GRPS and URPS

prompted stride intervals that showed no ergodicity breaking, showing near perfect overlap

with the TM metric for shuffled versions. Temporal correlations in fGn may thus be so strong

as to produce an excess of variance in the long run such that the resulting probability distribu-

tion breaks ergodicity even in the absence of temporal correlations. In any event, the ergodicity

breaking in the cue signal is evidently sufficient to break ergodicity in stride intervals—even

without temporal correlations. Hence, the weakly broken ergodicity in SPW might be more

fragile in response to cueing than current theorizing has yet expected [10, 11, 13].

Asynchronies between visual cues and footfalls showed a more robust pattern of ergodicity

breaking. That is, no matter the gait control system’s capacity to make its strides ergodic (e.g.,

with GRPS and URPS), gait control leaves strong ergodicity breaking in the asynchronies

between visual cues and footfalls for all kinds of temporal structures. The ergodicity breaking

was weaker in the asynchronies relative to the GRPS than relative to the other cue signals—it

was strongest in SPPS and URPS (e.g., see the flatter original EB-vs.-t curves). To the present

study’s major concern, and in support of Hypothesis 1c, it appears that errors in gait control

during paced walking break ergodicity—more so than during SPW. Perhaps, the Gaussian

probability distribution might preserve slightly more ergodicity than the uniform probability

distribution and the probability distribution of shuffled pink noise. But the bigger point here is

that the asynchronies between visual cues and footfalls exhibit a statistical structure beyond

the known limits of computational prediction. SPW is already weakly ergodicity breaking, but

enlisting the gait control in an explicit coordination task only brings the ergodicity breaking

into stronger clarity in the pattern of asynchronies. Furthermore, increased cognitive could

have contributed to reducing fractal profile in Yano et al. [139]. However, the strong multifrac-

tal evidence of nonlinearity and of ergodicity breaking limit the usefulness or generality of

inventories of independent components or constraints whose effects may be genuine but fleet-

ing or challenging to reproduce. Despite previous attempts to construe the 1/f form of strides

as a linear process (e.g., [6]) submitting to the independent effects of independent constraints

such as cognitive load, the present work confirms both that gait is more than just 1/f and more

than just linear. The origins of the multifractal cascade are evident in the ergodicity-breaking

dynamics of strides and asynchronies suggest espousing more stochastic notions of causation

that do not always allow identification of independent effects [140].

No matter the unpredictability of errors in gait control, the present results indicated that

asynchronies between visual cues and footfalls showed a rich patterning consistent with fractal

and even multifractal structures. Stride intervals during SPW were fractally structured, repli-

cating a long-known pattern of results [37, 38, 74, 81, 141–146]. In support of Hypothesis 2a

and 2b, stride intervals and asynchronies between visual cues and footfalls showed strong evi-

dence of fractal and multifractal structure in temporal correlations, confirmed by comparisons

with shuffled and linear-surrogate time series, respectively. Much in the same way that stride-

to-stride variations could match the ergodicity of the cue signal, asynchronies between visual

cues and footfalls showed fractal evidence of persistence. These results also align with the

known tendency of “complexity matching,” that is, for movement complexity to match the

complexity of the environmental stimulation [106, 147–150].

Whereas broken ergodicity thwarts predictive modeling, multifractal nonlinearity may

offer gait support for anticipatory, prospective control robust to unpredictability. As we had

noted above, multifractal nonlinearity has been associated with the ability of the movement

system to resolve unpredictable perturbations [106, 114, 115, 117]. As it turned out, the PPS

was the only cue signal with statistically significant evidence of multifractal nonlinearity. All

other cue signals exhibited negligible temporal correlations, and any variation in temporal
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correlations they showed was indistinguishable from linearity. Our final question had been

whether the gait control might build its anticipatory, prospective control on the foundation of

multifractal nonlinearity in its deviations from planned behavior. So, Hypothesis 3 predicted

that the anticipation of the cue would manifest as a correlation of multifractal nonlinearity

with more negative mean asynchrony. Specifically, a negative association in which greater

multifractal nonlinearity would correlate with better ability to step ahead of the cue onsets.

Specifically, we tested the correlation of negative mean asynchrony with standard deviation

(SD), fractally correlated persistence (HfGn), and multifractal nonlinearity (tMF) for each cue

signal. We found a negative correlation specifically for multifractality nonlinearity and nega-

tive mean asynchrony with cueing signals PPS and GRPS but not the SPPS and URPS. The

correlations in PPS and GRPS conditions thus support Hypothesis 3. We suspect that the fail-

ure of a correlation between multifractal nonlinearity and negative mean asynchrony in PPS

and GRPS conditions reflects more of a failure of the negative mean asynchrony than of the

relevance of multifractal nonlinearity. Specifically, we mean that the ergodicity breaking pat-

tern of the asynchronies in the PPS and GRPS cases indicates stronger ergodicity (e.g., steeper

slopes of the EB-vs.-t curves) than in the SPPS and URPS cases. Hence, the mean we might

take of the asynchronies is demonstrably less stable in the SPPS and URPS cases and more sta-

ble in the PPS and GRPS cases.

Conclusions and future directions

We have used “control” to describe persistence and cascade-like interactivity in stride-to-stride

variations and absolute errors in the timings of visual cues and footfalls. We invoke this con-

cept of “control” less as the straightforward task of timing individual strides following individ-

ual cues and more so as the implicit capacity of cascading properties—sometimes of

experimental stimulation but also prospective organisms—to constrain ongoing action. We

provide strong evidence supporting that the ergodicity-breaking, multifractal-like cascade

structure of walking thwarts the expectations of the predictive modeling account of walking.

Although recognizing negative mean asynchrony despite sensory delays has motivated the

forward model, the same empirical background more fully points toward the cascade-dynam-

ical explanation, considering that, in his seminal studies on asynchronies, Dunlap [71] noticed

that the errors tend to grow larger and larger in each direction (too early or too late) until a

correction causes a change in direction, and then the same pattern repeats. Dunlap attributed

this “drifting” to a frequency mismatch between stimulus and response. Since then, several

studies using synchronization tasks have found that the 1/f framework is more appropriate

than the simple self-correcting models for describing the temporal correlations of the error

series [151]. Ergodicity breaking implies not only that gait cycles are not comparable in the

long-range but also that the asynchronies do not converge to a stable average. So, the CNS

could usefully interpret this error simply through magnitude. The finding of persistence and

cascade-like intermittency in stride-to-stride errors during paced walking indicates that a

higher priority for the CNS might be the capacity of errors to evolve through interactions

among multiple timescales.

We have provided a theoretical roadmap to study the statistical aspects of movement coor-

dination and then use cascade-dynamical parameters that match these movement structures.

This research framework could help identifying the relative contributions of feedforward and

feedback control in post-perturbation motor outputs during and after locomotor performance

following degrading sensory feedback [152]. The methods we used to assess ergodicity break-

ing (the Thirumalai-Mountain metric), persistence (HfGn, computed using the detrended fluc-

tuation analysis), and cascade-like intermittency (tMF, computed using the multifractal
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analysis) can also help investigate altered sensorimotor control of locomotion in older adults

and clinical populations. For instance, these methods might be suitable for analyzing differ-

ences in young adults, older adults, and adults with neurodegenerative conditions that might

affect walking. For instance, a lack of persistence in stride intervals during walking is charac-

teristic of aging [39, 126] and Parkinson’s disease [127, 153]. Paced walking with irregular met-

ronomes embedded with statistical properties found in healthy populations has been shown to

increase the persistence in stride intervals in older adults [154] and Parkinson’s patients [155–

157]. Is the loss of persistence in stride intervals in these groups also accompanied by a loss of

cascade-like intermittency in the absolute errors in the timing of cues and footfalls? Does the

entrainment to irregular metronomes merely restore patterns of persistence in stride intervals

or also restore intermittency in the sensorimotor control of heel-strike timing? This knowledge

can be applied to creating more effective rehabilitation devices that directly influence the sen-

sorimotor control of walking and restore healthy walking in older adults and clinical

populations.

Materials and methods

Ethics statement

Each participant gave informed written consent with full knowledge of the study objectives

and details of the experimental procedure. The Institutional Review Board of the University of

Nebraska Medical Center approved the present study (IRB # 511–16-EP) in accordance with

the Declaration of Helsinki. All data were collected between January and May 2019 and fully

anonymized before we accessed them.

Participants

Thirteen healthy young adults with no self-reported neurological or musculoskeletal disorders

voluntarily participated in the exchange of monetary reward. Participants who had to be

reminded more than once per trial to match the timings of the right heel strike and that of the

moving bar touching the stationary bottom bar were deemed not to follow the instructions

and were excluded. Following this exclusionary criterion, 10 participants (3 women; M ± SD
age: 24.8 ± 3.9 years) were included in the analysis.

Experimental setup and procedure

Upon arrival to the laboratory, the participants were fitted with Footswitch FSR SmartLeadTM

sensors (Noraxon, Scottsdale, USA) under both heels to identify footfalls with a sampling fre-

quency of 1500 Hz. This sampling frequency allowed the detection of footfalls with<1 ms pre-

cision. The participants completed five overground walking trials on a 200 m indoor track (Fig

2) with 5 min rest in-between, with each trial including a minimum of 700 strides (approxi-

mately 13-min duration). The participants were not forced to change their direction along the

track. The curved nature of the track naturally led the participants to change direction during

their walk.

In the first trial, the participants were instructed to walk at a self-selected preferred pace,

which we called self-paced walking (SPW). The next four trials required participants to time

their right footfalls with oscillations of a horizontal bar on a mini HDMI video screen mounted

on eyeglass frames. Footswitch sensors placed under both heels identified heel strike events.

The timing of the oscillations in these four trials had pink noise pacing signal (PPS), shuffled

pink noise pacing signal (SPPS), Gaussian distributed random pacing signal (GRPS), and uni-

formly distributed random pacing signal (URPS). SPPS had the same probability distribution
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of values as PPS but lacked any temporal correlations. Both kinds of random pacing signals

lack any temporal correlations but have different probability distributions of values. The four

pacing signals were generated using custom scripts in MATLAB 2020b (MathWorks Inc.,

Natick, MA). The PPS signal was created iteratively by first simulating pink Gaussian noise

using the function pinknoise(). Next, the noise was checked using the detrended fluctua-

tion analysis (DFA; see below) to ensure it had an HfGn close to 1. If not, the process was

repeated until convergence was met (0.996 <HfGn< 1.004). PPS was shuffled to obtain SPPS.

GRPS was created iteratively by randomly permuting the PPS signal until DFA yielded 0.496

<HfGn< 0.504. URPS was generated using the function rand() but also in an iterative fash-

ion, checking for the same convergence criteria as in GRPS. The individual mean stride-to-

stride interval and standard deviation observed during the self-paced walking trial were used

to scale the four pacing signals for each participant. The order of the paced trials was pseudor-

andomized for each participant.

The participants wore a pair of non-prescription glasses in which the visual pacing cues

were displayed on a mini HDMI screen (Vufine Inc., Sunnyvale, CA, USA; Fig 3). The visual

cues involved a horizontal bar moving vertically between two stationary bars. The bar main-

tained a constant velocity throughout each desired gait cycle. The bar’s velocity was derived

from the average velocity of each participant, as determined during the self-paced walking

trial. Subsequently, fluctuations were introduced, superimposing upon this mean velocity, and

their characteristics were based on the selected distribution (e.g., pink, white, etc.). That being

said, the bar’s velocity could be informative for the participants, allowing them to predict the

next instant of the footfall. For instance, let us consider two stride intervals, T1 and T2. If T1 is

greater than T2, and the bar consistently moves at this constant velocity, it will cover a greater

distance in T2 compared to T1. The participants were instructed to match their right footfalls

to the instant the moving bar reached the stationary top bar and to match their left footfalls to

the instant the moving bar reached the stationary bottom bar.

Data processing

We processed all data in Matlab using custom scripts. Stride-to-stride intervals were calculated

as the time between two consecutive footfalls of the same foot. Standard deviation (SD) quanti-

fied the variation in stride-to-stride intervals. Whenever feasible, the analysis focused on time

series comprising 624 intervals, each representing 624 strides, though a few trials may have

had fewer strides.

Estimating ergodicity breaking

We investigated the ergodic properties of the visual cue intervals, footfalls, and footfall and cue

asynchronies. Ergodicity refers to the convergence of the finite-ensemble average and the

finite-time average. The finite ensemble is

hxiðtÞiN ¼
1

N

XN

i¼1

xiðtÞ; ð1Þ

where xi(t) is the ith of N realizations of cue intervals, footfalls, or footfall and cue asynchronies

included in the average. In contrast, the finite-time average is

xDt ¼
1

Dt

Z tþDt

t
xðtÞdt; ð2Þ

When the measured behavior x changes at T = Δt/δt discrete times t + δt, t + 2δt, . . ., the
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finite-time average is

xDt ¼
1

Tdt

XT

t¼1

xðt þ tdtÞ:

So the traditional definition of ergodicity is an equivalence between these two averages,

lim
Dt!1

1

Dt

Z tþDt

t
xðtÞdt ¼ lim

N!1

1

N

XN

i¼1

xiðtÞ:

We quantified the ergodicity of each time series of cue intervals, stride intervals, and asyn-

chronies between visual cues and footfalls using a dimensionless statistic of ergodicity breaking

EB, known as the Thirumalai-Mountain metric [121, 122]. EB is an inverse metric of ergodicity,

reflecting how the long-range persistence failure of variance to converge, in effect, undermines

(or “breaks”) the representativity of a sample, thereby undermining ergodicity. This EB statistic

subtracts the squared total-sample variance, hd
2
ðxðtÞÞi2, from the average squared subsample

variance, h½d
2
ðxðtÞÞ�2i, and divides the resultant by the squared total-sample variance,

hd
2
ðxðtÞÞi2:

EBðxðtÞÞ ¼
h½d

2
ðxðtÞÞ�2i � hd2

ðxðtÞÞi2

hd
2
ðxðtÞÞi2

; ð3Þ

where δ2(x(t)) is sample-to-sample variance and this relationship is effectively the variance of

sample variance divided by the squared total-sample variance. Rapid decay of EB to 0 for pro-

gressively larger samples, that is, EB! 0 as t!1 implies ergodicity. Slower decay indicates

less ergodic systems in which trajectories are less reproducible, and no decay or convergence

to a finite asymptotic value indicates strong ergodicity breaking [9]. EB-vs.-t curves thus allow

testing whether a given time series fulfills ergodic assumptions or breaks ergodicity and the

extent to which it breaks ergodicity. We used Δ = 4 for computing EB(x(t)).

Assessing the strength of persistence using detrended fluctuation analysis

Detrended fluctuation analysis (DFA) computes the Hurst exponent, HfGn, quantifying the

strength of long-range correlations [129, 130] for each time series of cue intervals, foot-

falls, and footfall and cue asynchronies, using the first-order integration of T-length time

series x(t):

yðiÞ ¼
Xi

k¼1

ðxðkÞ � xðtÞÞ; i ¼ 1; 2; 3; � � � ;T; ð4Þ

DFA computes root mean square (RMS; i.e., averaging the residuals) for each linear trend

yn(t) fit to Nn non-overlapping n-length bins to build a fluctuation function:

f ðv; nÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1

Nn

XNn

v¼1

 
1

n

Xn

i¼1

ðy ðv � 1Þ nþ ið Þ � yvðiÞÞ
2

!v
u
u
t ; n ¼ f4; 8; 12; � � �g < T=4:

ð5Þ

f(n) is a power law,

f ðnÞ � nHfGn ; ð6Þ
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where HfGn is the scaling exponent estimable using logarithmic transformation:

log f ðnÞ ¼ HfGn log n: ð7Þ

Higher HfGn corresponds to stronger long-range correlations. A time series with HfGn

= 0.5 can be considered as having a spectrum representing white noise. In contrast, a time

series with HfGn = 1 can be considered as having a spectrum representing pink noise.

Accessing cascade-like intermittency using multifractal analysis

The current cascade-dynamical interest in nonlinear relationships among hierarchically nested

timescales is beyond the scope of what HfGn can encode [47, 58, 158]. Beyond strictly linear

temporal correlations, the nonlinearity of interactions across timescales implies one fractional

scaling exponent and multiple scaling exponents. Hence, a thorough investigation of cascade-

like intermittency requires generalizing the test for fractal scaling into multifractal modeling

[59, 159].

Chhabra and Jensen’s [160] direct method estimates multifractal spectrum width Δα for

each time series of cue intervals, footfalls, and footfall and cue asynchronies by sampling a

series x(t) at progressively larger scales using the proportion of signal Pi(n) falling within the

vth bin of scale n as

PvðnÞ ¼

Xv�Nn

k¼ðv� 1Þ nþ1

xðkÞ

P
xðtÞ

; n ¼ f4; 8; 16; � � �g < T=8;
ð8Þ

As n increases, Pv(n) represents a progressively larger proportion of x(t),

PðnvÞ / nav ; ð9Þ

whereby each vth bin may show a distinct relationship of P(n) with n. The multifractal spec-

trum width indicates the heterogeneity of these relationships [161, 162].

Chhabra and Jensen’s [160] method estimates P(n) for Nn non-overlapping bins of n-sizes

and transforms them into a “mass” μ(q) using a q parameter emphasizing higher or lower P(n)

for q> 1 and q< 1, respectively, in the form

mvðq; nÞ ¼
½PvðnÞ�

q

XNn

j¼1

½PjðnÞ�
q

:
ð10Þ

Then, α(q) belongs to the multifractal spectrum only when the Shannon entropy of μ(q, n)

scales with μ(q) estimated as

aðqÞ ¼ � lim
Nn!1

1

lnNn

XNn

v¼1

mvðq; nÞ ln PvðnÞ

¼ lim
n!0

1

ln n

XNn

v¼1

mvðq; nÞ ln PvðnÞ:

ð11Þ

Each estimated value of α(q) belongs to the multifractal spectrum only when the Shannon
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entropy of μ(q, n) scales with n according to the Hausdorff dimension f(q) [160], where

f ðqÞ ¼ � lim
Nn!1

1

lnNn

XNn

v¼1

mvðq; nÞ ln mvðq; nÞ

¼ lim
v!0

1

ln n

XNn

v¼1

mvðq; nÞ ln mvðq; nÞ:

ð12Þ

For values of q yielding a strong relationship between Eqs (11) & (12)—in this study, corre-

lation coefficient r> 0.975, the parametric curve (α(q), f(q)) or (α, f(α)) constitutes the multi-

fractal spectrum and Δα (i.e., αmax − αmin) constitutes the multifractal spectrum width. r
determines determines that only scaling relationships of comparable strength can support the

estimation of the multifractal spectrum.

Surrogate testing using Iterated Amplitude-Adjusted Fourier

Transformation (IAAFT) generated tMF

Multifractality is a necessary entailment of cascade-like intermittency, but evidence of multi-

fractality alone is insufficient to diagnose cascade-like intermittency. Multifractality can follow

from sources other than nonlinear interactions across timescales [163]. To identify whether

non-zero multifractal spectrum width Δα reflected multifractality due to nonlinear interac-

tions across timescales, Δα for the original cue intervals, footfalls, and asynchrony between

visual cues and footfalls was compared to Δα for 32 IAAFT surrogates [133, 134]. IAAFT ran-

domizes original values of the time series time-symmetrically around the autoregressive struc-

ture, generating surrogates with randomized phase ordering but preserving the original time

series’ amplitude spectrum (a detailed step-by-step guide to surrogate testing provided in

Kelty-Stephen et al. [113]. The one-sample t-statistic, tMF—which we have referred to as the

“multifractal nonlinearity,” took the subtractive difference between Δα for the original time

series and that for the 32 surrogates, dividing by the standard error of Δα for the surrogates.

Statistical analysis

We used separate paired-sample t-tests to compare the strength of persistence between the

original time series of cue intervals, stride intervals, and asynchronies between visual cues and

footfalls and their respective shuffled counterparts for self-paced walking and the four paced-

walking conditions. We used two separate linear mixed-effects models to examine the influ-

ence of paced-walking conditions on the strength of persistence (HfGn) and cascade-like inter-

mittency (tMF) in stride intervals. We accounted for individual differences by introducing a

random effect of participant identity in the linear mixed-effects analysis. Finally, we used Pear-

son’s correlation tests to examine the relationship between the negative mean asynchrony in

the timing of visual cues and footfalls and (i) the magnitude of variation, quantified by the

standard deviation SD; (ii) persistence in variation, quantified by the Hurst exponent HfGn;

and (iii) cascade-like intermittency, quantified by the multifractal nonlinearity tMF. We per-

formed all statistical analyses in MATLAB 2020b and considered the outcomes significant at

the two-tailed alpha level of 0.05.

Supporting information

S1 Dataset. Raw data analyzed in the present study. The original time series of cue intervals,

stride intervals, and asynchronies between visual cues and footfalls for self-paced walking and
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76. Mates J, Müller U, Radil T, Pöppel E. Temporal integration in sensorimotor synchronization. Journal of

Cognitive Neuroscience. 1994; 6(4):332–340. https://doi.org/10.1162/jocn.1994.6.4.332 PMID: 23961729

77. Repp BH. Compensation for subliminal timing perturbations in perceptual-motor synchronization. Psy-

chological Research. 2000; 63(2):106–128. https://doi.org/10.1007/PL00008170 PMID: 10946585

78. Repp BH. Sensorimotor synchronization: A review of the tapping literature. Psychonomic Bulletin &

Review. 2005; 12:969–992. https://doi.org/10.3758/BF03206433 PMID: 16615317

79. Thaut M, Tian B, Azimi-Sadjadi M. Rhythmic finger tapping to cosine-wave modulated metronome

sequences: Evidence of subliminal entrainment. Human Movement Science. 1998; 17(6):839–863.

https://doi.org/10.1016/S0167-9457(98)00031-1

80. Van Der Steen MC, Keller PE. The ADaptation and Anticipation Model (ADAM) of sensorimotor syn-

chronization. Frontiers in Human Neuroscience. 2013; 7:253. https://doi.org/10.3389/fnhum.2013.

00253 PMID: 23772211

81. Vaz JR, Groff BR, Rowen DA, Knarr BA, Stergiou N. Synchronization dynamics modulates stride-to-

stride fluctuations when walking to an invariant but not to a fractal-like stimulus. Neuroscience Letters.

2019; 704:28–35. https://doi.org/10.1016/j.neulet.2019.03.040 PMID: 30922850

82. Vos PG, Mates J, van Kruysbergen NW. The perceptual centre of a stimulus as the cue for synchroni-

zation to a metronome: Evidence from asynchronies. The Quarterly Journal of Experimental Psychol-

ogy Section A. 1995; 48(4):1024–1040. https://doi.org/10.1080/14640749508401427 PMID: 8559964

PLOS ONE Temporal organization of stride-to-stride variations contradicts predictive models of walking

PLOS ONE | https://doi.org/10.1371/journal.pone.0290324 August 24, 2023 31 / 35

https://doi.org/10.1038/nphys3553
https://doi.org/10.1039/b204453f
http://www.ncbi.nlm.nih.gov/pubmed/12638853
https://doi.org/10.1103/PhysRevLett.98.200603
https://doi.org/10.1103/PhysRevLett.98.200603
http://www.ncbi.nlm.nih.gov/pubmed/17677681
https://doi.org/10.1016/j.visres.2014.06.011
http://www.ncbi.nlm.nih.gov/pubmed/25014401
https://doi.org/10.1242/jeb.042572
http://www.ncbi.nlm.nih.gov/pubmed/20639427
https://doi.org/10.1371/journal.pone.0195902
https://doi.org/10.1371/journal.pone.0195902
http://www.ncbi.nlm.nih.gov/pubmed/29672558
https://doi.org/10.1152/jn.00131.2009
http://www.ncbi.nlm.nih.gov/pubmed/19553493
https://doi.org/10.1242/jeb.237073
http://www.ncbi.nlm.nih.gov/pubmed/33536309
https://doi.org/10.1016/0165-0270(95)00149-2
https://doi.org/10.1016/0165-0270(95)00149-2
http://www.ncbi.nlm.nih.gov/pubmed/8844520
https://doi.org/10.1016/j.conb.2015.03.006
http://www.ncbi.nlm.nih.gov/pubmed/25827274
https://doi.org/10.1037/h0074736
https://doi.org/10.3758/BF03213056
http://www.ncbi.nlm.nih.gov/pubmed/7770322
https://doi.org/10.1080/00222899709603468
http://www.ncbi.nlm.nih.gov/pubmed/20037008
https://doi.org/10.1016/j.gaitpost.2022.06.015
http://www.ncbi.nlm.nih.gov/pubmed/35820239
https://doi.org/10.1371/journal.pone.0091949
http://www.ncbi.nlm.nih.gov/pubmed/24651455
https://doi.org/10.1162/jocn.1994.6.4.332
http://www.ncbi.nlm.nih.gov/pubmed/23961729
https://doi.org/10.1007/PL00008170
http://www.ncbi.nlm.nih.gov/pubmed/10946585
https://doi.org/10.3758/BF03206433
http://www.ncbi.nlm.nih.gov/pubmed/16615317
https://doi.org/10.1016/S0167-9457(98)00031-1
https://doi.org/10.3389/fnhum.2013.00253
https://doi.org/10.3389/fnhum.2013.00253
http://www.ncbi.nlm.nih.gov/pubmed/23772211
https://doi.org/10.1016/j.neulet.2019.03.040
http://www.ncbi.nlm.nih.gov/pubmed/30922850
https://doi.org/10.1080/14640749508401427
http://www.ncbi.nlm.nih.gov/pubmed/8559964
https://doi.org/10.1371/journal.pone.0290324


83. Arnal LH, Doelling KB, Poeppel D. Delta–beta coupled oscillations underlie temporal prediction accu-

racy. Cerebral Cortex. 2015; 25(9):3077–3085. https://doi.org/10.1093/cercor/bhu103 PMID: 24846147

84. Colley ID, Varlet M, MacRitchie J, Keller PE. The influence of visual cues on temporal anticipation and

movement synchronization with musical sequences. Acta Psychologica. 2018; 191:190–200. https://

doi.org/10.1016/j.actpsy.2018.09.014 PMID: 30308442

85. Repp BH, Doggett R. Tapping to a very slow beat: A comparison of musicians and nonmusicians.

Music Perception. 2007; 24(4):367–376. https://doi.org/10.1525/mp.2007.24.4.367

86. Aschersleben G. Temporal control of movements in sensorimotor synchronization. Brain and Cogni-

tion. 2002; 48(1):66–79. https://doi.org/10.1006/brcg.2001.1304 PMID: 11812033

87. Fu C, Suzuki Y, Kiyono K, Morasso P, Nomura T. An intermittent control model of flexible human gait

using a stable manifold of saddle-type unstable limit cycle dynamics. Journal of the Royal Society Inter-

face. 2014; 11(101):20140958. https://doi.org/10.1098/rsif.2014.0958 PMID: 25339687

88. Fu C, Suzuki Y, Morasso P, Nomura T. Phase resetting and intermittent control at the edge of stability

in a simple biped model generates 1/f-like gait cycle variability. Biological Cybernetics. 2020; 114

(1):95–111. https://doi.org/10.1007/s00422-020-00816-y PMID: 31960137

89. Henning BG, Scarfe AC. Beyond Mechanism: Putting Life Back into Biology. Plymouth, UK: Rowman

& Littlefield; 2013.

90. Wallace R. Essays on the Extended Evolutionary Synthesis: Formalizations and Expansions. New

York, NY: Springer; 2023.

91. Badcock PB, Friston KJ, Ramstead MJ, Ploeger A, Hohwy J. The hierarchically mechanistic mind: An

evolutionary systems theory of the human brain, cognition, and behavior. Cognitive, Affective, &

Behavioral Neuroscience. 2019; 19:1319–1351. https://doi.org/10.3758/s13415-019-00721-3 PMID:

31115833

92. Molenaar PC. On the implications of the classical ergodic theorems: Analysis of developmental pro-

cesses has to focus on intra-individual variation. Developmental Psychobiology. 2008; 50(1):60–69.

https://doi.org/10.1002/dev.20262 PMID: 18085558

93. McLeish TC. Are there ergodic limits to evolution? Ergodic exploration of genome space and conver-

gence. Interface Focus. 2015; 5(6):20150041. https://doi.org/10.1098/rsfs.2015.0041 PMID:

26640648

94. Rodrı́guez RA, Duncan JM, Vanni MJ, Melkikh AV, Delgado JD, Riera R, et al. Exploring the analytical

consequences of ecological subjects unwittingly neglected by the mainstream of evolutionary thought.

Ecological Modelling. 2017; 355:70–83. https://doi.org/10.1016/j.ecolmodel.2017.03.029

95. Colombo M, Palacios P. Non-equilibrium thermodynamics and the free energy principle in biology.

Biology & Philosophy. 2021; 36(5):41. https://doi.org/10.1007/s10539-021-09818-x

96. Ruelle D. Ergodic theory of differentiable dynamical systems. Publications Mathématiques de l’Institut

des Hautes Études Scientifiques. 1979; 50(1):27–58. https://doi.org/10.1007/BF02684768

97. Kuznetsov NA, Wallot S. Effects of accuracy feedback on fractal characteristics of time estimation.

Frontiers in Integrative Neuroscience. 2011; 5:62. https://doi.org/10.3389/fnint.2011.00062 PMID:

22046149

98. Schertzer D, Tchiguirinskaia I, Lovejoy S, Hubert P. No monsters, no miracles: In nonlinear sciences

hydrology is not an outlier! Hydrological Sciences Journal. 2010; 55(6):965–979. https://doi.org/10.

1080/02626667.2010.505173
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