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Visual effort moderates postural cascade dynamics 
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A B S T R A C T   

Standing still and focusing on a visible target in front of us is a preamble to many coordinated behaviors (e.g., 
reaching an object). Hiding behind its apparent simplicity is a deep layering of texture at many scales. The task of 
standing still laces together activities at multiple scales: from ensuring that a few photoreceptors on the retina 
cover the target in the visual field on an extremely fine scale to synergies spanning the limbs and joints at smaller 
scales to the mechanical layout of the ground underfoot and optic flow in the visual field on the coarser scales. 
Here, we used multiscale probability density function (PDF) analysis to show that postural fluctuations exhibit 
similar statistical signatures of cascade dynamics as found in fluid flow. In participants asked to stand quietly, the 
oculomotor strain of visually fixating at different distances moderated postural cascade dynamics. Visually 
fixating at a comfortable viewing distance elicited posture with a similar cascade dynamics as posture with eyes 
closed. Greater viewing distances known to stabilize posture showed more diminished cascade dynamics. In 
contrast, nearest and farthest viewing distances requiring greater oculomotor strain to focus on targets elicited a 
dramatic strengthening of postural cascade dynamics, reflecting active postural adjustments. Critically, these 
findings suggest that vision stabilizes posture by reconfiguring the prestressed poise that prepares the body to 
interact with different spatial layouts.   

1. Introduction 

Standing still and visually fixating on a target in front of us is a 
seemingly simple task. However, hiding within this apparent simplicity 
is a deep layering of texture at many scales. On an extremely fine-scale, 
task completion depends only on ensuring that a few photoreceptors on 
the retina cover the entire target in the visual field. Standing still and 
visually fixating at much coarser scales rests on the mechanical layout of 
the ground underfoot and optic flow in the visual field before you. Be
tween optic flow and mechanical layout, standing still relies on syn
ergies spanning the limbs and joints at smaller scales and subtle postural 
perturbations, triggering reflex arcs and muscle twitches, at yet smaller 
scales. The task of standing still and visually fixating laces together ac
tivities at these multiple scales, entailing a close connection among 
events of widely varying scales, from whole-body postural fluctuations 
at large scales, to head sway and eye movements at medium scales, and 
photoreceptor activity at the finest scales [1–3]. Consequently, the 
postural center of pressure (CoP) fluctuations—which directly relate to 
sway—exhibit similar statistical signatures of cascade dynamics as 

found in fluid flow [4]. The metaphor of ‘cascades,’ as in tumbling water 
that accelerates and splashes down a rockface, captures some critical 
aspects of the dynamics of emergent behavior [5–7]. Destabilizing 
posture emphasizes the postural cascade dynamics [8,9]. Here, we 
propose that perturbing the visual system has a similar effect of 
strengthening postural cascade dynamics, in which the optical flow 
varies with fixation distance, as a meandering stream joins other streams 
and gathers momentum into rushing rapids, becoming more turbulent 
along the way. Whereas multiscale entropy addresses the difference of 
variation across different scales [10,11], cascade dynamics explicitly 
implicates nonlinear interactions lacing these scales together. 

Visually guided posture presents a curious case in which light entails 
mechanical change in bodily center of mass [12–17]. Beyond minuscule 
photoreceptor responses, large-scale layout of visible surfaces supports 
optic flow with bodily sway. Optic flow is the expansion, contraction, or 
rotation of visible surfaces as the body moves forward or backward, or 
turns to the side, respectively. Relative accelerations of visible surfaces 
provide the standing participant with rich information about the layout 
of objects. Placing a fixation target at different viewing distances 
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perturbs the optic flow: changing the relative accelerations of visible 
surfaces as well as imposing retinal-specific constraints of oculomotor 
convergence (i.e., higher oculomotor strain in specific or visual effort in 
general) [18,19], prompting new head- and torso-sway (Fig. 1). Indeed, 
optic flow relies on nesting of behaviors across the aforementioned 
range of scales, including the organism nested in the task environment at 
the largest scale right down to the hierarchical organization of photo
receptor response of optic flow at the finest scale [3]. Comfortable 
viewing distances (50− 100 cm) requiring least oculomotor strain should 
most resemble posture with eyes closed [20,21]. Medium viewing dis
tances beyond most-comfortable viewing in the range of 200 cm stabi
lize posture [22]. Extremely distant or extremely near targets will be 
harder to focus on and have a much slower or faster optic flow, 
respectively, requiring more sway to resolve the image [23]. 

Testing these hypotheses requires examining the divergence of 
postural fluctuations from Gaussian form. Gaussian distributions are 
classically the result of adding very many independent (i.e., non- 
interacting) variables. Interactivity amongst the participating variables 
promotes persistent if also intermittent, uneven growth of variance with 
timescale. Under the central limit theorem, homogeneity of variance 
keeps measurements within short, thin tails of a Gaussian distribution. 
But intermittent growth in variance manifests in distributions with 
longer, heavier tails specifically due to nonlinear temporal correlations 
[24,25]. Testing these tails is even more difficult because they are by 
definition only populated by extreme and relatively rare values. How
ever, fortunately, hydrodynamic-cascade research has yielded an 
analytical method for estimating non-Gaussianity based on querying 
better-populated regions of the distribution [26]. Applying this method 
to physiological measures produces estimates of non-Gaussianity that 
predict clinical outcomes [27–31] and that change with variation in 
both endogenous postural control (i.e., unmanipulated factors that 

respond to but also exert effects upon other variables of the postural 
system) and exogenous postural demands [8,9]. Here, we used this 
method to investigate how constraints imposed by visual effort affect 
postural cascade dynamics. Participants were asked to minimize 
postural sway while maintaining quiet stance for 120 s in six different 
viewing conditions: eyes closed and eyes fixated on a point on a screen at 
a distance of 25, 50, 135, 220, and 305 cm from the eyes. We predicted 
that postural cascade dynamics while fixating at a 50-cm distance would 
resemble eyes-closed posture (Hypothesis-1), and that postural cascade 
dynamics would be weakest while fixating at medium (i.e., 130- and 
220-cm) distances (Hypothesis-2) but strongest at extremely near (i.e., 
25-cm) and extremely far (i.e., 305-cm) distances (Hypothesis-3). 

2. Materials and methods 

The present study is a reanalysis of data from a previous study 
examining postural control in different viewing conditions [32]. 

2.1. Participants 

Seven men and eight women (18–40 years old) participated after 
providing institutionally-approved informed consent. 

2.2. Experimental setup and procedure 

Each participant stood barefoot on two force plates (AMTI Inc., 
Watertown, MA) recording 3D moments and ground reaction forces at 
100 Hz—one foot on each plate, 25 cm apart, before a white background 
spanning his/her visual field (Fig. 1A). A square white screen (5 × 5 cm) 
mounted on a tripod was placed at specific distances in front of the 
participant. From behind the participant, a laser pen projected a static 

Fig. 1. Schematic of the task and effects of eye-to-target distance on postural sway. (A) The suprapostural viewing task of standing quietly with the eyes fixated at a 
distant visual element. (B and C) Visual angle gain for short vs. long eye-to-target distances along the anterior-posterior (AP) and medial-lateral (ML) axes. (D and E) 
Visual angle gain as a function of eye-to-target distance for different sway magnitudes. Closer targets increase AP sway, whereas farther targets increase ML sway. 
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light point on the screen’s center. 
Each participant experienced six different viewing conditions (eyes- 

closed and eyes fixated on the screen’s light point at a distance of 25, 50, 
135, 220, and 305 cm in the front), each three times in randomized order 
over a single 90-min session. In each trial, each participant was 
instructed to minimize the postural sway by maintaining visual fixation 
at the light point projected on the screen for 120 s. Each participant had 
a 5-min break for rest after every six trials. 

2.3. Data processing 

All data processing was performed in MATLAB 2019b (Matlab Inc., 
Natick, MA). Trial-by-trial ground reaction forces yielded a 2D center of 
pressure (CoP) series, each dimension describing anterior-posterior (AP) 
and medial-lateral (ML) axes. Each 60-s trial yielded 12,000-sample 2D 
CoP series and 11,999-sample 2D CoP displacement series. Finally, a 1D 
CoP sample-to-sample planar Euclidean displacement (PED) series 
described postural fluctuations along the transverse plane. Iterated 
Amplitude Adjusted Fourier Transformation (IAAFT) provided phase- 
randomized surrogates using original series’ spectral amplitudes to 
preserve only linear temporal correlations [33]. 

2.4. Canonical indices of endogenous postural fluctuations 

Three linear indices were computed for each CoP PED series: (i) 
Mean of all fluctuations (CoP_PED_Mean), (ii) Standard deviation 
(CoP_PED_SD), and (iii) Root mean square (CoP_PED_RMSE). 

Four nonlinear indices were computed for each CoP PED series: (i) 
Sample entropy (CoP_PED_SampEn), indexing the extent of complexity 
in the signal [34], using m = 2 and r = 0.2 [35]. (ii) Multiscale sample 
entropy (CoP_PED_MSE), indexing signal complexity over multiple 
timescales [10], using m = 2, r = 0.2, and τ = 20 [35]. (iii) We used 
detrended fluctuation analysis [36] to compute Hurst’s exponent, HfGn, 
indexing temporal correlations in original CoP PED series (CoP_
PED_HfGn_Original) and shuffled versions of each series (CoP_PED_HfGn_

Shuffled) using scaling region: 4, 8, 12,… 1024 [37]. Shuffling destroys 
the temporal structure of a signal. (iv) Multifractal spectrum width, Δα, 
indexing the extent of multifractal temporal correlations in the signal. 
Chhabra and Jensen’s direct method [38] was used to compute Δα for 
original CoP series (CoP_PED_ΔαOriginal) and IAAFT surrogate (CoP_
PED_ΔαSurrogate) [6]. 

2.5. Multiscale probability density function (PDF) analysis 

Multiscale PDF analysis characterizes the distribution of abrupt 
changes in CoP PED series {b(t)} using the PDF tail. The first step is to 
generate {B(t)} by integrating {b(t)} after centering by the mean bave 
(Fig. S1A): 

B(t) =
∑t/Δt

i=1
b(iΔt) − bave (1) 

A a 3rd order polynomial detrends {B(t)} within k overlapping 
windows of length 2s, s being the timescale (Fig. S1B). Intermittent 
deviation ΔsB(t) in kth window from 1 + s(k − 1) to sk in the detrended 
time series {Bd(t) = B(t) − ffit(t)} is computed as ΔsBd(t) =

Bd(t + s) − Bd(t), where 1 + s(k − 1) ≤ t ≤ sk and ffit(t) is the polynomial 
representing the local trend of {B(t)}, of which the elimination assures 
the zero-mean probability density function in the next step (Fig. S1C). 
Finally, ΔsB is normalized by the SD (i.e., variance is set to one) to 
quantify the PDF. 

To quantify the non-Gaussianity of ΔsB at timescale s, the standard
ized PDF constructed from all the ΔsB(t) values is approximated by the 
Castaing model [26], with λs as a single parameter characterizing the 
non-Gaussianity of the PDF. λs is estimated as 

λ2
s =

2
q(q − 2)

[

ln
( ̅̅̅

π
√

〈|ΔsB|q 〉
)
+ lnΓ

(
q + 1

2

)

−
q
2

ln2
]

(2)  

where 〈|ΔsB|q 〉 denotes an estimated value of qth order absolute moment 
of {ΔsB}. As λ2

s increases, the PDF becomes increasingly peaked and fat- 
tailed (Fig. S2A). λ2

s can be estimated by Eq. (2) based on qth order ab
solute moment of a time series independent of q. Estimating λ2

s based on 
0.2th moment (q = 0.2) emphasizes the center part of the PDF, reducing 
the effects of extreme deviations due to heavy-tails and kurtosis. We 
used 0.2th moment because estimates of λ2

s for a time series of ~ 12,000 
samples are more accurate at lower values of q [39]. 

Cascade-type multiplicative processes yield the inverse relationship 
λ2

s ~ –log s (Fig. S2B) [29]. For the present purposes, we quantified λ2
s for 

each original CoP PED series and corresponding IAAFT surrogate at 
timescales 5–1000 samples (i.e., 50 ms to 10 s) at steps of 5 samples (50 
ms). 

We used Akaike Information Criterion (AIC) weights obtained via the 
maximum likelihood estimation (MLE) to determine whether the PDF at 
each timescale was a power law, lognormal, exponential, or gamma 
distribution. We include this analysis also to show how AIC-based MLE 
sensitivity to lognormal-like heavy tails differs from multiscale PDF 
sensitivity to the bulk of the distribution. 

2.6. Statistical analysis 

A linear mixed-effect (LME) model using lmer [40] in R package 
lme4 tested λ2

s vs. log-timescale curves for orthogonal linear and 
quadratic polynomials, for interactions with grouping variables 
(Viewing condition × Original, where Original encoded differences in 
original series from surrogates) and with indices of endogenous postural 
fluctuations (Section 2.4.). Statistical significance was assumed at the 
alpha level of 0.05 using R package lmerTest [41]. To test how lognor
mality changed with log-timescale, a generalized linear mixed-effect 
(GLME) fit changes in Lognormality as a dichotomous variable using 
orthogonal linear, quadratic, and cubic polynomials and tested inter
action effects of grouping variables (Viewing condition × Original) with 
those polynomials using glmer [42] in lme4 (Fig. 2). 

3. Results 

The eyes-closed condition elicited nonlinearity in non-Gaussianity 
with log-timescale, showing a stronger linear increase in λ2

s up to the 
timescale of roughly 75 samples or 750 ms (B = 0.95, P = 0.031) and a 
stronger negative quadratic, downward-facing parabolic form (B =
–3.78, P < 0.001) for the original CoP PED series than the surrogates 
(Table S1; Fig. 3A). Fixating at 25 and 305 cm elicited a stronger linear 
increase (B = 2.43, P < 0.001; and B = 3.09, P < 0.001, respectively) in 
the 25- and 305- cm viewing conditions while reversing the downward- 
facing parabolic form of the eyes-closed condition more weakly (B =
4.42, P < 0.001; and B = 1.85, P = 0.003, respectively) of λ2

s vs. log- 
timescale curves (Figs. 3B and 3 F). Fixating the eyes at 135 and 220 
cm elicited a reversal of linear (B = –2.98, P < 0.001; and B = –2.32, P <
0.001, respectively) and downward-facing parabolic forms (B = 1.81, P 
= 0.004; and B = 2.00, P = 0.001, respectively) of λ2

s vs. log-timescale 
curves in Figs. 3D and 3E. In contrast, fixating at 50 cm neither 
affected the linear form (B = –0.09, P = 0.879) nor the downward-facing 
parabolic form (B = 0.73, P = 0.244; Fig. 3C). Thus, the λ2

s vs. log- 
timescale curves differ between the eye-closed condition and all the 
eyes-open conditions except the eyes-fixated-at-50-cm condition. 
Furthermore, whereas the 50- and 305-cm viewing conditions show 
significant growth of the λ2

s vs. log-timescale curves, the 135- and 220- 
cm viewing conditions exhibit significant decay of this curve with scale. 

All indices, except sample entropy of postural fluctuations, showed 
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predictive effects on λ2
s . λ2

s decreased with increases in root mean square, 
and increased with increases in mean, standard deviation, and multi
scale entropy of postural fluctuations (Table S2). Nonetheless, greater 
‘original-minus-shuffled/surrogate’ differences in fractality and multi
fractality diminished λ2

s . Hence, evidence of multifractality with weak 
difference from the surrogates suggests heavy-tailed distributions and 
thus non-Gaussianity [30,31]. 

Interactions of these indices with linear and quadratic terms in the 
first model significantly improved the model fit (χ2

315 = 153961, P <
0.001; Table S2). Most variability in the quadratic form of the λ2

s vs. log- 
timescale curves depended on these indices, as all but two of 41 sig
nificant (P < 0.05) quadratic effects relate to interactions of these 
indices with log-timescale. That is, the parabolic tempering of non- 

Gaussianity across viewing conditions depended on endogenous 
postural control. A cubic polynomial improved model fit (χ2

120 =

2061.8, P < 0.001), reflecting 17 significant interactions with the cubic 
effect, but left all lower-order terms unchanged in coefficients and sig
nificance (Table S3). 

Postural instability typically weakens the growth of lognormality in 
postural fluctuations with log-timescale [8,9]. The original CoP PED 
series exhibited less lognormality than the surrogates (B = –4.28, P <
0.001; Table S4; Fig. 4). Lognormality grew with log-timescale: a linear 
increase (B = 2219.40, P = 0.016), quadratic decrease (B = –1678.38, P 
= 0.052), and cubic increase (B = 559.57, P = 0.051) in the original CoP 
PED series than the surrogates. However, polynomial profiles of the 
growth of lognormality with log-timescale did not differ among the 

Fig. 2. Multiscale PDF characterization of postural fluctuations in a representative participant maintaining quiet stance for 120 s with eyes closed, and eyes fixated at 
a point at a distance of 25, 50, 135, 220, and 305 cm from the eyes. From to bottom: CoP trajectories along the anterior-posterior (AP) and medial-lateral (ML) axes. 
CoP PED series. {ΔsB(i)} for s = 0.5, 2, and 8 s. Standardized PDFs (in logarithmic scale) of {ΔsB(i)} for s = 0.5, 2, and 8 s (from top to bottom), where σs denotes the 
SD of {ΔsB(i)} for s = 0.5, 2, and 8 s (from top to bottom), where σs denotes the SD of {ΔsB(i)}. 
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conditions. Hence, observed differences in the λ2
s vs. log-timescale 

curves reflect differences in the bulk of the postural-fluctuations distri
butions rather than in the tail. 

4. Discussion 

Visual effort moderates postural cascade dynamics, given that 
standing still and visually fixating at shorter and longer distances 
unleashed stronger cascade dynamics than standing still (Hypothesis-3) 
and visually fixating at an optimal distance or standing still without 
visually fixating (i.e., with eyes closed; Hypotheses-1 & 2). Importantly, 
these effects are not reducible to the mere availability of visual infor
mation, as standing still and visually fixating at an optimal distance and 
standing still with eyes closed showed similar, if not identical cascade 
dynamics. Nor is this effect reducible to postural stability, as the growth 
of lognormality in postural fluctuations with timescale did not depend 
on the viewing condition. Instead, these effects reflect endogenous 
postural control, as known indices of endogenous postural fluctuations 
moderated the effect of viewing condition on postural cascade dy
namics. In short, the moderating of postural cascade dynamics by visual 
effort is an endogenous phenomenon that is difficult to counteract. 

Past work has shown that variability in postural fluctuations is 
reduced when visually fixating at near as opposed to distant targets [12, 
13,22], an effect that has been directly attributed to the precision de
mands of viewing distance [32]. The present finding significantly adds 
to this work by showing that this effect is not linear. Visually fixating at 
too-close and too-far targets may introduce ambiguity between sway 
and optic flow: too-close targets making head-sway more likely to 
destabilize the posture, and too-far targets might recruit more 
torso-sway. However, visually fixating at an optimally placed target may 
resolve this ambiguity as the body courses with fluctuations ferrying 
information across the body. Furthermore, the stark similarities in the 

cascade dynamics between standing still and visually fixating at an 
optimal distance and standing still with eyes closed adds a novel 
dimension to the family of perception-action couplings in postural 
control. Postural control does not depend on vision per se. Instead, it 
depends on how visual information is laced together with activities at 
multiple scales: subtle fluctuations of the head, torso, and the whole 
body and photoreceptor support of the target’s retinal image. 

Postural cascade dynamics is rooted in the known physiology. 
Indeed, the biophysical substrate supporting postural control is imag
ined as a neurally-tunable bodywide multifractal tensegrity (MFT) 
network consisting of the connective-tissue net and extra-cellular matrix 
(ECM) in which components hang together by tensional and compres
sion forces at multiple scales, from micro (e.g., cells and membranes) to 
macro (e.g., muscles and bones) [43–45]. This network cooperates 
directly and uninterruptedly with the nervous system and exhibits 
similar cascade-like dynamics as in “neuronal avalanches” [46,47]. It is 
no small coincidence that tensegrity and avalanche models all converge 
on multiplicativity [48,49] that inspired multiscale quantification of 
non-Gaussianity [27–29]. Hence, MFT approaches suggest multiple 
points of entry through which stimulation elicits cascades to spread 
across scales—from the surface underfoot [8] to the loads at hand [9] 
and now from the incoming visual information. As the cascade metaphor 
entails, multiple scales are not merely coexisting but explicitly inter
acting, with influences of one spreading to others. If mechanically and 
visually perturbing posture engender cascade dynamics similarly [8,9], 
then postural control may emerge from the perceptuomotor sensitivity 
of specifically multiplicative fluctuations to the environment. The 
methods introduced here would enable future investigations into how 
different suprapostural tasks lace together deep texture at very many 
scales. 

In short, the present findings suggest that visual perception by no 
means is a passive function proceeding in parallel to still posture—the 

Fig. 3. Log-timescale dependence of the non-Gaussianity index λ2
s . Mean values of λ2

s for the participants standing quietly for 120 s in different viewing conditions. 
(A) Eyes closed. (B) Eyes fixated at 25 cm. (C) Eyes fixated at 50 cm. (D) Eyes fixated at 135 cm. (E) Eyes fixated at 220 cm. (F) Eyes fixated at 305 cm. Vertical bars 
indicate ±1SEM (N = 15). Notice that the λ2

s vs. log-timescale curves differ between the eye-closed condition all the eyes-open conditions except the eyes-fixated-at- 
50-cm condition. 
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poise carried by the body as it stands and looks suggests that moving 
visual targets nearer or farther brings a reorganization of postural in
teractions across scales. This standing-and-looking preamble to action 
brims with dynamic redistributions of tensional and compression forces. 
Indeed, the participants completed no task beyond standing still and 
maintaining visual fixation. But these cascades affecting a dynamic 
balance of forces across the body seem to be essential foundations for 
how the body reaches out beyond itself to engage with the environment 
[7,50–52]. So, the present findings show how vision plays not only upon 
the photoreceptors in the eyes but also across the full-body postural 
system. 
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[22] Z. Kapoula, T.-T. Lê, Effects of distance and gaze position on postural stability in 
young and old subjects, Exp. Brain Res. 173 (2006) 438–445, https://doi.org/ 
10.1007/s00221-006-0382-1. 

[23] J. Munafo, C. Curry, M.G. Wade, T.A. Stoffregen, The distance of visual targets 
affects the spatial magnitude and multifractal scaling of standing body sway in 
younger and older adults, Exp. Brain Res. 234 (2016) 2721–2730, https://doi.org/ 
10.1007/s00221-016-4676-7. 

[24] E.A. Codling, M.J. Plank, S. Benhamou, Random walk models in biology, J. R. Soc. 
Interface 5 (2008) 813–834, https://doi.org/10.1098/rsif.2008.0014. 

[25] M.A. Lomholt, K. Tal, R. Metzler, K. Joseph, Lévy strategies in intermittent search 
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