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On the scaling properties of 
oscillatory modes with balanced 
energy 

Dobromir G Dotov* 

LIVELab, Psychology, Neuroscience and Behaviour, McMaster University, Hamilton, ON, Canada 

Animal bodies maintain themselves with the help of networks of physiological 

processes operating over a wide range of timescales. Many physiological signals are 

characterized by 1/f scaling where the amplitude is inversely proportional to 

frequency, presumably reflecting the multi-scale nature of the underlying 

network. Although there are many general theories of such scaling, it is less 

clear how they are grounded on the specific constraints faced by biological 

systems. To help understand the nature of this phenomenon, we propose to 

pay attention not only to the geometry of scaling processes but also to their 

energy. The first key assumption is that physiological action modes constitute 

thermodynamic work cycles. This is formalized in terms of a theoretically defined 

oscillator with dissipation and energy-pumping terms. The second assumption is 

that the energy levels of the physiological action modes are balanced on average to 

enable flexible switching among them. These ideas were addressed with a 

modelling study. An ensemble of dissipative oscillators exhibited inverse scaling 

of amplitude and frequency when the individual oscillators’ energies are held equal. 
Furthermore, such ensembles behaved like the Weierstrass function and 

reproduced the scaling phenomenon. Finally, the question is raised whether this 

kind of constraint applies both to broadband aperiodic signals and periodic, narrow-

band oscillations such as those found in electrical cortical activity. 

KEYWORDS 

1/f, EEG, homeokinetics, homeostasis, physiological control, scaling, aperiodic, 
oscillations 

1 Introduction 

Neural and cognitive function distributes its activity across a wide range of temporal 

and spatial scales replete with feedback loops and noise (Buzsaki and Draguhn, 2004). 

There is renewed interest in the scaling properties of aperiodic ensemble activity of neural 

systems and the potential role of critical dynamic regimes (Sporns, 2022). Neural function 

is also enmeshed with other faster and slower processes of autonomous physiological 

control. Network physiology studies such nonlinear control across scales and the fluid 

reorganization between distinct network modules and dynamic motifs (Ivanov, 2021). 

One way to quantitatively address such networks would be to try to decompose them into 

individual units and their interactions, which can be described as a micro-to-macro 

approach. One can also seek theoretically-motivated meso- and macro-variables that offer 
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insight into the underlying complexity. For example, quantifying 

the variability and distributional properties of a collection of 

physiological time-series can help distinguish between 

homeostatically regulated target dimensions and dynamic 

response dimensions that absorb perturbations (Fossion et al., 

2018), in line with Ashby’s theoretical search for essential 
variables (Ashby, 1960). Another possibility is to analyze and 
interpret the observed inverse scaling relation between frequency 

and power, in its most general form known as 1/f noise, as it has 
been mapped to optimal and healthy ranges of performance 

(Lipsitz and Goldberger, 1992; Stergiou et al., 2006). 

The phenomenon of 1/f noise is observed in physical (Bak, 
1999), neural (Buzsáki, 2009), and cognitive systems (Gilden 

et al., 1995; Kello et al., 2007). Zipf’s law is a similar function, 

observed universally in human languages, that consists of inverse 

scaling between word-use frequency and its rank. Beginning with 

Mandelbrot’s proposal (Mandelbrot, 1953), there has been a 

tradition of explaining the ubiquity of such inverse scaling in 

terms of maximizing information-theoretic quantities in multi-

scale systems (Zhang, 1991; Costa et al., 2002; Yu et al., 2005; 

West et al., 2008). For example, the Zipfian scaling is consistent 

with an optimal trade-off between the use of few words often to 

minimize effort and the use of rare words to maximize 

communication (Zipf, 1949; i Cancho and Solé, 2003). 

In search for organizing principles for multi-scale network 

physiology, we borrow from Arthur Iberall’s homeokinetics, a set of  

ideas about homeostatic regulation in thermodynamically  open  

complex systems. Biological systems distribute their internal 

regulation among multiple scales and operational modes of 

activity. . Fluxes and potentials of metabolic energy are involved at 

all levels and stages of operation; at every scale of description, our 

bodies use energy and produce heat to do work (Iberall and Soodak, 

1987). These can be seen as limit-cycles because of the rough 

periodicity and relative resistance to perturbation. Importantly, 

switching among such modes is most efficient if they are 

energetically unbiased. As raising either the amplitude or frequency 

of a real physical system takes energy, to be unbiased, physiological 

action modes must exhibit a trade-off between frequency and 

amplitude in the form of the well-known 1/f scaling, (Iberall and 
Soodak, 1987; Iberall, 1995). This is a thermodynamic counterpart to 

the information-theoretic arguments. Here we test this idea by 

investigating the properties of a model that consists of an 

ensemble of oscillatory dissipative units with a spectrum of 

intrinsic frequencies but constrained by their energy levels. 

2 Material and methods 

2.1 An ensemble of canonical-dissipative 
oscillators as a Weierstrass function 

The model consists of superimposed independent processes 

(Eliazar and Klafter, 2009). The individual units are not 

stochastic signals, however, but oscillators with a physically-

interpretable energy parameter. The unit of the system is the 

canonical-dissipative oscillator that consists of a conservative 

part with a frequency parameter ω, a velocity-dependent 

dissipative part, and noise term with parameter Q (Haken, 

1973; Schweitzer et al., 2001; Frank, 2010; Mongkolsakulvong 

and Frank, 2010; Frank et al., 2011). 

€x  −ω2 x − γ _x H − b( ) + 
 
Q

 
Γ t( )  (1) 

The energy of the oscillator is given by the following equation. 

H  
ω2 x 2 

2 
+ _x 2 

2 
(2) 

This is in analogy with Hamiltonian mechanics which aims to 

express oscillatory dynamical systems not in kinematic 

coordinates such as position but in a coordinate system of 

potential and kinetic energy. The energy given by Eq. 2 is 

balanced by a pumping parameter b. Due to the system’s 

dissipative nature, in time H converges to the pumping 

parameter b (Frank, 2010), and γ determines the speed of this 

convergence. Interestingly, even though the initial motivation 

was different, Eqs (1) and (2) together amount to the same 

form as the so-called hybrid Van der Pol–Rayleigh (Kay et al., 

1987) oscillator, plus an added stochastic term. The 

hybrid oscillator was a phenomenological model that 

accounted for important characteristics of human rhythmic 

movement, one of them being an inverse relation between 

movement amplitude and frequency (Haken et al., 1985; Kay 

et al., 1987). Note also that equations of the same form have 

been introduced elsewhere as an ‘energy oscillator’ (Buchli 
et al., 2006). 

To complete the model, we defined an ensemble of N = 10  

canonical-dissipative oscillators to be solved numerically, where 

dot-notation indicates the time-derivative. 

€xj  −ω 2 j xj − γ _x j Hj − b  + 
 
Q 

 
Γj 

Hj  
ω2 
j x 2 j
2 

+ 
_x 2 j 
2 

(3) 

The ensemble at time point i was the sum across the state 

variables xj of the N oscillators. 

yi  ΣN 
j1 xji (4) 

This reduces the N harmonic waves see Figure 1A to a one-

dimensional time series, the increments of which exhibit scaling 

properties, see Figure 1B. 

Importantly, this model works like a Weierstrass function 

which also is a summation of harmonic waves with an inverse 

scaling relation between amplitude and frequency. 

Wα x( )   
∞ 

n0 b
−nα cos bn x( ) (5) 

The Weierstrass function helped spur the study of fractal objects 

by introducing a benchmark example of a function that is 
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continuous in time yet everywhere-singular for certain 

parameters (Mandelbrot, 1982). Its α parameter agrees well 

with its Hurst exponent h (Zhao et al., 2013). In the same 

vein, both Eq. 5 and the model in Eqs. 3, 4 are special cases 

of a more general approach that generates Lévy laws and 1/f β 

noises using random frequencies, random amplitudes, and any 

seed pattern in lieu of harmonic waves (Eliazar and Klafter, 

2009). Note that the fractal properties of the Weierstrass function 

depend on its parameters. Similarly, the outcome of the present 

approach depends on model and numerical integration 

parameters such as dt, N, Q, and the range of ω. We used 

hand-picked parameters as it is beyond the scope of the 

present work to study the full parameter space. Eqs. 3 and 4 

should be seen as a conceptual model of how a potentially 

meaningful variable could constrain oscillatory physiologically 

processes, not as a robust generative model of physiological 

signals. 

2.2 Simulations 

We simulated trials by integrating the system and taking its 

summed ensemble, Eqs. 3 and 4 with an Euler step of dt = 10–3, 

random initial conditions, and a trial duration of 1 s plus an 

initial transient part which was discarded. Each oscillator had a 

different angular frequency, ωj = 2  π 1.6681j−1 rad*s−1, j= 
{1,2,...,10}, resulting in a range from 1 to 100 Hz. The other 

two parameters were less relevant to the present question and 

were identical across units, γ = 10 and Q = .01. γ determines how 

quickly each oscillator settles on its limit cycle and would play a 

more prominent role if transient dynamics and effects of 

different initial conditions were to be investigated. Q scales 
the magnitude of an additive Gaussian force, Γ ~ N (0, 1). To  

simplify the analysis, Q was chosen to be negligible. The initial 
phases were random and the oscillators were not coupled, in line 

with the assumption that physiological processes need a degree of 

independence to maintain their function (Iberall, 1995). They 

were constrained, however, by an energy resource bj. 

In addition to the primary scenario defined by equal energy 

per unit, we investigated whether scaling properties depended on 

the distribution of the energy pumping parameter. We simulated 

ten trials in each of four different conditions. The first three 

conditions were characterized by a pumping parameter that was 

either monotonically increasing, constant, or monotonically 

decreasing with respect to the intrinsic frequencies of the 
oscillators. For the increasing condition, b was given by bj = 
2.5.8j+2. The decreasing condition was the reverse of that. In the 

constant condition, all bj = 102. In the fourth condition, the 

parameter was selective, whereby one oscillator was given 

privileged access to a larger pumping term, bj=5 = 103 and 

bj≠5 = 101. At present, we do not address switching and 

coordination among modes. Future work can explore the role 

of competitive coupling to the energy resource. 

3 Results 

First, we verified that the energies of the individual oscillators 

in Eq. 3 responded to the pumping parameter b. We pooled all 

units from all trials (n = 400 from ten units in ten trials in four 

conditions). The input parameters b was regressed against the 
time-average of the observed energies H defined by Eq. 2. As  

expected, the agreement was strong with R2 = .9999 and a slope of 

1.0054. Next, we analyzed the scaling of oscillator amplitudes. In 

each trial consisting of N = 10 parallel oscillators, we regressed 
linearly in log-log space their observed trial-averaged half-

FIGURE 1 
(A) Representative trial involving ten oscillators simulated using Eq. 3, 4 in the condition of constant energy b across oscillators. (B) Their 
differenced ensemble summed activity, Eq. 4, has a scaling exponent of α = .9703. 
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amplitudes with respect to their frequencies, see Figure 2A. As  

expected, the scaling was inverse for constant b (a mean 

M = −1.016 and standard deviation SD = 0.001 across the ten 
simulation runs). This serves to confirm that the model defined 

by Eq. 3 effectively mimics one aspect of the Weierstrass 

function. The exponent was steeper for decreasing b, that is 

with more energy at the low-frequency oscillators (M = −1.724, 
SD = 0.012). Conversely, with an increasing b which put more 

energy in the higher-frequency oscillators, the scaling was less 

steep (M = −0.310, SD = 0.009). In the selective condition, the 
regression yielded inverse scaling (M = −1.045, SD = 0.002), 
consistent with the fact that nine out of ten oscillators had equal 

energy. Importantly, Figure 2A also shows that the one privileged 

oscillator produced a prominent peak. 

Having computed the observed individual unit energies using 

Eq. 2, we looked at their relation to amplitude and frequency. As 

implied by the strong agreement between trial parameters b and 
the observed energies, the energy profile was flat with respect to 

the amplitude and frequency spectrum only in the equal energy 

condition, see Figure 2B. 

Next, we analyzed the scaling properties of the ensemble yi 
defined by Eq. 4. We used detrended fluctuation analysis, a 

method for the scaling exponent of self-affine signals that has 

become one of the benchmark tools in the analysis of 

physiological time-series (Peng et al., 1994; Buldyrev et al., 

1995). It gained prominence with its application to inter-beat 

intervals in cardiac recordings (Peng et al., 1995). It relies on the 

fact that aperiodic signals with scaling properties also exhibit 

scaling of the amount of fluctuation, as quantified by the mean of 

running windows of root-mean-square, relative to the size of the 

windows, see Figure 2C. The analysis parameters consisted of 

first-order detrending, a minimum window size of ten points, 

and no integration of the input data because the increments of 

the summed ensemble exhibited scaling. As Figure 2C shows, in 

the constant b condition yi was a time-series with a scaling 

exponent that approximated ideal α = 1 (M = 0.972, SD = 0.035 
across the ten simulation runs). Favouring higher frequencies 

with an energy parameter that increased with frequency reduced 

the exponent (M = 0.398, SD = 0.007). Favouring the lower 
frequencies increased the exponent (M = 1.551, SD = 0.096). 
Having a mix of equal energy plus one emphasized frequency in 

the selective b condition also increased the exponent (M = 1.282, 
SD = 0.008). Note that scaling analysis in the spectral domain is 

also motivated in the present scenario, although the results would 

depend on how the frequency bins are aligned with the 

frequencies of the component oscillators. This implies that 

our method cannot be considered an ideal generative model 

for 1/f noise, at least not until the role of more dense sets of 

component oscillators is investigated. 

The present ideas suggest the possibility that isolated narrow-

band modes would exhibit the same association between 

amplitude and frequency. The scaling of individual 

physiological oscillatory processes has not been investigated as 

much from this perspective, aside from the observed inverse 

relationship between amplitude and frequency in repetitive 

movements (Haken et al., 1985; Kay et al., 1987). To this end, 

here we propose a brief re-analysis of published summaries of 

narrow-band ranges of electrical cortical activity (Stern, 2013; 

Reilly, 2015). 

Cortical activity as recorded on the surface of the scalp with 

EEG can have pronounced narrow bands that reflect the 

conscious state and ongoing cognitive activity of the 

participant (Stern, 2013; Reilly, 2015). To name a few 

examples, deep sleep is associated with increased activity in 

FIGURE 2 
(A) The relationship between amplitude and frequency of the individual canonical-dissipative oscillators in Eq. 3. Each of the ten lines in a given 
condition corresponds to a simulated trial run comprising N =10 parallel oscillators, each with a different intrinsic frequency in the range from 1 to 
100 Hz. Conditions are color-coded and refer to the distribution of the pumping parameter b relative to the oscillators’ frequencies. Specifically, b 
could increase, decrease, stay constant, or stay constant and low with the exception of one selected privileged frequency. Lines were jittered for 
visibility. (B) The same figure as (A) but with an added axis for the oscillators’ energies reveals that, according to the present definition of oscillator 
energy in Eq. 2, 1/f scaling is associated with a flat energy spectrum. (C) DFA analysis of the ensemble-summed time-series. The fluctuation functions 
confirm that constant pumping, or equal energy across the component oscillators, results in scaling exponent approximately equal to unity. 
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the δ band (.1–4 Hz), drowsiness with the θ band (4–8 Hz), 

awake but mentally relaxed state with α (8–13 Hz), focusing and 

mental agitation with β (14–30 Hz), and multi-sensory 

stimulation and integration with γ (30 + Hz). We pooled 

together the EEG amplitude and frequency ranges per band 

reported in sources (Stern, 2013; Reilly, 2015). We selected 

these sources for convenience because they offered 

representative summaries of standard EEG bands, not datasets 

of raw EEG recordings. We fitted a power-law to the data points 

characterizing the boundaries of the bands. Because there were 

some discrepancies between the two sources, we used the extreme 

values, namely maximum amplitude at minimum frequency and 

minimum amplitude at maximum frequency. As Figure 3 shows, 

the overall trend is close to inverse scaling of amplitude with 

frequency, A ∝ f −.95. This question requires more thorough 

dedicated investigation in the future. To confirm this 

observation, the amplitude of focal EEG oscillatory activity 

needs to be dissociated from the underlying broadband 1/f 
profile of EEG (Donoghue et al., 2020). 

4 Discussion 

Here we presented a modelling study that investigated a 

possible link between 1/f scaling of broadband physiological 
signals and the energy that constrains the underlying 

physiological control modes. We discovered that the 

constraint on energy led our model system to mimic the 

Weierstrass function. This is interesting because the latter is a 

paramount example of a fractal object but, to our knowledge, it 

does not have a physical grounding, originally being known as a 

so-called mathematical monster (Mandelbrot, 1953). Similarly, 

the canonical-dissipative oscillator was not designed for the 

present purposes, we merely put a small number of units in 

an ensemble characterized by a broad frequency spectrum and 

applied a theoretically-motivated constraint on their energy 

parameter. The canonical-dissipative oscillator is defined by an 

intrinsic frequency, a dissipative part, and energy-pumping which 

is balanced by the dissipation, allowing the system to settle on a 

limit-cycle with an energy-dependent amplitude. (Haken, 1973; 

Frank, 2010). This was motivated by ideas from Arthur Iberall’s 

theory of complex systems (Soodak and Iberall, 1978; Iberall and 

Soodak, 1987). According to Iberall, physiological signals reflect 

multiple action modes existing on a broad spectrum of time- and 

space-scales and these modes tend to have equal energies. The 

equal-energy condition ensures that switching among them is 

unbiased and catalytic, meaning that switching among modes is at 

a considerably lower energy level than the modes themselves. 

Understanding the role of catalytic processes in the self-

organization of biological function was advanced further by the 

notion of autocatalytic sets (Kauffman, 1993; Kauffman, 1995). 

This is related to a popular idea about scaling phenomena, 

namely that they reflect a system poised in a critical state 

where stability and adaptability are balanced optimally. This is 

relevant to neural dynamics as well, given renewed interest in 

critical phenomena in the brain (Sporns, 2022). We are yet to 

determine how the idea of energy constraint fits within the 

existing landscape of complex systems theories. For example, 

the original sand-pile model employed a damped pendulum as a 

physical metaphor for the constitutive unit of the system (Bak 

et al., 1988), hence an analysis in terms of potential and kinetic 

energy must be possible in principle. More recently, a novel 

notion of complex system stability has gone beyond static 

homeostasis. Systems with antifragility not only maintain the 

stability of a target internal variable when exposed to a 

perturbation but also grow and increase their capacity to 

sustain future perturbations (Taleb, 2012). The connections 

between criticality and antifragility are only beginning to be 

explored computationally (Pineda et al., 2019). 

The idea that a physical system needs more energy to increase 

its amplitude and/or frequency is a simple one, yet its relevance to 

neural oscillations is yet to be determined. There is a related 

observation, however, an established time-mass relation in neural 

electrophysiology: the magnitude and period of a wave tend to be 

associated with the size of the underlying substrate of co-

activated neurons (Buzsaki and Draguhn, 2004; Grigolini 

et al., 2009; Aru et al., 2015). It is important to point out that 

the approach advanced in the present work does not fit easily with 

current thinking about the nature of aperiodic and oscillatory neural 

FIGURE 3 
The ranges of narrow-band electrical cortical activity are 
shown in terms of their respective upper left (maximum amplitude, 
minimum frequency) and lower right (minimum amplitude, 
maximum frequency) corners. The power-law fit through 
these data is also shown. 
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dynamics. These two kinds of dynamics tend to be associated with 

different generative mechanisms (He, 2014), whereas our 

assumption was that they both obey the same condition of 

balancing energy. We adhere to the idea that physical constraints 

on function and structure are simpler and more fundamental than 

biological mechanisms and it is not impossible that different 

biological mechanisms are subject to the same constraint. 

It is an important reminder that power laws rarely provide an 

ideal fit of empirical scaling phenomena in EEG (Bedard et al., 

2006) and generally in biological systems (Clauset et al., 2009). 

Still, the overall trend is a fact and its source needs to be 

identified. Indeed, biological structure and function often can 

be seen as a combination of a global constraint based on physical 

law and local constrains based on specific adaptations (West and 

Goldberg, 1987). In addition to developing generative models of 

self-organizing systems with scaling properties, it is important to 

understand the various constraints that shape the evolution and 

development of physiological networks. 
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