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Abstract

The digital format of remote sensing data facilitates the 

measurement of spatial patterns. The concept o f measurability of 

spatial patterns has important geographic implications and may open 

up an alternative applications for satellite remote sensing of urban 

areas. Texture analysis, a set of techniques developed in pattern 

recognition, is found to be useful in measuring spatial pattern on 

digital imagery. Two approaches of texture analysis are selected. 

One is Haralick's Spatial Dependence Matrix, the other is 

Jernigan's, et. al., Entropy-based texture measures. They perform in 

spatial domain and frequency domain respectively. Ten subimage 

areas in Omaha suburb are selected from a Landsat TM image. The 

subimage areas includes the major residential spatial patterns in the 

area, Through analysis, it is found that residential areas with



d ifferent spatial features do present d istinguishable texture 

measures, in both SPADEP and Entropy-based texture analysis. With, 

the introduction of texture analysis, a new set of terminology can be 

used to describe a spatial pattern and may greatly enhance our 

concepts of certain spatial phenomena. Potential application of 

texture analysis in this context could be in urban land use mapping, 

computer-assisted land use monitoring and comparative study in 

urban spatial patterns.
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Chapter 1: Introduction

I. INTRODUCTION

Satellite imagery has been used with great success in the study 

of the atmosphere, lithosphere, water bodies, vegetation and soil. 

However, its application to urban areas is limited largely to 

broad-scale land use mapping, and even these results are somewhat 

disappointing. This is due to the low spatial resolution of satellite 

imagery and an orientation in remote sensing toward spectral 

analysis. The improvements of the sensor system and the processing 

techniques may eventually overcome the obstacle of spatial 

resolution; meanwhile, extending our concepts of remote sensing 

beyond spectral analysis could also open up alternative applications 

of satellite remote sensing to the study of urban areas.

Satellite data such as Landsat imagery is recorded in digital 

form by a series of electromagnetic sensors. To most people, this is 

simply a prerequisite for digital image processing and image 

enhancement. The geographic implications of digital imagery, 

especially to the study of urban areas, are largely overlooked.

A city may be composed of various land use types, such as
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residential, commercial, industrial etc. Each of these areas contains 

certain physical elements, i.e., street, building, open space (paved or 

vegetation covered) etc. A land use pattern is a certain combination 

of these elements, which is different from one to another both 

quantitatively and qualitatively. Even within the same type of land 

use, the spatial combination can be different. A new and an old 

residential area may have a similar composition of physical elements, 

i.e., they both have houses, streets, lawns and trees. An older 

residential area, however, may have grid street layout and houses 

more closely together while in the new residential area, streets are 

curved, trees are small and houses are further apart. When these 

patterns are represented in a digital image of proper scale, they 

become associated with reflectance patterns which can be described 

by the spatial relationship among reflectance levels (gray levels). In 

another words, the spatial characteristics of a land use pattern 

become measurable in a digital image. Although the spatial 

characteristics thus obtained are only the physical features of 

certain land use patterns at a certain scale, the notion of the 

measurability of spatial patterns in digital imagery is worthy of 

consideration.

In urban geography, it is a tradition to study the physical form 

in a city as a device to reveal the social and economic processes. In
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fact, major geographic models on urban growth and intra-urban 

structures are morphological with the concentric zone (Burgess), 

sector (Hoyt), and multi-nuclei models (Harris and Ullman) being 

often cited. When a city is represented in a Landsat image, the 

identity of most individual morphological elements, such as houses, 

expressed by their shapes, w ill be lost, but the spectral 

characteristics of these elements and the spatial relationships among 

them are generalized in the reflectance patterns. Furthermore, such 

relationships become measurable and may enhance some of our 

conceptions of urban geography.

Although measuring characteristics of spatial patterns in 

digital imagery may be a novel idea, a similar notion, texture 

analysis, has long been recognized in the field of'..pattern recognition. 

Texture analysis, though defin itions and methods vary, is 

fundamentally a way to measure the spatial relationships among gray 

levels. Numerous mathematical models have been developed to 

implement texture analysis. The primary objective of such studies is 

to find distinguishable texture measures for the sake of automated 

pattern recognition and classification. Many of these models are 

designed to simulate pattern recognition by human beings, and are not 

necessarily relevant to the spatial characteristics with which we are 

concerned. Nevertheless, it is found that some texture measures,
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such as Haralick’s (1976) Spatial Dependence Matrix approach and 

Jernigan's, et. al. (1983) Entropy-based texture measure in the 

frequency domain, tend to reveal the overall characteristics of a 

spatial pattern and contain certain geographical implications.

The theoretical assumption of this thesis is that different 

spatial patterns on the earth surface are measurable in digital 

imagery. Further, texture analysis, a set of techniques developed in 

pattern recognition, may be used to acquire such measurements. The 

measurability of spatial pattern in a digital image may greatly 

enhance our understanding of certain spatial organizations. It is the 

objective of this thesis to measure spatial patterns on digital 

imagery and in particular, to seek possible applications to the 

analysis of urban areas.

To evaluate the potential of the concept of measurability of 

spatial pattern in digital imagery and techniques of texture analysis, 

urban residential patterns are chosen for study. Residential areas 

constructed at different times, based on different street systems, 

resided in by different groups of people, situated in different 

locations will exhibit different spatial characteristics. Would such 

characteristics be revealed by certain texture measures from Landsat 

digital imagery? Would similar residential patterns have similar 

measures? What are the geographic implications of these

4



measurements?

Landsat Thematic Mapper (TM) imagery, is used in this project. 

The higher spatial resolution of TM imagery (30 meters per pixel) may 

better represent the spectral reflectance of basic physical elements 

in an urban scene. Texture analysis has been largely applied on MSS 

data (79 meters per pixel). Selecting TM imagery in this study can be 

viewed as another investigation of its potential application to urban 

areas.

The following section provides a comprehensive review of 

texture analysis and spatial pattern recognition.

II. TEXTURE ANALYSIS AND SPATIAL PATTERN RECOGNITION

A. The Definition of Texture

In general, texture in an image refers to the spatial relationships 

of reflectance levels, often expressed as gray tones. Texture has 

generally been defined through an enumeration of characteristics such 

as fine, coarse, regular, irregular, etc., in order to facilitate the 

implementation of corresponding quantitative measures. However, it 

is found that a precise definition of texture does not exist. In his 

review article on texture analysis, Haralick (1979) proposed the 

tone-texture concept which is the further development of his early
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concept of discrete tonal feature  (1973). According to the 

tone-texture concept, gray tone and texture are not independent. The 

relationship between tone and texture is inextricable. Tonal 

primitive has been defined as a maxima connected set of pixels having 

a given tonal property (Haralick, 1979). In order to characterize 

texture, one must characterize the tonal primitive properties as well 

as the spatial interrelationships among them due to the inextricable 

relationships, between tone and texture; thus, texture analysis, 

indeed, is two dimensional. However, Haralick pointed out, the 

existing approaches tend to emphasize one or the other aspect and do 

not treat each equally.

B. Major methods of textural analysis

Computer-aided texture analysis has been studied since 1960 

(Weszka, et. al. 1976). Major methods have been developed in both 

spatial and frequency domains. To give a general view of texture 

analysis, Haralick published an article in 1979 reviewing typical 

statistical and structural’ approaches to texture analysis. Since then, 

new approaches have been emerging but it seems that they are still 

confined to the classic methods. Therefore, Haralick’s classification 

of texture approaches is still useful for purposes of review.

According to Haralick, approaches to texture analysis of
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imagery can be divided into two categories, statistical and 

structural. There had been eight statistical approaches to the 

measurement and characterization of image texture: autocorrelation 

functions, optical transform, digital transforms, textural edgeness, 

structural elements, spatial gray tone coocurrence probabilities, gray 

tone run lengths, and autoregressive models. As indicated before, each 

of these techniques tends to emphasize one or other aspects of the 

texture feature.

The first three of these approaches are performed in the 

frequency domain. It is well known that specific components in the 

spatial frequencies domain representation of an image contain 

explicit information about the spatial distribution. Autocorrelation 

functions, i.e., the Fourier transform of the power spectrum, is a 

measure of the linear dependence between gray levels. It tends to 

reveal the properties of tonal primitives (especially their sizes). The 

faster the autocorrelation function drops off with distance, the 

smaller size of tonal primitives is indicated, the finer the texture. 

Pioneer work was done by Kaizer with seven aerial photographs of an 

Arctic region (1955). Since then, the autocorrelation approach has 

been seldom used. More recent texture analyses in frequency domain 

has focused on the Fourier power spectrum. Early experiments were 

optical processing, measuring the light distribution of the Fraunhofer
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diffraction pattern (the optical equivalence of the Fourier power 

spectrum). The experiments done by Lendaris and Stanley (1969) 

present an example of the most popular texture measures of this kind. 

The pattern vectors they used are the average energy in annular rings 

and in 9 degree wedges of the diffraction pattern respectively. Aerial 

photographs were used to test the power of such methods in 

distinguishing man-made from non-man-made features and the 

subclasses of man-made features. Ninety percent of identification 

accuracy was reported. In general, summed energy measures in the 

Fourier power spectrum is the major method used in texture analysis.

Although successful texture extraction (usually over 90 

percent accuracy of classification) has been found in many projects 

with various remotely sensed data (Egbert, et. al., Gramenopoulos, 

Horning and Smith, Kirvida and Jonhson, Maurer, Bajcsy and 

Lieberman, etc.), texture analysis in the frequency domain has met 

criticism in that this approach only reveals the global information 

from across the complete image and neglects important local 

discrimination information about the texture. It is also found that 

texture measures in the frequency domain are not invariant with size, 

orientation and even with monotonic gray level transformation 

(Haralick, 1979). In a comparative study of texture measures for 

terrain classification, Weszka, et. al., concluded that measures in the
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the spatial domain (Weszka, et. al., 1976). In practice, Rosenfield, 

et. al., consistently found that the frequency approach is less

successful than the other approaches (Rosenfield, et. al., from 1981

to 1982).

Nevertheless, research on texture measures in the frequency 

domain did not end. Recently, M. E. Jernigan and F. D'astous developed 

an approach of entropy-based texture analysis. They used the regional 

entropy measures in the spatial frequency domain which would 

provide textu re  d iscrim ina ting  in form ation independent of 

information contained in the usual summed energy within frequency 

domain features. The measure is size invariant and comparable to that 

of gray level coocurrence contrast feature.

Besides viewing texture as spatial frequency distribution, 

Rosenfield, et. al., found that texture can be also measured in terms 

of edgeness per unit area (Rosenfield and Troy, 1970, Rosenfield and 

Thurston, 1971). Coarse textures have a small number of edges per 

unit area while fine textures have a high number of edges per unit

area. Further experiments have been carried out by Sutton and Hall

(1972), Hsu (1977).

The structural element approach is proposed by J. Serra(1974), 

and G. Matheron (1967). They use a matching procedure to detect the 

spatial regularity of shapes called structured elements in a binary
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image. This measure emphasizes the shape aspects of the tonal

primitives but can only do so for binary images.

Another major second order statistical measure of texture is 

called the Gray Level Spatial Dependence approach. It emphasizes the 

spatial distribution and spatial dependence among the gray tones in a 

local area. B. Julesz (1962) first used gray tone spatial dependence 

coocurrence statistics in texture discrimination experiments. E. M. 

Darling and R. D. Joseph (1968) first used this approach in identifying 

cloud types in satellite imagery. Bartels et. al., (1969) used one

dimensional coocurrence in a medical application. Rosenfield and Troy 

(1970) and Haralick (1971) suggested two dimensional spatial 

dependence of gray tones in a coocurrence matrix for each fixed

distance and/or angular spatial relationship; Haralick et. al., used

statistics of this matrix as measures of texture in satellite imagery, 

aerial, and microscopic imagery (1973, 1972). Chien and Fu (1974) 

showed the app lica tion  of gray tone coocurrence  to 

computer-assisted chest X-ray analysis. Pressman (1972) applied the 

similar techniques to cervical cell discrimination. Chen and Pavlidis 

(1978) used coocurrence in conjunction with split and merge 

procedure to segment an image on the basis of texture. More recently, 

Jensen (1979) and Jensen and Toll (1982) reported on the use of 

Haralick's angular second moment (ASM) as an additional feature in
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the supervised classification of Landsat MSS imagery at the urban 

fringe and in urban land use change-detection mapping. All of these 

studies achieved reasonable results on different textures using gray 

tone coocurrence. In their comparative studies of textural measures, 

Weszka, et. al., (1976) found that the coocurrence approach was 

among the best so far. The study by Conners and Harlow (1976) 

theoretica lly concluded that Haralick's gray-tone coocurrence 

matrices had the best innate discriminative ability. The power of the 

coocurrence approach is that it characterizes the spatial 

interrelationship of the gray tones in a textural pattern and is 

invariant under monotonic gray level transformation.

Further development of this idea by Sun and Wee (1983) 

resulted in a new texture transformation called Neighborhood Gray 

Level Dependence Matrix (NGLDM) approach. It is said to be essentially 

invariant even under spatial rotation.

The gray level run length approach represents a family of first 

order statistical texture measurements in the spatial domain. It 

characterizes coarse texture as having many pixels in a constant gray 

run and fine texture as having few pixels in a constant gray tone run. 

The study by Hsu (1978) found, among 17 proposed first-order texture 

measures to classify level I land cover from digital aerial 

photography, gray level run length statistics were superior. Further
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experiments were reported by Irons and Peterson (1981) and Shih and 

Showengerdt (1983).

The autoregressive models are a way of revealing the linear 

dependence one gray level has on another. It was introduced by 

McCormick and Jayaramamurthy (1974) and experimented by Deguchi 

and Morishila (1976), Tou et. al., (1976), and Tou and Chang (1976). 

Theoretically, the autoregressive approach is sufficient to capture 

everything about a texture, however, the textures it can characterize 

are likely to consist of microtextures.

Besides the eight statistical approaches reviewed above, there 

is another set of texture measures of structural approaches. Pure 

structural models of texture are based on the view that texture are 

made up of primitives which appear in near regular repetitive spatial 

arrangements. It is a much more complex approach and is not used 

w idely.

Recently, the idea of using fractal analysis to extract spatial 

features in Landsat imagery has been reported (Goodchild and Mark, 

1987). The application of fractal geometry would introduce a whole 

set of texture measures in the fractional dimensions. Further 

experiments of fractal analysis are being conducted in the field of 

pattern recognition.

From the literature review, we see that no effort has been
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devoted to textural analysis with TM imagery and that most studies 

are purely technical experiments for pattern recognition or 

classification. Few applications of texture analysis have been found 

in urban study and geographic inquiry.

III. STUDY AREA, DATA, METHODOLOGY, AND THESIS ARRANGEMENT

The city of Omaha is selected as the study area. The major 

emphasis is placed on the urban fringe; the most active area in the 

city in terms of change. Landsat Thematic Mapper Digital data 

acquired on June 12, 1985 will constitute the primary data source. 

Other data sources used to assist in the study are: two Landsat MSS 

images of Omaha taken in 1976 and 1978, aerial photos, updated land 

use maps, and the USGS topographic sheets.

For comparative purposes, two approaches of texture analysis 

will be used. One is Haralick's gray level spatial dependence matrix 

approach in the spatial domain, the other is Jernigan's, et. al., 

entropy-based texture analysis in the frequency domain. Since these 

two approaches have not been implemented in the current image 

processing system at the Remote Sensing Application Laboratory, 

considerable amount of effort is needed to be devoted to computer 

programming. The Eye-com Spatial Data system and PDP-11

13



mini-computer will serve as the major computer facilities used in 

the project.

The thesis is divided into four chapters. The following two 

chapters will discuss the methodology and the process of analysis. 

The conclusions from this study will be drawn in chapter four.

14



Chapter 2: Methodology

In this chapter, two approaches of textural analysis, the

Spatial Dependence (SPADEP) and the Entropy-Based Texture (EBT) 

approaches and their computer implementation will be discussed.

I. Spatial Dependence Matrix Approach

A. The Principle

This approach is based on the assumption that textual 

information on an image is contained in the overall spatial 

relationships among gray levels and that such relationships can be 

expressed by the measurement of the coocurrence of one gray level to 

another in different directions and distance within a limited space, 

such as 3 X 3 subimage. The mathematical expression of the

coocurrence frequency is the Spatial Dependence Matrix (SPADEP).

Consider the following example. Suppose Fig. 2-1 a is the image

to be measured. If the range of the gray level is from 0 to 3, the

possible coocurrence relationships of the four gray levels can be 

expressed as Fig. 2-1 b. Notice that this matrix is symmetrical.
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(0,0) (0,1) (0,2) (0,3)
0 1 2  (1.0) (1,1) (1,2) (1,3)
0 1 2  (2,0) (2,1) (2,2) (2,3)
0 3 3  (3,0) (3,1) (3,2) (3,3)

a b

Fig. 2-1 A 3 X 3 image and the general form of the SPADER (N=4).

90 45 0 1 2 3
♦

♦
P
P 0 0 2 0 1
P

-/  P ♦
0 1 2 0 2 0

P
P
P
P

♦
♦

♦
2 0 2 0 o
3 1 0 0 2

Fig. 2-2 Neighboring relations (a) and the SPADEP in the 0 degree direction (b).

0 1 2  3 0 1 2  3 0 1 2 3
4 0 0 0 0 0 2 0 0 0 0 1 0  1
0 2  0 1 1 2 0 1 0  1 1 0  11
0 0 2 1 2 0 1 0  1 2 0 1 0  0
0 1 1 0  3 0 0 1 0  3 1 1 0  0

Fig. 2-3 SPADEP in the 90, 45, and 135 degree directions.

Now, let's compute the SPADEP matrices in four directions 

with neighboring gray level and distance all equal to 1 (Fig. 2-2). 

Fig2-2b depicts the 0 degree coocurrences for the 3 X 3  matrix in 

Figure 1. The 0 entry at (0,0) indicate no 0-0 coocurrences while the 

2 entry at (0,1) indicates two 0-1 coocurrences at this angle. Using

16



the same method, we can construct the SPADEP matrices in 90 , 45

and 135 degree directions (Fig. 2-3). For the purposes of explanation, 

we define such matrices as P(i,j).

To obtain the normalized frequency, i.e., the relative 

probability of these matrices, each entry in P(i,j) is divided by the 

number of nearest neighboring pixel pairs. For an image of N X M, the 

normalizing factors R are:

where Rr, R2 , R3, R4 represent the R in the four directions: 0, 90, 45, 

135. Fig. 2-4 shows the normalized P(i,j). Notice that the sum of 

rows and the sum of columns are both equal to 1.

Rr = 2N(M-1);

R2= 2M(N-1);

Ra = 2(M-1)(N-1); 

R4 -  2(N-1)(M-1);

0.00 0.17 0.00 0.08 
0.17 0.00 0.17 0.00 
0.00 0.17 0.00 0.00 
0.08 0.00 0.00 0.17

0.03 0.00 0.00 0.00 
0.00 0.17 0.00 0.08 
0.00 0.17 0.17 0.08 
0.00 0.08 0.08 0.00

0 degrees 90 degrees

0.00 0.25 0.00 0.00 
0.25 0.00 0.12 0.00 
0.00 0.12 0.00 0.12 
0.00 0.00 0.12 0.00

0.00 0.12 0.00 0.12
0.12 0.00 0.12 0.12
0.00 0.12 0.00 0.00
0.12 0.12 0.00 0.00

45 degrees 135 degrees

Fig. 2-4 The normalized SPADEP
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After constructing the normalized P(i,j), we can now apply 

statistical models to extract textural information from these 

matrices. Haralick, et. a l., proposed fourteen statistical models for 

texture extraction from the SPADEP. Each of these measures tends to 

emphasize certain aspects of textural properties in an image, e.g., 

homogeneity, complexity, linear structure, contrast, number and 

nature of boundaries present, etc. Among the 14 statistical 

measures, some are relatively difficult to interpret. No detailed 

explanations on these models have been found. Since it is important 

to know what textural information each of these features expresses, 

a pre-study of these models is included in the following sections.

B. Texture Measures from SPADEP

A theoretical explanation of the statistical texture models is

out of the scope of this thesis. Only a brief discussion will be

presented with examples. We give the following notations that are

used for the texture models:
N: number of gray levels in the image;

P (i,j): (i,j)th entry in a normalized SPADEP;

Px(i), Py(j): ith/or jth entry in the marginal probability matrix obtained 

by summing the rows/or columns of P(i,j);

Px+y(K) = I  P(i,j), for i + j = K = 2, 3, 4, ....... 2N; (Fig. 2-5a);
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Px-y(K) = I  P(i,j), for |i - j| -  K = 0, 1, 2 ........   N-1. (Fig. 2-5b).

Px+y

<1fn -** ( l ,? K #(l,3y* (1.4J-
.'* ' *** •• ♦ *‘
(2,1 ).***(2,21*'*(2,3).***(2,4)

*** *** .'*
(3,1 ).**(3,2)^***(3,3).**(3,4)

X # .**
W )  .**(*4,2) .'(4 ,3 ) .**(4,4) 

a

Fig. 2-5 Illustration of Px+y(i) and Px-y(i).

Px+y(K) is a matrix representing the sums along the right 

diagonal of P(i,j) (Fig. 2-5). Px-y(K) is a matrix obtained by summing 

each group of elements with subscripts i and j and |i-j| = 0, 1, 

2,......N-1. For example, elements along the dark line in the matrix of

Figure 2-5b., |i-j| = 0.

1) Angular Second Moment

ASM = £  P(i,j)2 .

ASM is one of the most frequently used SPADEP measures. In 

general it measures the homogeniety of the image. Since P(i,j) ranges 

from 0 to 1, the more widely distributed of P(i,j) the smaller the 

ASM, indicating less homogeneity in the image (Fig. 2-6a). ASM itself 

ranges from 0 to 1. In an image presenting only one gray level, all but

P x -y

(> U  *S\2) ^ f , 3 )  (1,4)

%e,3) ^ ,4 )

(3ft) (3,'2) * ^ '4)

(4,1) (4,4 sS (4*3) oM )

b
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one element in P(i,j) equal to 0, ASM reaches the maximum value 1 

(Fig. 2-6b). ASM is invariant under monotonic gray level 

transform ation.

3 3 3 
3 3 3 
3 3 3

N=4

0.00
0.00
0.00
0.00

0.00
0.00
0.00
0.00

0.00
0.00
0.00
0.00

0.00
0.00
0.00
1.00

The SPADEP in horizontal direction

ASM1 = 1.0000 (a )

0 1 2 
3 4 5 
6 7 8

N=9

ASM1 = 0.0833  
ASM 2 = 0.0833  
ASM3 = 0.1250  
ASM 4 = 0.1250

Measures in four directions

8 8 8 
8 8 8 
8 8 8

N =9

ASM1 = 1.0000

Horizontal measure

(b )

Fig. 2-6 Maximum minimum case of ASM.

2) C ontrast

CON = I  [n2 P(i,j)] for |i - j| = n = 0, 1 ,......, N-1.

This is essentially the moment of inertial of the P(i,j) around 

its main diagonal. It is a natural measure of the degree of spread of 

the matrix value, i.e., the contrast or the amount of local variation 

present in an image. The higher the value of CON, the higher the 

contrast; 0< C O N <  (N-1)2. Fig. 2-7 is an example of contrast 

measurement. Notice that CON is not independent of gray level and 

the measure of CON will be changed under monotonic gray level

2 0



transformation.

N = 4  The SPADEP at 135 degree. Measures in four directions.

3 0 0 0.50 0.00 0.00 0.00 -CON1 = 6.0000
0 3 o ° - ° °  ° -00 ° -00 ° -00 C0N2 = 6 0000
0 0 3 ° -00 0.00 0.00 0.00 CON3 = 4.5000

0.00 0.00 0.00 0.50 CON4 = 0.0000

N=5
0.50 0.00 0.00 0.00 0.00

CON1 = 10.6667
, 0 0 0  0 -00 0 0 0  0*00 0 00
4 0 0 0.00 0.00 0.00 0.00 0.00 CON2 -  10.6667
0 4 0 0.00 0.00 0.00 0.00 0.00 CON3 = 8 0 0 0 0
0 0 4 0.00 0.00 0.00 0.00 0.50 CON4 = 0.0000

Fig. 2-7 Examples of Contrast measurement.

3) C o rre la tio n

COR = { I  [ijP(i,j)] - UxUy} /  SxSy; 

where Ux, Uy, Sx, Sy are the means and standard deviations of the 

marginal probability matrices Px, Py.

COR1 = 1,0000  
CO R2 = -1 .0000  
CO R3 -  -1 .0000 [ '
CO R4 = -1 .0000

Correlation measures in four directions 

Fig. 2-8 Correlation measurement.

0 0 0
3 3 3 (a )
0 0 0

N=4
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COR measures the gray level linear dependencies in an image. 

-1<CO R <1. The COR measures in Fig. 2-8 indicate perfect linear 

correlation in the horizontal direction and the inverse correlated 

property along vertical and the two diagonal directions. COR is also 

not invariant under monotonic gray level transformation.

4) Sum of Squares

SOS = I  [(i-U)2P(i,j)].

SOS is likely the moment about the mean of P(i,j), U. This 

feature is difficult to interpret. It is not invariant under gray level 

transform ation.

5) Inverse Difference Moment

IDM = X [P(i.j)/(1+(i-i)2))];

IDM measures the difference among gray levels; 0<IDM<1. When 

all non zero P(i,j) are located along the diagonal ((i,j) = (j,i», then 

Sum [P(i,j)] = 1, i-j=0, IDM reaches its maximum value 1. Fig. 2-9 

gives an example of the IDM measure and the normalized P(ij) in the 

right diagonal coocurrence measure. IDM varies under gray level 

transform ation.
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N =4 SPADEP along left diagonal Measures in four directions

0,00 0-00 0.00 0.00 IDM1 = 0 .5167
\ \ \  0.00 0.25 0.00 0.00 IDM 2 = 0 .5167

0.00 0.00 0.50 0.00 IDM 3 = 0 .2750
0.00 0.00 0.00 0.25 IDM 4 = 1.0000

Fig. 2-9 Inverse Difference Moment measurement.

6) Sum Average

SUMAVG = £  [KPx+y(K)]; i+j = K = 2, 3, 4 .........   2N;

2P(1,1)<SUMAVG<2P(N, N).

This measure is also difficult to interpret. It seems that the

high SUMAVG indicates the higher coocurrence among high gray levels

(Fig. 2-10). SUMAVG is hot an invariant under gray level

transform ation.

N =4 N -4

SUMAVG1 = 4.0000 SUMAVG1 = 3.0000
0 0 0 SUMAVG2 = 5.0000 0 0 0  SUM AVG2 = 4.0000
3 3 3 SUMAVG3 = 5.0000 n n n SUM AVG3 = 4.0000
0 0 0 SUMAVG4 = 5.0000 0 0 0 SUM AVG4 = 4.0000

Fig.2-10 Sum average measurement.

7) Entropy

ETP = - X  {P(i,j)Log2 [P(i,j)J.

This is the measurement of average joint information or joint 

entropy. From the properties of entropy, ETP< ETPi + ETPj, with the
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equality if and only if, the two gray levels i and j are statistically 

independent. ETPmax = Log2R (R is the number of resolution pairs).

For a 3X3 image, the R in horizontal and vertical directions is 12 

(with neighboring distance and gray level interval equal to 1), ETPmax 

= Log212 = 3.58496. Along the left and right diagonals, R = 8, ETPmax

= Log28 = 3.0. Fig. 2-11 shows the maximum case of ETP. Obviously,

ETP measures the complexity of an image which can be defined as the 

number of gray levels in a subimage. The higher the ETP, the more 

complex it is. ETP is invariant under monotonic gray level

transformation. Therefore, it is very useful for the comparative study 

of texture.

SUMETP = - x  {Px+y(i)Log2[Px+y(i)]}.

Since P(i,j) is a symmetrical matrix, P(i,j) = P(j,i), PYJ_v(i)* + y

0 1 2 
3 4 5 
6 7 8

ETP1 = 3 .5895  
ETP2 = 3.5895  
ETP3 = 3 .0000  
ETP4 = 3 .0000

N=9

Fig. 2-11 Entropy measure, the maximum case.

8) Sum Entropy
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contains the sums for all (i+j) = (j+i) (Fig. 2-5a). SUMETP is simply 

another way to measure the complexity of an image. SUMETPmax = 

Log2HR, where HR = R/2. For the same image of Figure 2-11, HR in

horizontal and vertical direction equals 12/2 = 6, along left and right 

diagonal, HR = 8/2 = 4. In this maximum case, SUMETP is equal to 

2.5849 and 2.0 respectively (Fig. 2-12). SUMETP is also an invariant 

under monotonic gray level transformation.

0 1 2  SUMETP1 = 2.5850
3 4 5 SUM ETP2 = 2.5850
6 7 8 SUM ETP3 = 2.0000

SUM ETP4 = 2.0000
N=9

Fig. 2-12 Sum entropy measure, the maximum case.

9) D ifference Entropy

DIFETP = - 1  {Px.y(i)Log2 [Px.y(i)]}.

PyvO) is the sum for each |i-j| = 0,1,2........,N-1; in P(i,j) (Fig.x-y

2-5b). The minimum value of DIFETP occurs when there is only one 

non-zero value in Pv w(i), i.e., non-zero values in P(i,j) cluster in onex-y

group of |i-j| = 0, 1, 2, ....... , N-1. DIFETP measures the similarity of

spatial relationships among gray levels in an image. The high DIFETP

indicates more different spatial relationships among gray levels. In
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the image of Figure 2-11, the neighboring relations are the same in 

each direction, i.e., one gray level difference along the horizontal 

direction, three levels along the vertical, two levels and four levels 

difference along 45 degree and 135 degree angles respectively. As a 

result, the DIFETP in all directions equals to 0. Fig. 2-13 are some 

other examples of the DIFETP measures. It seems that DIFETP would 

be useful to measure the regularity of an image. Compared with the 

IDM measure, DIFETP reveals spatial relationships at another level. 

Moreover, DIFETP is invariant under monotonic gray level 

transform ation.

DIFETP1 = 0.0000 
0 0 0 DIFETP2 = 0.0000
2 2 2 DIFETP3 = 0.0000
0 0 0 DIFETP4 = 0.0000

DIFETP1 = 0.0000 
DIFETP2 = 0.0000 
DIFETP3 = 0.0000 
DIFETP4 = 0.0000

1 0 0 
2 2 2 
0 0 0

DIFETP1 = 0.6500 
DIFETP2 = 0.6500 
DIFETP3 = 0.0000 
DIFETP4 = 0.8113

N=4

Fig. 2-13 Examples of DIFETP measurement.
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10) Sum Variance

SUMVAR = Z  [(i-SUMETP)2Px+y(i)].

Let's consider the maximum/minimum case. When there is only 

one gray level in an image, the sum entropy equals to 0; values in 

P (i)- are focused on Px+y(i) = 1> SUMVARmax = i2. The higher 

occurrence of neighboring high gray levels, the larger the SUMVAR;

SUMVAR becomes smaller when SUMETP increases and P (i) is

widely distributed (Fig. 2-14).

N=9
SUMVAR1 = 324.0 

8 8 8 SUMVAR2 = 324.0
8 8 8 SUMVAR3 = 324.0
8 8 8 SUMVAR4 = 324.0

2 2 2 SUMVAR1 = 36.0000
2 2 2 SUMVAR2 = 36.0000
2 2 2 SUMVAR3 = 36.0000

SUMVAR4 = 36.0000

Fig. 2 -14 Sum variance measurement.

The textural property expressed by SUMVAR is not clear. Moreover, 

since the measure likely varies with gray level, the same spatial 

relationship but different primitives would have different SUMVAR 

values (Fig. 2-14). Therefore, SUMVAR is not a very desirable 

measure for texture analysis.

SUMVAR1 = 79.9873 
0 1 2  SUMVAR2 = 66.6495
3 4 5 SUMVAR3 = 74.0000
6 7 8 SUMVAR4 = 74.0000

‘ SUMVAR is not independent of 
gray levels in an image.
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11) Difference Variance

DIFVAR *  X  [(i-DIFETP)2 Px-y(i)].

DIFVAR measures the variation in the P(i,j) matrix. It is 

similar to the contrast measure. In fact, when the DIFETP equals to 

0, DIFVAR and CON have the same value (Fig. 2-15). DIFVAR is 

invariant under monotonic gray level transformation, therefore, it is

C O N 1 = , 1.0000  
CON2 = 9.0000  
CON3 = 4.0000  
CO N4 =16.0000

DIFVAR1 = 0.5644  
DIFVAR2 = 0.2855 (b )
DIFVAR3 = 0.4366  
DIFVAR4 = 0.6341

Fig. 2-15 Comparison of DIFVAR with CON and DIFETP.

12) In fo rm a tio n  M e a su re s  of C o rre la tio n

Haralick proposed two models of IMC:
I MCI = (HXY - HXY1)/Max(HX, HY);

IMCII = SORT {1 - exp [-2.0(HXY2 - HXY)]};

where

HXY = - X  P(«J)l-og2 fP(i,i)l; the joint entropy of P(i,j);

more useful in a comparative study.

N=9
DIFVAR1 = 1.0000  

0 1 2  DIFVAR2 = 9.0000
3 4 5 DIFVAR 3  = 4.0000
6  7 8  D IFVAR4 =16.0000

N =4
0 0 1  1 DIFETP1 = 0.9183
0  o . 1 1 D IFETP2 = 0.9183
Q 0 2 2 D IFETP3 = 0.9911
2 2 3 3  D IFETP4 = 1.4335
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HX = - Z  Px(i)Log2 [Px(i)]; entropy of the marginal matrix Px(i);

HY = - Z  PyG)Log2 [Py(j)I; entropy of the marginal matrix Py(i);

HXY1 = - Z  P (i,j)Log2 [Px(i)PyG)]; conditional entropy;

HXY2 = - Z  P x(i)P y (j)L o g 2 [P x (i)P y ( j) ] .

The theoretical connotation of these measures are complicated. 

It is noticed by experiment that -1<IMCI<0, -1<IMCII<1. For IMCII, let 

A=HXY2 - HXY, we see exp(-2.0*A)<1. The higher the A, the smaller 

the exp(-2.Q*A), the larger the IMCII. Since P(i,j) is symmetrical, 

HXY1 = HXY2. IMCII becomes large when P(i,j) is equally distributed. 

The maximum value occurs when any two pixels do not have the same 

value in a defined distance within the image. It is smaller when the 

image is dominated by only a few gray levels. There is more

information contained in these correlation measures. They have some

desirable properties which are not brought out in the rectangular 

correlation (COR) (Fig. 2-16).
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1 2 3 
4 5 6
7 8 9

N = 1 0

1 1 1
8 8 8 
8 8 8

N=9

IMCII
IMCI2
IMCI3
IMCI4

im c m
IMCI2
IMCI3
IMCI3

-0.8379
-0.8379
-0.9091
-0.9091

- 1.0000
-0.1500
-0.1500
-0.1500

IMCII1 = 
1MCII2 = 
I MCI 13 = 
IMCII4 -

IMCI11 = 
IMCII2 = 
IMCII3 = 
IMCII4 =

0.9972
0.9972
0.9966
0.9966

0.9168
0.4662
0.4662
0.4662

COR1 = 0.9231 
COR2 = 0.1290 
COR3 = 0.4286 
COR4 =-2.3077

(a)

COR1 = 1.0000 
COR2 =-0.3000 /b )
COR3 =-0.3000 
COR4 =-0.3000

Fig. 2-16 Compare IMC with COR.

13) Maximal Correlation Coefficient

MAXCOR =(Second Largest Eigenvalue of Q )1/2;

Q(i,j) = L  [P(i,k)P(j,k) /  Px(i)Py(k)].

Fig. 2-17a is the Q matrix for the image in Fig. 2-15a 

(horizonta l d irection). Since Q ( i, j ) is not sym m etrical, the 

computation of the eigenvalue is somewhat complicated. It is known 

that most matrices can be transformed to a Hessenberg matrix and it 

is easier to compute the eigenvalue from the Hessenberg matrix. Fig. 

2-17b is the Hessenberg transform of the Q(i,j) in Fig. ..2-17a. ■ For 

detailed procedures in computing eigenvalue of an asymmetrical 

matrix, refer to Fortran subroutine UPPERH and EIGEN in Appendix 4.

The mathematical connotation of the maximal correlation 

coefficient is discussed by C. B. Bell (1962). MAXCOR is different 

from COR. For the same image of Fig. 2-15a, maximal correlations in 

all four directions is equal to the maximum value 1.0. For the 3x3
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image in Fig.2-16b, MAXCOR has the following measures: 1.0, 0.3, 0.3,

0.3.

The above statistical texture model provides a set of measures 

for the spatial relationships among gray levels in an image. However, 

texture properties are independent of gray level and orientation. In 

order to perform texture analysis, we wish the texture measures to 

be invariant in different orientations and under monotonic gray level 

transformation. Yet, the 14 texture features discussed above are all 

angular dependent and, only seven of them are invariant under 

monotonic gray level transformation: ASM, ETP, SUMETP, DIFETP, IMCI, 

IMCII, and MAXCOR. Therefore, it is more desirable to use the mean 

and the range of the measures in all four directions. Moreover, to 

obta in  genera lized  resu lts , equal p ro ba b ility  gray level  

transformation, i.e., histogram equalization, must be performed. 

Nevertheless, it is still more preferable to use the invariants for 

textural analysis.
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The Q matrix

0.5000 0.0000 0.5000 0.0000 O.QOOO 0.0000 0.0000 0.0000 0.0000
0.0000 1.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
0.5000 0.0000 0.5000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
0.0000 0.0000 0.0000 0.5000 0.0000 0.5000 0.0000 0,0000 0.0000
0.0000 0,0000 0.0000 0.0000 1.0000 0.0000 0.0000 0.0000 0.0000
0.0000 0.0000 0.0000 0.5000 0.0000 0.5000 0.0000 0.0000 0.0000
0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.5000 0.0000 0.5000
0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 1.0000 0.0000
0.0000 0.0000 0.0000 o.dooo 0.0000 0.0000 0.5000 0.0000 0.5000

The Hessenberg matrix

0.5000 0.5000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
0.5000 0.5000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
0.000.0 0.0000 1.0000 0.0000 0.0000 .0.0000 0.0000 0.0000 0.0000
0.0000 0.0000 0.0000 0.5000 0.5000 0.0000 0.0000 0.0000 0.0000
0.0000 0.0000 0.0000 0.5000 0.5000 0.0000 0.0000 0.0000 0.0000
0.0000 0.0000 0.0000 0.0000 0.0000 1.0000 0.0000 0.0000 0.0000
0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.5000 0.5000 0.0000
0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.5000 0.5000 0.0000
0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 1.0000

Fig. 2-17 The Q matrix and its Hessenberg transform.

C. The Computer Implementation of SPADEP Approach

Three steps are identified to perform SPADEP textural analysis, 

using PDP-11 and the Spatial Data Processing System.

1. Gray Level Transformation.

Since SPADEP is a coocurrence measurement, in order to obtain 

generalized textural information, it is necessary to change the gray
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level distribution so that each gray level in an image can obtain 

approxim ate ly equal p robab ility . Furtherm ore, although the 

computation of SPADEP matrices are only related to the size of the 

image, the size of the SPADEP matrices is proportional to the number 

of gray levels in the image. For gray levels equal to N, the required 

internal storage will be N X N X 4. The range of gray levels in a TM 

image is 0-255. An array of 256X256X4 cannot be stored in the 

internal memory of the PDP-11 computer. For this reason, the number 

of gray levels must be reduced. An equal probability quantizing 

algorithm can solve the above problem. For details on the procedure, 

see program EGAL in Appendix I.

2. Compute SPADEP matrices.

The SPADEP matrix proposed by Haralick contains adjacencies of 

gray levels in both orientations and four directions. Therefore, 

SPADEP is symmetrical, i.e., in SPADEP P(i,j)=P(j,i). In actual 

computation, only one orientation needs to be measured, the final 

matrix is constructed by adding the matrix obtained previously to its 

transpose (Hord, 1986). Figure 2-18 illustrates the construction of 

SPADEP in the horizontal direction.
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1 10 
0 0 2
2 2 1

1 0 1 
1 1 0 
0 1 1

2 1 1 
1 2 1 
1 1 2

original image 
(N=4)

right adjacencies 
(distance = 1)

add to the transpose

Fig. 2-18 Illustration of SPADEP matrix construction (horizontal).

The Fortran subroutine to compute the coocurrence matrix, 

SPADEP, is included in Appendix 4. For the convenience of 

programming, SPADEP is divided into four, two dimensional arrays

instead of using one three dimensional array. Each array stores the

SPADEP in one direction. When using the Extended Memory Monitor

(virtual memory) on PDP-11, the input image can have a size up to

123 by 128 and maximum number of gray levels of 128.

3. Computing the Statistical Texture Models

Most of the statistical models proposed by Haralick are easy to 

compute. The most d ifficu lt one is the maximal correlation 

coefficient measure since its computation involves finding the second 

largest eigenvalue from an asymmetrical matrix. An example of the 

approach is given in the former section (Fig. 2-17). All basic 

computations of the statistical textural measures are included in the 

subroutine library TXLIB (see Appendix 4).
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II. The Entropy-Based Texture Analysis

An image can be defined in the spatial domain, i.e., the x, y 

coordinate space, or in the spatial frequency domain in which an 

image is viewed as a periodic function and represented by an infinite, 

weighted sum of trigonometric sine and cosine functions with 

different amplitudes, frequencies and phases. This representation is 

termed the Fourier series of an image. The SPADEP approach 

discussed previously represents textural analysis, in the spatial 

domain. The second method to be used, the Entropy-based Textural 

analysis, is performed in the spatial frequency domain. It extracts 

texture information from another dimension. In this section, the two 

dimensional discrete Fourier transform, the computer implementation 

of the fast Fourier transform, and the display of the Fourier spectrum 

will be discussed briefly; then the detailed procedures to perform the 

entropy-based textural analysis is presented.

A. The Fourier Transform of an Image

Let f(m,n) be an N X N image and F(u,v) its two dimensional 

discrete Fourier transform, then

F(u,v) = X Z  f(m,n) e'-i(27t/N̂ mu+nv) (inverse transform); 

f(m,n) = X Z  F(u,v) e j(2jc/N)(mu+nv) (forward transform); 

are the discrete Fourier transform pair. The Fourier spectrum, phase,
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and energy spectrum are given by the following relations:

|F(u,v)| -  SQRT(R(u,v)2 + l(u,v)2);

Phase(u.v) = tan'1(l(u,v)/R(u,v));

E(u,v) = |F(u,v)|2.

R and I denote the real and the imaginery part of F(u,v). The two 

dim ensional discrete Fourier transform  F(u,v) is obtained by 

performing a one dimensional transform along each row of f(m,n), 

then along each column of the intermediate matrix. Fig. 2-20a is an 

example of the Fourier transform of the image in Fig. 2-19. Since the 

discrete Fourier is periodic with period N and is conjugate 

symmetrical, it is more desirable to shift the frequency origin to the 

center (N/2+1, N/2+1) in order to observe and measure the function. 

Fig. 2-20b is the origin centered Fourier transform. It is obtained by 

multiplying each entry of the input image of Figure 2-19 by (-1)*l+̂ .

7 7 7 8 8 8 6 6 
7 7 7 8 8 8 6 6 
7 7 7 8 8 8 6 6  
6 6 6 9 9 9 9 9 
6 6 6  9 9 9 9 9  
6 6 6 9 9 9 9 9 
0 0 0 0 0 0 0 0  
0 0 0 0 0 0 0 0

Fig. 2-19 An 8x8 matrix to be transformed to the Fourier series.

The Fourier spectrum can be shown in a three-dimensional plot or 

as an intensity function in which brightness is proportional to the
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amplitude of |F(u,v)|. The graphic display of the Fourier spectrum is 

very helpful to visualize certain textural properties of an image. 

Usually, radial spikes in the spectrum image indicate presence of 

linear features and the breadth of the bright area around the center 

indicates the coarseness of the image.

B. Regional Entropy Measures in the Fourier Energy Spectrum

Proposed by Jernigan and D'astous (1983) the regional entropy 

measure is primarily designed to measure local and global texture 

properties of an image. This approach can be described as follows 

(see Fig. 2-21):

1). Compute the origin centered Fourier transform of the analyzed 

image; compute the energy spectrum E(u,v)=|F(u,v)|2;

2) Specify the number and size of concentric regions to be measured 

in E(u,v). For each region, perform the following computations:

3) Obtain the regional energy by summing the E(u,v) within the 

region, SUME = X [E(u,v)];

4) Normalize E(u,v) in the region by SUME, obtain the probability 

function P(u,v) = E(u,v)/SUME; I  [P(u,v)] = 1;

5) Compute the entropy of the spectral components within the region,

h' = - 1  P(u,v)Log2[P(u,v)],

0 < h' < Log2K,
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where k is the number of elements in the E(u,v) within the region;

6) Normalize h' by LogK, obtain the relative entropy

h = h7Log2K, 0 < h <1.

Suppose n regions are defined, as a result, there is a n-dimensional 

vector representing the textural properties of the image,

H = [h i, h2, h3, h4,  ....., hn].

To compare texture features of different images, H is computed 

for each of the images. Obviously, hn is the measure of the spread of 

the spatial frequency component within the region. The higher the hn, 

the wider distribution of the frequency components indicated. Images 

with different texture features will have different characteristics of 

the frequency component distribution. For example, Fig. 2-22c has 

high frequency components concentrated along the vertical axis while 

Fig. 2-22a is more spread out.
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0,0

u

45.000
0.000

-3.091
1.280

0.750
0.750

0.091
-0.220

-1.500
0.000

0.091
0.220

----------- ---------------
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Fig. 2-20 The Fourier transform of fig. 19; (b) original centered.

39



N v

DFT Fourier Power 
SpectrumSubimage

R4

*  Regional Energy SUME(u,v)

Image to be analyzed
Probability function 

P (u ,v )=E (u ,v)/S U M E (u ,v )O)
CD

i i

Regional Entropy hn'

Relative Entropy hn 
hn'/LogK

next subimage

Fig. 2-21 EBT analysis.

40



C. The Computer Implementation of the Fourier Transform: the FFT

The discrete Fourier transform is implemented with the Fast 

Fourier Transform algorithm proposed by Cooley-Tukey. The FFT 

approach dramatically reduces the computation times from N2 to 

NLogN (N is the number of input elements). Detailed discussion of the 

FFT algorithm can be found in variety of text books in digital remote 

sensing (Rosenfield, et. al., 1982, Gonalez and Wintz, 1977). A 

standard FFT Fortran subroutine FOUREA is included in Appendix 8.
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Fig. .2-22 Texture pattern and tho Fourier Gpoctrum.
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III. Methods to Analyze the Texture Measures

One of the major objectives of this thesis is to see if similar 

spatial patterns have similar texture measures. Methods are needed 

therefore, to compare the texture measures. In this project, the 

distance measure and cross-correlation analysis are used.

A. The Distance Measure

Suppose X^n), X2(n),  __ , Xm(n) are the texture vectors of m

images to be analyzed, the distance between two texture vectors can 

be computed as:

D(Xm, X m. , ) = SQRT {2  [Xm(n) - X ^  (n)]2]}.

We say that X_ . is more similar to X. than to ifJ m-1 j m

D(Xm.1,X j) < D ( X m.1,X m).

B. Cross Correlation

The texture information of an image can also be represented by a 

texture matrix constructed by a local operation (Fig. 2-23). Since the 

texture property is contained in a series of local measurements, 

cross correlation can be used to measure the similarity between two 

texture matrices. Let T i(x ,y ) and T2 (x,y) be the two texture 

functions, the cross correlation can be defined as
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R(m,n) = I  [Tl(x,y)T2(x,y)] /  S 0R T (S T lS T 2)f

w here,

ST1 = 1  [T l(x ,y )2 ];

S T 2  = £  [T 2 (x ,y )2 ];

-1 < R(m,n) < 1 .

★

Fig. 2-23 Local measurement of texture properties.

When used to measure similarity between two functions, only the 

largest correlation function is usually of interest. Thus, a searching 

process in R(m,n) is needed. However, if the two functions are the 

same size, i.e., the images to be analyzed have the same number of 

rows and columns, cross-correlation can be more conveniently 

performed in the frequency domain:
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R(m ,n) < -  T i (u ,v )T2(u ,v );

T1(u,v) and T2(u,v) are the forward Fourier transform of T1(x,y) and 

T2(x,y). The cross correlation of two functions is equal to the inverse 

Fourier transform of the product between one Fourier series and the 

complex conjugate of the other. A search for the largest correlation 

function is not needed in R(m,n) obtained in this way since it is 

always located around R(0,0) (when the two functions are the same 

size). For more details of the computation of cross correlation, refer 

to the Fortran program FFTCOR submitted in Appendix 14.

In this chapter, major technical aspects of the thesis have been 

discussed. Since it is a relatively exploratory study, a great deal of 

effort has been devoted to the investigation of the mathematical 

models to be used.
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CHAPTER 3: ANALYSIS

I. INTRODUCTION

In this chapter, methods of texture analysis presented in 

chapter 2 are to be applied in measuring and differentiating urban 

residential spatial patterns. The SPADEP, both regional and local, and 

the Fourier measures are applied to a Landsat Thematic Mapper image 

of western Omaha. The general methodology for analysis is presented 

in Figure 3-1.

A 512 by 512 pixel TM subimage centered at about 132nd and 

Dodge St., Omaha, Nebraska, represents the study area (Fig. 3-2). Band 

3 (0.63jim -0.69pm , red reflectance) is the basic spectral band used 

for textural analysis since it provides the better penetration of the 

atmosphere among the visible wavelengths and provides a higher 

contrast image. Ten subimage areas are selected, sized 32 (columns) 

by 32 (rows), numbered 1 to 10 (Fig. 3-3). The selection of subimage 

areas was purposive. The study areas represent the major residential 

patterns in the image area. Among these ten areas, area 1 is a low 

density residential area, 7 is a partially developed urban area; 9 

includes cleared subdivisions; 10 is agricultural land; the other areas

46



(2, 3, 4, 5, 6) represent other major residential patterns in this 

region, such as the traditional grid street layout and the low density, 

irregular new residential area.

There are basically three parts to the analysis: the SPADEP 

regional measurement, the SPADEP local measurement, and Fourier 

analysis. In each of these parts, individual texture measures will be 

observed with regard to the spatial relationships represented. Then, a 

sim ilarity measurement (distance measure and cross-correlation 

measure) is applied to the texture measures of all spatial patterns.

Fig. 3-2 Study Areas.
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Fig. 3-3 Study areas.
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II. Texture Analysis in a Suburban Area

A. SPADEP Regional Measurement

As required by the SPADEP approach, the image to be analyzed 

is reduced to 32 gray levels with the historgram equalization program 

EGAL.

Among the 14 statistical texture measures discussed in 

chapter 2, seven of them are selected for comparative study due to 

the reasons discussed in chapter 2. They are: Angular Second Moment 

(ASM), Correlation (COR), Sum Entropy (SLIMETP), Entropy (ETP), 

Difference Entropy (DIFETP), Information Measure of Correlation II 

(IMCII), and Maximal Correlation (MAXCOR). All but one of these 

measures are invariant under monotonic gray level transformation.

Since texture measures from SPADEP are angular dependent, 

measures in specific directions would not represent the overall 

texture features of the area. Therefore, the range, mean and variant 

instead of measures in the four directions are used as the textural 

descriptors. Thus, there are 7 X 3 or 21 total vectors for each 

subimage area. To experiment with the textural similarities of the 

ten areas, a distance measure is performed.

Fig. 3-4 graphs the average ASM measures among the ten areas. 

The non-built and partially built area 7, 9, 10 have distinguishable
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values from the residential areas while the variations for the areas 

that are essentially residential are very small. As indicated in 

chapter two, ASM measures the homogeneity of the area. From 

Fig. 3-4, we see that the non-built areas have high ASM, indicating 

that the cleared subdivision and the partially built areas (7, 9, 10) 

have higher homogeneity than the residential areas. In this 

experiment, ASM does not reflect the difference of homogeneity 

among residential patterns.

in<

.06.

.04.

. 0 2 -

rri
10 117- 8 90 .1 2 3 4 5 6

SUBIMAGE AREAS 

Fig. 3-4 ASM measures.

Of the average correlation measures (COR) among the ten areas, 

area 7, 9, 10 have the higher values (Fig. 3-5).
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0 1 2  3 4 5 6 7 8 9 10 11
SUBIMAGE AREAS

Fig. 3-5 Correlation measures.

For these areas, the high linear correlation is probably- 

produced by the long edges of the cleared subdivision and agricultural 

land. Fig. 3-5 also shows a certain amount of variation of correlation 

measures among the residential areas. Although residential areas 

would have typical linear patterns, the high linear correlation would 

be only in one or two directions. In the other directions, the 

correlation value would be very low, thus, reducing the average 

measure. Another reason for such a distribution of the correlation 

measures is related to the distance used to compute the neighboring 

coocurrence. A distance of 1 (neighboring distance and gray level 

interval) may be too small to reveal the linear features presented in
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the residential areas. Therefore, the high and low correlations do 

mean something here, e.g., the coarseness of the image, but not 

necessarily the visualized linear feature.

SUBIMAGE AREAS 

Fig. 3-6 Entropy measures.

The next three measures are entropy based. The Sum Entropy 

(SUMETP) and Entropy (ETP) measure the relative complexity of the 

area. From Fig. 3-6 and Fig. 3-7, we see that all residential areas 

have higher values of SUMETP and ETP, indicating a higher complexity 

than that of the non-built areas. However, how can the differences 

among the residential areas be explained? From Figure 3-8, we find 

that area 3 has a very small measure in range, the similar phenomena
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happened to area 4 and 6 in Figure 3-9. Area 3, 4, 6 are ail older 

neighborhoods. It seems that less variation in complexity with 

directions indicates the higher degree of development among 

residential areas. As discussed before, DIFETP may measure the 

irregularity of an area. In Fig. 3-10 areas 2, 4, 6 have higher average 

DIFETP since they are the most irregular patterns among the ten 

areas.

5 .6 ,

5.4.

5.2.
>-
CL r-0  5.oc
1  4.8.
5
ZD
C/5 4.6.

4.4-

4.2.

0 1 32 4 5
SUBIMAGE AREAS

76 8 9 10 1 1

Fig. 3-7 Sum Entropy measures.

54



SU
M 

EN
TR

OP
Y 

(V
AR

IA
NC

E)
 

EN
TR

OP
Y 

(V
AR

IA
NC

E)

.024

.022

.02

.018

.016

.014

.012

.01

.008

.006

.004

SUBIMAGE AREAS
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Fig. 3-9 Variance of the Sum Entropy measures.
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Fig. 3-11 Information measures of correlation.
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SUBIMAGE AREAS 

Fig. 3-12 Maximal correlation measures.

The last two texture measures are the Information Measure of 

Correlation (IMCl I) and the Maximal Correlation (MAXCOR). The 

connotation of such measures is difficult to interpret, however, they 

seem to distinguish different spatial patterns quite well. This is 

illustrated by the wide variation of these measures graphed in Figure 

3-11 and 3-12. The non-built areas have higher measures of I MCI I and 

MAXCOR; among the built-areas, the lower density residential pattern 

and partially built areas have higher values. Furthermore, residential 

areas having higher density housing or more vegetation coverage, have 

higher values than those with less housing or vegetation coverage.



It seems that each measure tends to emphasize certain aspects 

o f the spatial characteristics in a subimage. However, they are 

related with each other. When we group these measures together, 

they should represent the over-all texture features of the area. There 

are many ways to identify similar texture patterns. The simplest 

way is by computing the distance among all the study areas and those 

having the least distance can then be grouped together. Fig. 3-13 is 

the matrix of distance measures for the ten subimage areas. From the 

distance matrix, we easily find the following most similar groups: 

(1,3), (2, 6, 8), (4, 5), (9, 10, 7). This clearly indicates that similar 

spatial patterns present similar texture measures.

1 2 3 4 5 6 7 8 9 10

1 0.000 0.645 0.389 0.703 0.719 0.541 1.410 0.481 2.987 2.195
2 0.645 0.000 0.484 0.419 0.394 0.314 1.543 0.457 3.107 2.339
3 0.389 0.484 0.000 0.508 0.422 0.491 1.223 0.518 2.817 2.012
4 0.703 0.419 0.508 0.000 0.326 0.350 1.373 0.599 2.907 2.171
5 0.719 0.394 0.422 0.326 0.000 0.456 1.323 0.598 2.865 2.094
6 0.541 0.314 0.491 0.350 0.456 0.000 1.596 0.300 3.168 2.406
7 1.410 1.543 1.223 1.373 1.323 1.596 0.000 1.687 1.601 0.855
8 0.481 0.457 0.518 0.599 0.598 0.300 1.687 0.000 3.273 2.496
9 2.987 3.107 2.817 2.907 2.865 3.168 1.601 3.273 0.000 0.926
10 2.195 2.339 2.012 2.171 2.094 2.406 0.855 2.496 0.926 0.000

Fig. 3-13 Distance measure using 7 texture features.
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B. SPADEP Local Measurement

Figure 3-13 demonstrated that the SPADEP texture measures 

selected best distinguish spatial characteristics of the built and 

non-built areas. However, the measures represent the texture 

characteristics of the whole sub-area. Thus, the selection of areas to 

be analyzed is very important; they should have a consistent pattern.

In this experiment, area 7 is half subdivision and half 

developed area but the distance measures show that it is similar to 

the non-built area. The measure is reasonable but may not be 

desirable. However, texture consistency is not easy to be selected; 

therefore, in such case, it may be useful to apply local operation for 

texture analysis. In the following section, an experiment on local 

operation of SPADEP is presented. The size of the local operator is 3 

by 3 and the texture matrices produced from each 32 by 32 image is 

30 by 30. ASM is used as an example to compare the regional and 

local measures. To analyze the sim ilarities, cross correlation is 

performed among the texture matrices. The largest correlation 

function is used as the entry in the correlation matrix. The higher the 

correlation coefficient, the more similar the two areas.
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Subimage Areas

1
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3

30)
<0)D)aJ
E!o3w

8

9

10

4

5

6 

7

1 8 10

0.0000 0.8200 0.8192 0.8204 0.8193 0.8209 0.5984 0.7953 0.5832 0.6279

0.0000 0.9694 0.9773 0.9806 0.9803 0.7310 0.9550 0.7580 0.7959

0.0000 0.9665 0.9737 0.9702 0.7245 0.9448 0.7674 0.7945

0.0000 0.9816 0.9801 0.7428 0.9572 0.7545 0.7914

0.0000 0.9830 0.7367 0.9568 0.7743 0.81 22

0.0000 0.7401 0.9573 0.7733 0.8012

0.0000 0.7180 0.6750 0.6429

0.0000 0.7257 0.7706

0.0000 0.8050 

0.0000

Fig. 3-14 Correlation matrix of ASM measure.

In the correlation matrix presented in Figure 3-14, built areas 

have high correlation values, clearly dividing the two most obvious 

spatial patterns. The most similar group is not easy to put together 

from this matrix. In fact, only area 6 and area 5 show great similarity 

with each other. However, the significance of the local operation is 

to represent local texture properties. As we see in the regional 

analysis and single feature analysis of ASM (Fig. 3-15), area 7 is 

grouped with area 9 and 10. In the local analysis, however, area 7
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shows a low correlation with area 10 but relatively high correlation 

with other residential areas. Individual texture measures can be 

performed in this way, extracting texture properties of the subimage 

on a local base. Although the local operation has this advantages over 

regional analysis, it is not very applicable for quick texture analysis 

because it is computationally intensive.

1 2 3 4 5 6 7 8 9 10

1 0.000 0.002 0.000 0.001 0.001 0.002 0.028 0.002 0.160 0.029
2 0.002 0.000 0.002 0.000 0.001 0.000 0.029 0.000 0.161 0.031
3 0.000 0.002 0.000 0.001 0.001 0.002 0.028 0.002 0.160 0.029
4 0.001 0,000 0.001 0.000 0.000 0.001 0.029 0.000 0.161 0.030
5 0.001 0.001 0.001 0.000 0.000 0.001 0.029 0.001 0.161 0.030
6 0.002 0.000 0.002 0.001 0.001 0.000 0.029 0.000 0.161 0.031
7 0.028 0.029 0.028 0.029 0.029 0.029 0.000 0.029 0.132 0.001
8 0.002 0.000 0.002 0.000 0.001 0.000 0.029 0.000 0.161 0.031
9 0.160 0.161 0.160 0.161 0.161 0.161 0.132 0.161 0.000 0.131

10 0.029 0.031 0.029 0.030 0.030 0.031 0.001 0.031 0.131 0.000

Fig. 3-15 Distance measure of ASM (mean).

C. Fourier Spectrum Pattern of Texture and the Entropy-based Textural 

Analysis

The texture information extracted by the SPADEP approach is 

d ifficu lt to visualize. Sometimes it is useful to combine the 

computer analysis with human interpretation. One approach to
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visualize the texture properties of an image is the display of the 

Fourier spectrum. Using the amplitude of the frequencies as an 

intensity function, we can produce either a gray-scale image or a 3D 

plot of the Fourier spectrum. Figure 3-18 to 3-27 are the 3D plots of 

Fourier spectrum for the ten study areas. Figure 3-28 are the images 

of the Fourier spectrum for the corresponding areas. To analyze these 

patterns, the entropy-based analysis is accompanied with these 

patterns.

By visual interpretation, we can divide the Fourier spectrum 

displays into two groups. One group, including area 1, 7, 9, 10, has 

high frequencies concentrated at the center. The other group, 

including areas 2, 3, 4, 5, 6, 8, has frequencies around the outer edge. 

In fact, both areas 9 and 10 are non-built, area 7 is partially 

developed while area 1 is low density residential area. Thus, at first 

glance, we can easily distinguish regular residential areas from the 

low density housing and the non-built areas.

However, what do these patterns tell us about the texture 

properties of the areas? One way to understand these patterns is to 

relate these patterns with the frequency distributions (regional 

entropy measure). Figure 3-29 is the line chart of the regional 

entropy for all the ten areas. The 32 X 32 Fourier spectrum is divided 

into 25X25, 17X17, 11X11, 5X5 (Fig. 3-30) subregions. The
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Fig. 3-18 Fourier Spectrum of area 1.

Fig. 3-3.9 Fourier Spectrum of area 2



Fig. 3-20 Fourier Spectrum of area

Fig. 3-21 Fouti.er Spectrum of area



Fig. 3-22 Fourier Spectrum of area 5.

Fig. 3-23 Fourier Spectrum of area 6



Fig. 3-24 Fourier Spectrum of area 7.

Fig. 3-25 Fourier Spectrum of area 8



Fig. 3-26 Fourier Spectrum of area 9.

Fig. 3-27 Fourier Spectrum;of area JO
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Fig. 3-29 Regional Entropy measures in band 3.

68



characteristics of regional entropy measures are highly related to the 

spectrum patterns we plot. Such measures can be evaluated on the 

absolute or relative base. On one hand, textures with more highly 

structural spatial distributions yield a low entropy value, while 

te x tu res  w ith  random d is tr ib u tio n s  y ie ld  a high value 

(D'Astous, et. al., 1983). On the other hand, the variations of entropy 

from one region to another reflect the characteristics of the spectral 

frequency d istribution. Since it is the characteristics of the 

frequency d istribution that influence the spectral pattern, the 

absolute values of these measures are less significant; thus, our 

focus is on the variations in the entropy in different regions of the 

power spectrum.

25 X 25

17 X 17

Fig. 30 The spectrum regions used to measure the entropy.
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Let's observe the regional measures for areas in group one (Fig. 

3-29). It is found that, for area 7 and 10, entropy in the four regions 

varies slightly. Area 9 stands out with its overall high entropy and 

the inverse distribution (low entropy in the larger region, high 

entropy in the center). The inverse and even distribution indicate that 

frequency components are evenly distributed in the small region 

around the origin. When spectral frequencies concentrate in a few 

components away from origin, the entropy in the wider areas become 

larger. This is a transition from 10, 9, 7, to 1 then to the other group. 

It is correspondent to a transition from farm land to clear 

subdivision, partially built area, residential area with very low 

density and the fully developed area.

Examining the residential group, comparing the slope of the 

entropy changes from one region to another, we may have better 

understanding of the spectrum patterns. First, we compare area 1 and 

area 3. The two patterns are similar except there are two peaks 

around the origin of the pattern for area 3. Accordingly, the two 

entropy curves are parallel through the 1, 2 and 3 spectrum regions. 

They then split away from each other through region 3 and 4. For area 

3, entropy drops dramatically, indicating concentration of high 

frequency components -  that is the two peaks around the origin. High 

frequency peaks away from the origin seem to be related to the
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coarseness and linearity of the image. The more frequency peaks that 

occur within a spectrum region, the lower the entropy value, the more 

edges in different directions indicated. Areas 6, 2, 4, 8, 5 all present 

such characteristics.

It becomes obvious that similar texture patterns will have 

s im ila r characteris tics  of frequency d is tribu tion  and sim ilar 

spectrum patterns; i.e., images with same texture patterns but 

different gray levels and orientations should have paralleled regional 

entropy curves. For example, area 6 and 8 have similar regional 

entropy patterns except that the slope is greater for area 6 from 

region 2 to region 4. This causes the peripheral high frequency peaks 

in 3D plot of area 6. Comparing the 3D plots of area 6, 2, 4, 8 and 5, 

we find that new housing area 6, 8 and 2, have similar patterns while 

older areas 4 and 5 are alike. When an area is gradually covered by 

vegetation, the coarseness will be reduced and high frequency 

components will be grouped together.

If we use the results of the distance measures from the SPADEP 

regional analysis, we find the Fourier spectrum patterns are nicely 

matched with those groups: (1, 3), (4, 5), (2, 6, 8), (7, 9.10) .  

Compared with the SPADEP approach, Fourier analysis is fast and can 

be visualized. The amount of computation time is a function only of 

the size of the subimage area, whereas with SPADEP computation
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time is a function of both size and number of gray levels in the 

subimage. Moreover, no specific preprocessing of the image is 

r e q u i r e d  in Fourier analysis. We can extract texture information 

described by the regional entropy measures and display this with a 3D 

plot and the diffraction pattern for each of the interested subimage 

areas.

Since ground objects w ill have d iffe ren t re flectance 

characteristics in different spectral bands, features of a spatial 

pattern may have different textures in different bands. It takes only 

10 seconds to calculate the Fourier spectrum for one 32 by 32 

subimage area. This makes it an easy task to perform multi-spectral 

band texture analysis. The following is a brief presentation of this 

approach. Analyses are taken for the same subimage areas in TM band 

1, 4, and 5. The regional entropy measures are illustrated in Figure 

3-31 to 3-33. The distributions of regional entropies in different 

spectral bands seem sim ilar between band 1 and band 3, but 

significant differences exist between band 4 and band 3, and band 5 

and band 3. Further research is needed in order to find the 

relationships of texture properties in different spectral bands.
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III. Summary

In this chapter, two approaches of texture analysis have been 

applied on a Landsat TM image of suburban Omaha. An emphasis is 

placed upon establishing the similarities of texture properties among 

different residential patterns. It is found that the differences 

between the developed areas and partially developed / non-developed 

areas are easily identified. Subtle sim ilarities among different 

residential patterns are also identified to a certain extent either by 

the texture features from SPADEP approach or the regional entropy 

measures from the Fourier analysis. Considering the effectiveness of 

each measure, the regional entropy analysis in the spatial frequency 

domain is simpler, faster and produces a meaningful graphic display.
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Chapter 4: Conclusion

The fundamental assumption of this thesis is that different

spatial patterns on the earth surface are measurable in digital 

imagery. Texture analysis is used to acquire such measurements. The 

measurability of spatial pattern in a digital image would greatly 

enhance our understanding of certain spatial organizations.

A great deal of effort has been devoted in this thesis to 

selecting and developing approaches to texture analysis and the

computer implementation of such techniques. Texture measures are 

treated as being representative of the characteristics of a spatial 

pattern. It has been shown that the properties of a spatial pattern in 

an image can be described in many ways, either with statistical 

measures or with graphic displays. Texture analysis can be

performed in the spatial domain as well as in the frequency domain; 

each has its own advantages and shortcomings. It can also be

implemented locally and regionally, with the former more desirable 

where homogeneous image areas are difficult to define.

It is found that different residential patterns do have different 

texture measures, thus d ifferent spatial characteristics. More
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specifically, the difference can be found among built-up areas vs. 

cleared subdivision, built vs. partially built areas, high density vs. 

low density residential areas, regular grid pattern vs. irregular 

cul-de-sac type patterns, partia lly developed areas vs. fu lly 

developed areas. The seven texture measures selected from the 

SPADEP approach clearly indicates that:

1) Fully developed residentia l areas have much less 

homogeneity than the partially developed or under-developed areas 

(cleared subdivision) while the differences of homogeneity among 

fully developed residential areas are very small;

2) Fully developed residential areas have much higher 

complexity than the partially developed vs. under-developed areas; 

low density residential areas present lower complexity; for the same 

area, increase of vegetation coverage will reduce the complexity 

measures on the image;

3) Spatial relationships of new residential areas are more 

irregular than that of the older areas due to the different street 

layout.

With texture analysis, spatial characteristics of a spatial 

pattern thus can be described in a set of new features, such as 

homogeneity, complexity, linearity, regularity, etc.

In the frequency domain, texture patterns are represented by
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their characteristics of frequency distributions in the Fourier series. 

The Fourier spectrum pattern provides a generalized representation of 

the texture properties of an image. Generally, uniform spatial 

patterns, such as cleared subdivisions, will have pyramidal Fourier 

spectrum patterns while the spectrum of newly built irregular 

residential areas have frequency peaks away from the origin. From a 

piece of farm land to a fully developed residential area, frequency 

distribution changed accordingly as represented with the Fourier 

spectrum patterns presented.

It is found that texture analysis with the Fourier spectrum, 

although criticized by people in the field of pattern recognition, is an 

attractive approach for the analysis of urban residential spatial 

patterns. The Fourier spectrum is one of the few ways to graphically 

display texture information. In the previous chapter, different spatial 

patterns were represented clearly by a series of 3 dimensional plots 

of the Fourier spectrum, along with the descriptive regional entropy 

measures.

V isualizing the texture properties of an image is very 

important since humans are capable of synthesizing a great deal of 

graphic information. Methods for texture analysis should make use of 

both human ability and the advantages of the computer. In fact, no 

thorough investigations on the re lationships between texture
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properties and its Fourier spectrum have been done. However, it is 

fe lt that the Fourier analysis w ill be more promising for a 

man-machine texture analysis system.

It is believed that this thesis has provided an insight into the 

possibilities of applying texture analysis to the study of spatial 

patterns in an urban area, presenting a possible direction for urban 

remote sensing. Measuring residential patterns with texture analysis 

not only enhances our previous concepts of this spatial phenomena but 

also indicates some possible applications of digital image processing 

to urban planning. The fourteen statistical texture measures from 

SPADEP not only extract d iffe ren t aspects of the spatial 

relationships among ground objects but also give a set of criteria for 

land use classification. The Fourier analysis presents graphic 

displays of different residential patterns as well as the descriptive 

entropy measures. These may allow us to describe characteristics of 

residential patterns with a new set of term inology for further 

inquiries of the underlying social, political, and cultural processes.

However, further experim ents on the techniques and 

applications of texture analysis to urban residential patterns and 

other spatial patterns in urban areas need to be carried out. Firstly, 

enhancement of the concept of measurability of spatial pattern in 

digital imagery is needed. This concept could have an important
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implication for geographic study. Secondly, texture analysis is only 

one way to perform the measurement of spatial patterns in a digital 

image. Further investigation and development of related analytical 

techniques are necessary. With better understanding of the existing 

texture analysis techniques, such as fractal analysis we should 

explore more possible approaches.
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REGIONAL ENTROPY (BAND 4)
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no
n

I'ROGRAM EGAL ' ! 7 971 0 . b
C HISTOGRAM EQUALIZATION ROUTINE. EP78213.
C F77 F.GAL
C LINK EGAL,SY:TSXLIB,SY:TVLIB,SY:F7 7LIB

DIMENSION HIST (256), FX (257)
INTEGER*'! 111(2 56)

. BYTE IMAGE(512, 16)
INTEGER* 2 ION (39) , IEXT (4.) , S (4, 2) ,Q(256) , KH (512)
EQUIVALENCE (IH(1),KH
DATA S(1,1)/'G7 S(1,2)/'W'/ NOCOL/16/ NG/16/
DATA KH/512*0/ HIST/256*0.0/ !HISTOGRAM ARRAYS

C
call mpiops !tsx addition
CALL SCREEN (IXMAX,IYMAX,IYVIS) ! HARDWARE CONSTANTS'.
NOW ='256 * NOCOL !BUFFER SIZE (WORDS)
NG IS NUMBER OF RESULTANT GRAY LEVELS (DEFAULT - 64);

REQUEST I/O FILE NAMES AT KEYBOARD, WITH SWITCHES.
5 IF (ICSI (ION,IEXT,,S,2) .NE.O) GO TO 5

IF (S (2, 1) .EQ.2) NG = S(4,l)
ICHANI .= IGETC(I) !ALLOCATE I/O CHANNELS.
ICHANO = IGETC (I)
IF ((ICHANI.LT.0).OR.(ICHANO.LT.0)) STOP ’NO CHANNEL’

C LOAD DEVICE HANDLER IF REQUIRED.
IF ( (IFETCH (ION (1) ) .NE.0)'.OR. IFETCH (ION (16) ) .NE. 6) STOP 'NO FETCH' 
IF (LOOKUP (ICHANO-, ION (1) ). LT.O) STOP 'OUTPUT FILE NOT FOUND,.'
IF (LOOKUP (ICHANI, ION (16) ) .LT.O) STOP 'INPUT FILE NOT FOUND’’
DO 25 I = 1, IXMAX, NOCOL .! ACQUIRE GRAY-SCALE FREQUENCIES. STEP=NOCOL 

KBLK = 1-1
IF (IREADW(NOW,IMAGE,KBLK,ICHANI).LT.O) STOP •READ FAULT'

DO 20 K = 1,NOCOL
CALL ALEPH. (IMAGE (1, K) , I'YVIS, IH)

20 . . CONTINUE
DO 25 K = 1,256

HI ST(K) = HIST(K) + FLOAT(IH(K))
IH(K) = 0 

25 . CONTINUE
FX (1) = 0.0
DO 30. I = 1,256 (FIND CUMULATIVE DISTRIBUTION.

FX (1 + 1) = FX(I) + HIST(I)
30 „ CONTINUE

WRITE(7,*) 'ENTER GRAY LEVEL: '
READ(5,*) NG
‘N=N-G
IGRAY = N/NG
PART = FLOAT(IYVIS)*FLOAT (IXMAX)/FLOAT (NG)
LEVEL = 0  
K = 0
SPART = PART !SUM PARTS.
DO 60 I = 1,256 !COUNT THRU TRANSFORM TABLE.

40 IF ((ABS(FX(I)-SPART)).GE.(ABS(FX(1+1)-SPART))) G O T O  50
LEVEL = LEVEL + IGRAY 
SPART = SPART + PART 

CD WRITE (7,1001) SPART
GO TO 4 0 

50 Q (I) = K
.60 K =’ LEVEL

C . REPLACE INPUT PICTURE VIA LOOKUP TABLE.
DO 90 I - 1,IXMAX,NOCOL 

KBLK - 1-1
IF (IREADW(NOW,IMAGE,KBLK,ICHANI).LT.0) STOP 'READ FAULT 2 '  

DO 8 0 K = 1,NOCOL 
DO 80 J “ 1,IYVIS 

M = IMAGE(J,K)
M - (M.AND.255) + 1 

80 IMAGE (J,K) .= Q(M)
’ IF (IWRITW(NOW,IMAGE,KBLK,ICHANO).LT.O) STOP 'WRITE FAULT' 

90 CONTINUE
CALL-EXIT

1000 , FORMAT (2014)
1001 FORMAT (8(1XF 9.1))

STOP
END
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cc  ----------------------------:--- ------- ----
PROGRAM TXALL

G
C CALCULATE ALL TEXTURE MEASURES' FOR SPECIFIED SUBIMAGE.
C
c JULY, 24, 1987.
C
C        ---------
c

PARAMETER L=32,L2=64,TWSIZE=32 
INTEGER DATA(IWSIZE,IWSIZE)
DIMENSION PI(L,L),P 2 (L,L), P 3 (L,L),P4 <L,L)
DIMENSION Plx(L),P2x (L),P3x (L),P4x(L),

+ Ply (L.) ,P2y (L) , P3y (L) , P4y (L)
DIMENSION Pixy(L2),P2xy<L2),P3xy(L2),P4xy(L2),

+ . Plyx (L),P2yx (L),P3yx (L),P4yx(L)
CHARACTER*10 FORM1,FORM2,OUTFL
DATA FORM1 / ’ (####14) V/FORM2/’ (’ \A) '/
WRITE(7,FORM2) ’ENTER OUTPUT.FILE NAME : ’
READ (5,’(A)') OUTFL
OPEN(UNIT=l,FILE=OUTFL,STATUS='NEW’)
IXY=IWSIZE*IWSIZE
WRITE(FORM1(2:5),' (14) ') IWSIZE
WRITE(7,FORM2) ’STARTING POSITION (XO,YO) = ’.
READ (5,*) JO, 10
WRITE(7,FORM2) ’GRAY LEVEL (=<32 ) = ’
READ(5,*) N
WRITE(7,F0RM2) ’OUTPUT UNIT = ’
READ (5,.*) U

C

CALL OPEN.(1, ’PO’ ,2) 
T1=SECNDS(0.0)

CAT,!,. TNl’UT (1, DATA, JO, IWSIZE, TO, IWSIZE)
CALL UNPACK (DATA,DATA,IXY)

C WRITE (U,102) JO, 10
C WRITE (U, FORM1) ((DATA (I, J) , J=l, IWSIZE)., 1 = 1, IWSIZE)

CALL SPADEP (DATA, N,IWSIZE,IWSIZE,PI,P2,P3,P4)
CALL RCOL1 (P1,P2,P3,P4,N,P1X,P2X,P3X,P4X, P1Y, P2Y, P3Y, P4Y).
CALL RCOL2(PI,P2,P3,P4,N,PIXY,P2XY,P3XY,P4XY,P1YX,P2YX,

P3YX,P4 YX)
CALL FI(PI,N,ASM1)
CALL FI(P2,N,ASM2)
CALL FI(P3,N,ASM3)

. CALL FI(P4,N,ASM4)
CALL MAXMIN(ASM1,ASM2,ASM3,ASM4,RANGE,AVERAG, DEVI)
WRITE(U,200) ASM1,ASM2,ASM3,ASM4,RANGE,AVERAG,DEVI

CALL F2(PIYX,N,CTR1)
CALL F2 (P2YX,N,CTR2)
CALL F2 (P3YX,N,CTR3)
CALL F2 (P4YX,N,CTR4)

CALL MAXMIN(CTR1,CTR2,CTR3,CTR4,RANGE,AVERAG,DEVI)
WRITE (U, 200) CTR1,CTR2,CTR3,CTR4, RANGE, AVERAG,DEVI

CALL F3 (PI, N, P-1X, P1Y, CORREl)
CALL F3(P2,N,P2X,P2Y,CORRE2)
CALL F3(P3,N,P3X,P3Y,CORRE3)
CALL F3(P4,N,P4X,P4Y,CORRE4)

CALL MAXMIN(CORREl,CORRE2,CORRE3,CORRE4, RANGE,AVERAG,DEVI)
WRITE (U, 200) CORREl.CORRE2,CORRE3,CORRE4,RANGE,AVERAG, DEVI

CALL F4 (PI,N,SUMSQ1)
CALL F4 <P2,N,SUMSQ2)
CALL F4(P3,N,SUMSQ3)
CALL F4 (P4 , N, SIJMSQ4 )

. CALL MAXMIN(SUMSQ1,SUMSQ2,SUMSQ3,SUMSQ4,RANGE,AVERAG,DEVI] 
WRITE (U, 20 0) SUMSQ1/1000.,SUMSQ2/1000.,SUMSQ3/1000. ,

SUMSQ4/1000.,RANGE/1000.,AVERAG/10 00.,DEVI/I 000.
CALL F5(PI,N,FIDM1)
CALL F5(P2,N,FIDM2) ,
CALL F5 (P3,N,FIDM3)
CALL F5(P4,N,FIDM4)
CALL MAXMIN(FIDM1,FIDM2,FIDM3,FIDM4,RANGE,AVERAG, DEVI) 

WRITE (U, 200) FIDM1,FIDM2,FIDM3,FIDM4,RANGE,AVERAG,DEVI
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CALL F6 <P1XY,N,SUMAV1)
CALL F6(P2XY,N,SUMAV2)
CALL F6 (P3XY,N,SUMAV3)
CALL F 6 (P 4 X Y, N, SUMAV4)
CALL MAXMIN(SUMAV1,SUMAV2,SUMAV3,SUMAV4,RANGE,AVERAG,DEVI) 

WRITE (U, 200) SUMAV1, SUMAV2, SUMAV3, SUMAV-1, RANGE, AVERAG, DEVI
CALL F7(PIXY,N,SUMET1)
CALL F.7 (P2XY,N,SUMET2)
CALL F7(P3XY,N,SUMET3)
CALL F7 (P4XY,N,SUMET4)

' CALL MAXMIN (SUMET1, SUMET2, SUMET3, SUMET4, RANGE, AVERAG, DEVI)
WRITE (U, 20 0) SUMET1,SUMET2,SUMET3,SUMET4,RANGE,AVERAG,DEVI

CALL F8(PIXY,N,SUMET1,SUMVl)
CALL F8(P2XY,N,SUMET2,SUMV2)
CALL F8(P3XY,N,SUMET3,SUMV3)
CALL F8(P4XYjN,SUMET4,SUMV4)

CALL MAXMIN(SUMVl,SUMV2,SUMV3,SUMV4,RANGE,AVERAG,DEVI)
WRITE(U, 200) SUMVl,SUMV2,SUMV3,SUMV4,RANGE,AVERAG, DEVI

•CALL F9 (PI, N, ENTRP1)
CALL;F9(P2,N,ENTRP2)
CALL F9(P3,N,ENTRP3)
CALL F9(P4,N,ENTRP4)

CALL MAXMIN(ENTRP1,ENTRP2,ENTRP3,ENTRP4,RANGE,AVERAG, DEVI)
WRITE(U,200) ENTRPl,ENTRP2,ENTRP3,ENTRP4,RANGE,AVERAG,DEVI

C
CALL F10 (P1YX,N,DIFET1)
CALL F10 (P2YX,N,DIFET2)'
CALL F10 (P3YX,N,DIFET3)
CALL F10 (P4YX,N,DIFET4)

CALL MAXMIN(DIFET1,DIFET2,DIFET3,DIFET4,RANGE,AVERAG, DEVI)
WRITE(U,200) DIFET1,DIFET2,DIFET3,DIFET4,RANGE,AVERAG,DEVI

C
CALL FI 1 (P1YX-, N, DIFET1, DIFV1)
CALL Fll(P2YX,N,D1FET2,DIFV2)
CALL Fll(P3YX,N,DIFET3,DIFV3)
CALL Fll (P4YX,N,DIFET4,DIFV4)

CALL MAXMIN(DIFV1,DIFV2,DIFV3,DIFV4,RANGE,AVERAG,DEVI)
WRITE(U,200) DIFV1,DIFV2,DIFV3,DIFV4,RANGE,AVERAG,DEVI

C
CALL F12(P1,P1X,P1Y,N,ENTRP1,FIMC11,FIMC21)
CALL F12(P2,P2X,P2Y,N,ENTRP2,FIMC12,FIMC22)
CALL’FI2 (P3, P3X, P’3Y,N, ENTRP3, FIMC13, FIMC23)
CALL F12(P4,P4X,P4Y,N,ENTRP4,FIMC14,FIMC24}

C
CALL MAXMIN(FIMC11,FIMC12,FIMC13,FIMC14,RANGE,AVERAG,DEVI)
WRITE (U,200) FIMC11,FTMC12,FIMC13,FIMC14 ,RANGE,AVERAG, DEVI

C.
CALL MAXMIN(FIMC21,FIMC22,FIMC23,FIMC24,RANGE,AVERAG,DEVI)
WRITE (U, 200) •FIMC21,FIMC22,FIMC23,FIMC24,RANGE,AVERAG,DEVI 

C ’
CALL F13 (PI,P1X,P1Y,N,FMCC1)
CALL F13 (P2,P2X,P2Y,N,FMCC2)
CALL F13 (P3,P3X,P3Y,N ,FMCC3)
CALL F13(P4,P4X,P4Y,N,FMCC4)

CALL MAXMIN (FMCC1, FMCC2, FMCC3 , ['MCC4 , RANGE, AVF.RAG, DEVI )
WRITE(U,2 0 0) FMCC1,FMCC2,FMCC3,FMCC4,RANGE,AVERAG,DEV1

200 FORMAT(IX,7F10.4)
C

TYPE/,*TIME USED ~ ',SECNDS(T1)
STOP
END

C
c--:— — —  ---------------- -----------------------

SUBROUTINE MAXMIN(A,B,C,D,MIMA,AVG,DEVI)
C
C MIMA: RANGE OF (A,B,C,D);.
C AVG: MF.AN OF (A,B,C,D);
C DEVI: VARIANCE OF (A,B,C,D).
C .
c -  —  ------------------------------------ ---------------------------- -------------------------------------------------------------------

C •
REAL MIMA

C
MIMA=0.0 
AVG=0.. 0 
DEVI=0.0 
SUM=0.0
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AVG=(A+B+C + D) / A

MIMA-AMAX1 (A, B,C,D)-AMIN1 (A,B,C,D)
SUM-(A-AVG)**2+(B-AVG)**2+(C-AVG)**2+(D-AVG)* *2 
DEVI=SUM/4
RETURN
END
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PROGRAM TXLOCL

LOCAL. OPERATION OF SPADEP
CURRENT PROGRAM WORK WITH 32 BY 32 SUBIMAGE AND 3X3 WINDOW.

INTEGER DUMMY(32,32), XO,YO,WINSIZ,OPT 
CHARACTER*10 FORM 
DATA FORM/' A ) '/

WRITE(7,FORM) 'DEFINE THE IMAGE AREA (X,Y) = ' 
READ(5j *) ICOL,1ROW
WRITE(7,FORM) 'STARTING POSITION (XO,YO) = '
READ(5,*) XO,YO
WRITE (7-, FORM) 'WINDOW SIZE = ’
READ(5,*) WINSIZ
WRITE(7,FORM) 'GRAY LEVEL (=<32) = '
READ(5,*) NGRAY 
WRITE(7, *)
WRITE(7,*) 'TEXTURE FUNCTIONS CAN BE EXTRACTED: '
WRITE (7,*) * 1. ANGULAR SECOND MOMENT;'
WRITE (7,.*) ' 2. CONTRAST;'
WRITE (7,*) • 3. CORRELATION;'
WRITE (7-, *) ' 4 . SUM OF SQUARES;'
WRITE (7,*) ' 5. INVERSE DIFFERENCE MOMENT;’
WRITE (7,*) ' 6. SUM AVERAGE;'
WRITE(7,*)' 7 . SUM ENTROPY;’
WRITE (7,*) ' 8. SUM VARIANCE;'
WRITE (7,*) ’ 9. ENTROPY;’
WRITE (7,*) ' 10 . DIFFERENCE ENTROPY;'
WRITE (7,*) ' 11. DIFFERENCE VARIANCE;'
WRITE (7,*) • 12. INFORMATION MEASURES OF CORRELATION
WRITE (7,*) ’ 13. MAXIMAL CORRELATION COEFFICIENT;'
WRITE (7, *)
WRITE(7,FORM) 'ENTER YOUR CHOICE (0 TO QUIT): '
READ(5,*) OPT 
IF(OPT.EQ.0) STOP

C
CALL DOING (TOOL,TROW,XO,YO,WINS TZ,DUMMY,NGRAY,ORT)

C
STOP
END

C
C    _ _ _ _ _ _ ----------------------------------------------------------------

SUBROUTINE DOING(IC,IR,JO,10,IWSIZE,DATA,N,IOPT)
C------------------------------  :----
c

PARAMETER L=32,L2=64 
INTEGER DATA(IWSIZE,IWSIZE)
DIMENSION PI(L,L),P2(L,L),P3(L,L),P4(L,L)
DIMENSION Plx(L),P2x(L),P3x(L) ,P4x (L),

+ Ply (L),P2y(L),P3y(L),P4y(L)
DIMENSION Pixy(L2),P2xy(L2),P3xy(L2),P4xy(L2),

+ Plyx (L),P2yx(L>,P3yx(L),P4yx(L)
DIMENSION TX1 (30),TX2 (30)
CHARACTER*10 FORM,OUTFL 
DATA FORM/' (##I#I4) ’/

C
IXY=IWSIZE*IWSIZE
WRITE(FORM(2:5),’(14)') IWSIZE

C
WHITE (7,*) 'ENTER OUTPUT FILE NAME : '"
READ (5, ' (A) ') OUTFL
OPEN (UNIT=2,FILE=OUTFL,STATUS='NEW',FORM=’UNFORMATTED')

' C
CALL OPEN(1,'P0',2)

C .
T1=SECNDS(0.0)
DO 10 IY=IO,IR+IO-3 

ICOUNT=0
DO 30 IX=JO,IC+JO-3

CALL INPUT (1,DATA,IX,IWSIZE,IY,IWSIZE)
CALL.UNPACK (DATA,DATA,IXY)

C WRITE (7,102) IX, IY
C WRITE (7,FORM) • ((DATA(I,J),J=1,IWSIZE),1 = 1, IWSIZE)
■C

CALL SPADEP (DATA,N,IWSIZE,IWSIZE,PI, P2,P3,P4)
IF(IOPT.EQ.1) THEN

CALL FI (PI,N,ASM1)
CALL FI(P2,N,ASM2)
CALL FI (P3, N, ASM3)
CALL FI (P4,N,ASM4)
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CAM, MAXMIN (ASMl, ASM2, ASM3, ASM1!, RANGE, AVI:',RAG)
GOTO 20 
END IF
IF(IOPT.EQ.2) THEN
CALL RCOL2 (PI,P2,P3,P4,N,PIXY,P2XY,P3XY,P4XY,PlYX,P2YX,

+' P3YX,P4 YX)
CALL F2 (PIYX,N,CTR1)
CALL F2(P2YX,N,CTR2)
CALL F2(P3YX,N,CTR3) 

a . CALL F2 (P4 YXr N,CTR4)
CALL MAXMIN(CTR1,CTR2,CTR3,CTR4,RANGE,AVERAG)

GOTO 20 
END IF
IF(IOPT.EQ.3) THEN
CALL .RCOLl (PI,P2,P3,P4,N,P1X,P2X,P3X,P4X,PlY,P2Y,P3Y,P4Y)

CALL F3 (PI,N,P1X,P1Y,CORREl)
. CALL F3(P2,N,P2X,P2Y,CORRE2)
CALL F3(P3,N,P3X,P3Y,CORRE3)
CALL F3(P4, N,P4X,P4Y,CORRE4)
CALL MAXMIN (CORREl, CQRRE2, CORRF.3, CORRF.4, RANGF., AVERAG) 

GOTO 20 .
•. ENDIF
IF (IOPT.EQ.4) THEN

CALL F4(PI,N,SUMSQ1)
CALL F4 (P2,N,SUMSQ2)
CALL F4 (P3,N,SUMSQ3)
CALL F4(P4,N,SUMSQ4)
CALL MAXMIN(SUMSQ1,SUMSQ2,SUMSQ3,SUMSQ4,RANGE,AVERAG)

GOTO 20 
ENDIF
IF(IOPT.EQ.5) THEN

CALL F5(PI,N,FIDM1)
CALL F 5(P 2,N,FIDM2)
CALL F5(P3,N,FIDM3)
CALL F5(P4,N,FIDM4)
CALL-MAXMIN(FIDM1,FIDM2,FIDM3,FIDM4,RANGE,AVERAG)

GOTO.20 
ENDIF
IF (IOPT.EQ.6) THEN
CALL RCOL2(PI,P2,P3,P4,N,P1XY,P2XY,P3XY,P4XY,P1YX,P2YX,

+ P3YX,P4 YX)
CALL F6(PIXY,N,SUMAV1)
CALL F6(P2XY,N,SUMAV2)
CALL F6(P3XY,N,SUMAV3)
CALL F6 (P4XY,N,SUMAV4)
CALL MAXMIN(SUMAV1,SUMAV2,SUMAV3,SUMAV4,RANGE,AVERAG)

• GOTO 20 
. ENDIF

IF(IOPT.EQ.7) THEN
CALL RCOL2(PI,P2,P3,P4,N,PIXY,P2XY,P3XY,P4XY, P1YX,P2YX,

+ P3YX,P4YX)
CALL F7 (PIXY,N,SUMETl)
CALL F7(P2XY,N,SUMET2)
CALL F7(P3XY,N,SUMET3)
CALL F7(P4XY,N,SUMET4)
CALL MAXMIN(SUMETl,SUMET2,SUMET3,SUMET4,RANGE,AVERAG)

GOTO 20 
ENDIF 

. IF(IOPT.EQ.8) THEN 
CALL RCOL2(PI,P2,P3,P4,N,PIXY,P2XY,P3XY,P4XY,PlYX,P2YX,

+ P3YX,P4YX)
CALL F7 (PIXY,N,SUMETl)
CALL F7 (P2XY,N,SUMET2)
CALL F7 (P3XY, N, SUMF.T3)
CALL F7(P4XY,N,SUMET4)
CALL F8 (PIXY, N, SUMETl, SUMVl).
CALL F8(P2XY,N,SUMET2,SUMV2)
CALL F8(P3XY,N,SUMET3,SUMV3)
CALL F8(P4XY,N,SUMET4,SUMV4)
CALL MAXMIN(SUMVl,SUMV2,SUMV3,SUMV4,RANGE,AVERAG)

GOTO 20 
ENDIF
IF(IOPT.EQ.9) THEN

CALL F9(PI,N,ENTRP1)
CALL F9(P2,N,ENTRP2)
CALL F9 (P3,N,ENTRP3)
CALL F9(P4,N,ENTRP4)
CALL MAXMIN (ENTRP 1, ENTRP2, ENTRP3,- ENTRP4, RANGE, AVERAG)

GOTO 20 
ENDIF
IF(IOPT.EQ.10) THEN
CALL RCOL2 (PI,P2,P3,P4,N,PIXY,P2XY,P3XY,P4XY,PlYX,P2YX,

+ P3YX,P4YX)
CALL F10 (PlYX,N,DIFET1)
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CALL MAXMIN(ASM1,ASM2,ASM3,ASM4,RANGE,AVERAG)
GOTO 20 
ENDIF
IF(IOPT.EQ.2) THEN
CALL RCOL2(PI,P2,P3,P4,N,PIXY,P2XY,P3XY,P4XY, PlYX,P2YX,

P3YX,P4YX)
CALL F2 (P1YX,N,CTR1)
CALL F2(P2YX,N,CTR2)
CALL F2 (P3YX,N,CTR3)
CALL F2(P4YX,N,CTR4)
CALL MAXMIN(CTR1,CTR2,CTR3,CTR4,RANGE,AVERAG)

GOTO 20 
ENDIF
IF (IOPT.EQ.3) THEN
CALL RCOL1(P1,P2,P3,P4,N,P1X,P2X,P3X,P4X,P1Y,P2Y,P3Y,P4Y)

CALL F3(PI,N,P1X,P1Y,CORREl)
CALL F3(P2,N,P2X,P2Y,CORRE2)
CALL F3(P3,N,P3X,P3Y,CORRE3)
CALL F3(P4,N,P4X,P4Y,CORRE4)
CALL MAXMIN(CORREl,CORRE2,CORRE3,CORRE4,RANGE,AVERAG) 

GOTO 20 .
ENDIF
IF (IOPT.EQ.4) THEN

CALL F4 (P1,N,SUMSQ1)
CALL F4(P2,N,3UMSQ2)
CALL F4(P3,N,SUMSQ3)
CALL F4(P4,N,SUMSQ4)
CALL MAXMIN(SUMSQ1,SUMSQ2,SUMSQ3,SUMSQ4,RANGE,AVERAG}

GOTO 20 
ENDIF
IF (IOPT.EQ.5) THEN

CALL F5(PI,N,FIDM1)
CALL F5 (P2,N,FIDM2)
CALL F5(P3,N,FIDM3)
CALL F5(P4,N,FIDM4)
CALL MAXMIN (FIDM1,FIDM2,FIDM3,FIDM4,RANGE,AVERAG)

GOTO 20 
ENDIF
IF(IOPT.EQ.6) THEN
CALL RCOL2(PI,P2,P3,P4,N,PIXY,P2XY,P3XY,P4XY,PlYX,P2YX,

P3YX,P4 YX)
CALL F6 (PIXY,N,SUMAV1)
CALL F6(P2XY,N,SUMAV2)
CALL F6 (P3XY,N,SUMAV3)
CALL F6 (P4XY,N,SUMAV4)
CALL MAXMIN (SUMAVl., SUMAV2, SUMAV3, SUMAV4, RANGE, AVERAG)

GOTO 20 
ENDIF
IF (IOPT.EQ.7) THEN
CALL RCOL2(PI,P2,P3,P4,N,PIXY,P2XY,P3XY,P4XY,PlYX,P2YX,

P3YX,P4YX)
CALL F7 (PIXY,N,SUMETl)
CALL F7 (P2XY, N, SUMET2-)
CALL F7(P3XY,N,SUMET3)
CALL F7 (P4XY,N,SUMET4)
CALL MAXMIN(SUMETl,SUMET2,SUMET3,SUMET4,RANGE,AVERAG)

GOTO 20 
ENDIF
IF (IOPT.EQ.8) THEN
CALL RCOL2 (PI,P2,P3,P4,N,PIXY,P2XY,P3XY,P4XY,PlYX,P2YX,

P3YX,P4 YX)
CALL F7 (PIXY,N,SUMETl)
CALL F7(P2XY,N,SUMET2)
CALL F7 (P3XY,N,SUMET3)
CALL F7 (P4XY,N,SUMET4)
CALL F8 (PIXY,N,SUMETl,SUMVl)
CALL F8(P2XY,N,SUMET2,SUMV2)
CALL F8 (P3XY,N,SUMET3,SUMV3)
CALL F8(P4XY,N,SUMET4 , SUMV4)
CALL MAXMIN(SUMVl,SUMV2,SUMV3,SUMV4,RANGE,AVERAG)

GOTO 20 
ENDIF
IF(IOPT.EQ.9) THEN

CALL F9 (PI,N,ENTRP1)
CALL F9(P2,N,ENTRP2)
CALL F9 (P3, N, ENTRP3)
CALL F9(P4,N,ENTRP4)
CALL MAXMIN(ENTRP1,ENTRP2,ENTRP3,ENTRP4,RANGE,AVERAG)

GOTO 20 
ENDIF
IF (IOPT.EQ.10) THEN
CALL RCOL2(PI,P2,P3,P4,N,PIXY,P2XY,P3XY,P4XY, PlYX,P2YX,

P3YX,P4YX)
CALL F10 (PIYX,N,DIFET1)



CALL MAXMIN(ASM1,ASM2,ASM3,ASM4,RANGE,AVERAG)
GOTO 20 
ENDIF
IF (IOPT.EQ.2) THEN
CALL RCOL2(P1,P2,P3,P4,N,P1XY,P2XY,P3XY,P4XY,PlYX,P2YX,

P3YXt P4YX)
CALL F2 (PlYX,N,CTR1)
CALL F2(P2YX,N,CTR2)
CALL F2 (P3YX,N,CTR3)
CALL F2 (P4YX,N,CTR4)
CALL MAXMIN(CTR1,CTR2,CTR3,CTR4,RANGE, AVERAG)

GOTO 2.0 
ENDIF
IF (IOPT.EQ.3) THEN
CALL RCOL1 (PlyP2,P3,P4,N,PlX,P2X,P3X,P4X,PlY,P2Y,P3Y,P4Y)

CALL F3(PI,N,P1X,P1Y,CORREl)
CALL F3(P2,N,P2X,P2Y,CORRE2)
CALL F3(P3,N,P3X,P3Y,CORRE3)
CALL F3(P4,N,P4X,P4Y,CORRE4)
CALL MAXMIN(CORREl,C0RRE2,CORRE3,CORRE4,RANGE,AVERAG)

GOTO 20 
ENDIF
IF (IOPT.EQ.4) THEN

CALL F4(PI,N,SUMSQ1)
CALL F4(P2,N,SUMSQ2)
CALL F4(P3,N,SUMSQ3)
CALL F4(P4,N,SUMSQ4)
CALL MAXMIN (SUMSQ1,SUMSQ2,SUMSQ3,SUMSQ4,RANGE,AVERAG)

GOTO 20 
ENDIF
IF (IOPT.EQ.5) THEN

CALL F5(PI,N,FIDM1)
CALL F5 (P2,N,FIDM2)
CALL F5(P3,N,FIDM3)
CALL F5 (P4,N,FIDM4)
CALL MAXMIN(FIDM1,FIDM2,FIDM3,FIDM4 , RANGE,AVERAG)

GOTO 20 
ENDIF
IF(IOPT.EQ.6) THEN
CALL RCOL2 (PI,P2,P3,P4,N,PIXY,P2XY,P3XY, P4XY, PIYX, P2YX,

P3YX,P4YX)
CALL F6 (PIXY, N, SCJMAV1)
CALL F6(P2XY,N,SUMAV2)
CALL F6 (P3XY,N,SUMAV3)
CALL F6 (P4XY,N,SUMAV4)
CALL MAXMIN(SUMAV1,SUMAV2,SUMAV3,SUMAV4, RANGE,AVERAG)

GOTO 20 
ENDIF
IF (IOPT.EQ.7) THEN
CALL RCOL2(PI,P2,P3,P4,N,PIXY,P2XY,P3XY,P4XY, P1YX,P2YX,

P3YX,P4YX)
CALL F7(PIXY,N,SUMETl)
CALL F7 (P2XY,N,SUMET2-)
CALL F7(P3XY,N ,SUMET3)
CALL F7(P4XY,N,SUMET4)
CALL MAXMIN(SUMETl,SUMET2,SUMET3,SUMET4,RANGE,AVERAG)

GOTO 20 
ENDIF
IF (IOPT.EQ.8) THEN
CALL RCOL2(PI,P2,P3,P4,N,PIXY,P2XY,P3XY,P4XY,PlYX,P2YX,

P3YX,P4YX)
CALL F7(PIXY,N,SUMETl)
CALL F7 (P2XY,N,SUMET2)
CALL F7 (P3XY,N,SUMET3)
CALL F7 (P4 X Y, N, SUMET4 )
CALL F8(PIXY,N,SUMETl,SUMVl)
CALL F8 (P2XY,N,SUMET2,SUMV2)
CALL F8(P3XY,N,SUMET3,SUMV3)
CALL F8(P4XY,N,SUMET4,SUMV4)
CALL MAXMIN (SUMVl, SUMV2, SUMV3, SUMV4 ,• RANGE, AVERAG)

GOTO 20 
ENDIF
IF (IOPT.EQ.9) THEN

CALL F9(PI,N,ENTRP1)
CALL F9(P2,N,ENTRP2)
CALL F9(P3,N,ENTRP3)
CALL F9(P4,N,ENTRP4)
CALL MAXMIN(ENTRP1,ENTRP2,ENTRP3,ENTRP4,RANGE,AVERAG)

GOTO 20 
ENDIF
IF (IOPT.EQ.10) THEN
CALL RCOL2(PI,P2,P3,P4,N,PIXY,P2XY,P3XY,P4XY,PlYX,P2YX,

P3YX,P4 YX)
CALL F10 (PlYX,N,DIFET1)



nn
 

no
CALL F10 (P2YX,N,DIFET2)
CALL F10 {P3YX,N,DIFET3)
CALL F10 (P4YX,N,DIFET4)
CALL MAXMIN(DIFET1,DIFET2,DIFET3,DIFET4, RANGE,AVERAG)

GOTO 20 
END IF
IF(IOPT.EQ.il) THEN
CALL RC0L2(PI,P2,P3,P4,N,PIXY,P2XY,P3XY,P4XY, P1YX, P2YX,

+ P3YX,P4YX)
CALL F10(P1YX, N,DIFET1)
CALL F10 (P2YX,N,DIFET2)
CALL F10(P3YX,N,DIFET3)
CALL F10 (P4YX,N,DIFET4)
CALL Fll (PIYX,N,DIFET1,DIFV1)
CALL Fll (P2YX,N,DIFET2,DIFV2)
CALL Fll (P3YX,N,DIFET3,DIFV3)
CALL Fll (P4YX, N,DIFET4 r DIFV4)
CALL MAXMIN(DIFV1,DIFV2,DIFV3,DIFV4,RANGE,AVERAG)

GOTO 20 
ENDIF
IF (IOPT.EQ.12) THEN
CALL RCOL1(P1,P2,P3,P4,N,P1X,P2X,P3X,P4X,P1Y,P2Y,P3Y, P4Y)

CALL F9(PI,N,ENTRP1)
CALL F9 (P2,N,ENTRP2)
CALL F9(P3rN,ENTRP3)
CALL F9 (P4,N,ENTRP4)
CALL F12(Pl,PlX,PlY,N,ENTRP1,FIMCI1,FIMC21)
CALL F12(P2,P2X,P2Y,N,ENTRP2,FIMC12,FIMC22)
CALL F12 (P3,P3X,P3Y,N,ENTRP3,FIMC13,FIMC23)
CALL F12(P4,P4X,P4Y,N,ENTRP4,FIMCI4,FIMC2 4)
CALL MAXMIN(FIMC11,FIMCI2,FIMC13,FIMC14,RANGE1,AVERA1) 
CALL MAXMIN(FIMC21,FIMC22,FIMC23,FIMC24,RANGE2,AVERA2)

C
GOTO 20 
ENDIF
IF(IOPT.EQ.13) THEN
CALL RCOL1(P1,P2,P3,P4,N,P1X,P2X,P3X,P4X,P1Y,P2Y,P3Y,P4Y)

CALL F13 (PI,P1X,P1Y,N,FMCC1)
CALL F13 (P2,P2X,P2Y,N,FMCC2)
C’AT.r. FI 3 (P3, P3X, l'3Y, N, FMCC3)
CALL FLJ (L’4 , l“4 X, L'4 Y, N, FMCC4)
CALL MAXMIN(FMCC1,FMCC2,FMCC3,FMCC4,RANGE,AVERAG)

ENDIF
C
2 0 ICOUNT=ICOUNT+l

TX1 (ICOUNT)=RANGE 
TX2 (ICOUNT)=AVERAG

30' CONTINUE
WRITE (2) (TX1(I) ,1 = 1,30)
WRITE(2) (TX2(I),1=1,30)

10 CONTINUE
C
200 FORMAT(F20.5)
102 FORMAT (/' COLUMN',14, ', ROW',14)
C

TYPE*,SECNDS(Tl)
RETURN
END

SUBROUTINE MAXMIN(A,B,C,D,MIMA,AVG)

REAL MIMA 

AVG=(A+B+C+D)/4
MIMA=AMAX1(A,B,C,D)-AMIN1(A,B,C,D)

Re t u r n
END
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SUBROUTINE SPADEP(SDATA,NG,IR,IC,SP1,SP2,SP3,SP4)

C
C CREATE SPATIAL GRAY TONE DEPENDENCE MATRICES FOR
C EACH OF THE FOUR DIRECTIONS: 0, 45, 90, 135.
C
C INPUT: SDATA ---  IMAGE DATA
C N G ----GRAY LEVEL
C IR---- NUMBER OF ROW
C IC---- NUMBER OF COLUMN
c SP*---- NORMALIZED SGTDM (SP1-0,SP2-90,SP3-45,SP4-135)
C *

PARAMETER LG=32
DIMENSION SDATA(LG,LG),SP1 (LG, LG) , SP2(LG,LG),SP3 (LG, LG) ,

+ SP4(LG,LG),DI(4),DJ (4)
INTEGER SDATA, CENT, NAROR, DT, n.T
DATA DI/0, -1, -1, -1/ DJ/1, 0, 1, -1/

C
C.... INITIALIZE SP*(I,J)
C

DO 4 1=1,NG 
DO 4 J-= 1, NG

SP1(I,J)=0.0 
SP2(I,J)=0.0 
SP3(I,J)=0.0 
SP4(I,J)=0.0

4 CONTINUE
C
C...CALCULATE SPADEP 
C

DO 20 1=1, IR 
DO 20 J=l, IC

CENT=SDATA(I,J)
DO 30 K=1,4 
II=I+DI(K)
JJ=J+DJ (K).

IF { (II.GE.l.AND.II.LE.IR) .AND. (JJ.GE.1.AND.JJ.LE.IC))THEN 
NABOR=SDATA(11, JJ)
IF (K.EQ.l) SP1(CENT+1,NABOR+1)=SP1(CENT+1,NABOR+1)+1 
IF (K.EQ.2) SP2(CENT+1,NABOR+1)=SP2(CENT+1,NABOR+1)+1 
IF (K.EQ.3) SP3(CENT+1,NABOR+1)=SP3(CENT+1,NABOR+1)+1 
IF (K.EQ.4) SP4(CENT+1,NABOR+1)=SP4(CENT+1,NABOR+1)+1

ENDIF 
30 CONTINUE
20 CONTINUE
C
C...TRANSPOSE OF THE SP 
C

DO 40 1=1,NG 
DO 40 J=1,NG

IF(J .GE. I) THEN
SP1(I,J)=SP1(I,J)+SP1(J,I)
SP1 (J, I)=SP1(I,J)
SP2(I,J)=SP2(I,J)+SP2(J,I)
SP2(J,I)=SP2(I,J)
SP3(I,J)=SP3(I,J)+SP3(J,I)
SP3(J,I)=SP3(I,J)
SP4(I,J)=SP4(I,J)+SP4(J,I)
SP4 (J,I)=SP4(I,J)

ENDIF 
4 0 CONTINUE
C
C...NOMALIZE SPADEP. R* ARE THE NUMBER OF NEIGNBORING RESOLUTION 
C...CELL PAIRS USED IN COMPUTING A PARTICULAR SPADEP.
C

Rl = 2* IR* (IC-1) ! 0 DEGREE ! ALL FOR DISTANCED.
R2=2* IC* (IR-1) 90 DEGREE
R3 = 2*(IR-1)* (IC-1) ! 45 DEGREE
R4=2* (IC-1)*(IR-1) ! 135 DEGREE

C
DO 50 1=1,NG 

DO 50 J=1,NG
SP1(I,J)=SP1(I,J)/R1 
SP2(I,J)=SP2(I,J)/R2 
SP3 (I, J) =SP3 (I, J) /R3 
SP4 (I, J)=SP4 (I, J)/R4 

50 CONTINUE
C

RETURN
END

90



n 
n 

n
SUM4=0.0 

DO 50 1=1,NG 
DO 50 J=1,NG

IF((I+J) .EQ. (K+l)) THEN 
SUM1=SUM1+SP1(I,J) 
SUM2=SUM2+SP2(I,J) 
SUM3=SUM3+SP3(I,J) 
SUM4=SUM4+SP4{I,J)
ENDIF

...2) SPx-y(K)=SP*yx(K) 
DO 55 K=1,NG

SUM1=0.0 
SUM2=0.0 
SUM3=0.0 
SUM4=0.0 

DO 60 1=1,NG 
DO 60 J=1, NG

IF (ABS(I—J) .EQ. K-l) THEN 
SUM1 = SUM1+SP1 (I, J) 
SUM2=SUM2+SP2(I, J) 
SUM3=SUM3+SP3(I, J) 
SUM4=SUM4+SP4 (I, J)
ENDIF

50 CONTINUE
SPlxy(K)=SUM1 
SP2xy(K)=SUM2 
SP3xy<K)=SUM3 
GP4xy (K)^CUM4

45 CONTINUE

60 CONTINUE
SPlyx (K)=SUM1 
SP2yx (K)=SUM2 
SP3yx (K)=SUM3 
SP4yx(K)=SUM4

55
C

CONTINUE
RETURN
F.ND
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SUBROUTINE RCOL1 (SP1,SP2,SP3,SP4,NG,SPlx,SP2x,SP3x,SP4x,SPly, 
+ SP2y,SP3y,SP4y)

C
c  -----------
c 
c
C CALCULATE SPx(i)=SUM{ (j-NG) } (SP (i,j)), SPy(j)=SUM{(i-NG)} (SP(i,j))
C NOTE: WHEN i=j=NG, SPx (i)=SPy ( j)
C
C
C SPX(I) AND SPY(J) ARE THE MARGINAL PROBABILITY MATRIX.
C
C------------------------------------------------------------------------
C

.PARAMETER LG=32
DIMENSION SP1 (LG,LG),SP2 (LG,LG),SP3(LG,LG),SP4(LG,LG),.

+ SPlx(LG),SP2x(LG),SP3x(LG),SP4x (LG),SPly(LG) ,
+ SP2y(LG),SP3y(LG),SP4y(LG)

C
C...1) SPx (i)
C

DO 15 1=1,NG
SUM1=0.0 
SUM2=0.0 
SUM3=0.0 
SUM4=0.0 

DO 20 J=1,NG
SUM1=SUM1+SP1(I,J)
SUM2=SUM2+SP2(I,J)
SUM3=SUM3+SP3(I, J)
SUM4=SUM4+SP4(I,J)

20 CONTINUE
SPlx(I)=SUM1 
SP2x (I)=SUM2 
SP3x(I)=SUM3 
SP4x(I)=SUM4

15 CONTINUE
C
C...3) SPy (j)
C

DO 2 5 J=1,NG
SUM1=0.0 
SUM2=0.0 
SUM3=0.0 
SUM4=0.0 

DO 30 1=1,NG
SUM1=SUM1+SP1(I, J)
SUM2=SUM2+SP2(I,J)
SUM3=SUM3+SP3(I,J)
SUM4=SUM4+SP4(I,J)

30 CONTINUE
SPly(J)=SUM1 
SP2y (J)=SUM2 
SP3y(J)=SUM3 
SP4y(J)=SUM4 

25 CONTINUE
C

RETURN
END

C
SUBROUTINE RCOL2(SP1,SP2,SP3,SP4,NG, SP1XY, SP2XY,

+ SP3XY, SP4XY, Sl?l YX, SP2YX, SP3YX, SIMYX)
C
c -------------------------------------:----------------------------------------- ---------------- -----------------------------
C
C CALCULATE Px+y(K)=SUM{k}P(1,j) (k=(i+j); 2,3,4...2N. )
C Px-y(K)=SUM{k}P(i,j) (k=abs(i-j); 0,1,2...N-1)
C
C SP* XY —  Px + y
C SP* YX —  Px-y
C
c-------------------------------------------------------------------------------:-------------------------------------------------
C

PARAMETER L1=32,L2=64
DIMENSION SP1 (LI,LI),SP2 (LI,LI),SP3(LI,LI),SP4(LI,LI) ,

+ SPlxy(L2),SP2xy (L2),SP3xy (L2),SP4xy (L2),
+ SPlyx(LI),SP2yx(LI),SP3yx(LI),SP4yx(LI)

C
C...1) SPx+y(K)=SP*xy(K)
C

DO 45 K=l,2*NG-1 
SUM1=0.0 
SUM2=0.0 
SUM3=0.0
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SUBROUTINE FI(SP,NG,SASM)C
C--------------------------------------------- -------------
c
C CALCULATE THE ANGULAR SECOND MOMENT.
C
C----------------------------------------------- ------------
C

DIMENSION SP (32, 32)
SASM=0.0 
DO 10 1=1,NG 

DO 10 J=1,NG
SASM=SASM+SP (I, J.) *SP (I, J)

10 CONTINUE
RETURN
END

C
SUBROUTINE F2(SPYX,NG,SCTR)

C
C---------------------------------------------------------------------------------------
c
C CALCULATE.THE CONTRAST.
C
C---------------------------------------------------------------------------------------
c

DIMENSION SPYX (32)
C

SCTR=0.0 
DO 10 1=1,NG

SCTR=SCTR+(1-1)* (1-1)*SPYX(I)
10 CONTINUE
C ■

RETURN
END

C
SUBROUTINE F3(SP,NG,SPX,SPY,SCORRE)

C
C---------------------------------------------------------------------------------------------------
c
C CALCULATE THE CORRELATION
C
C THE VALUE OF CORRELATION INDICATES THE RELATIONSHIP BETWEEN
C COLUM AND ROW.
C
C NOTE: SP(I) IS A NORMALIZED SPADEP FOR CERTAIN DIRECTION,
C SPX(I) AND SPY (I) ARE THE MARGINAL FREQUENCY OF SP.
C FOR GROUPED DATA SP(I), SUM (SPX(I))=1, SUM (SPY(I))=1;
C THUS N=1.
C
C GENERAL ALGORITHEM IS IN TE2.FOR.
C
c-------------------------------------------------------------------- :---------------------------------------------------------------------
C

DIMENSION SP(32,32),SPX(32),SPY(32)
C
C...DF1=SUM((SP(I,J)* (I—1)*(J—1)) [(I—1) AND (J-l) ARE THE CLASS MARK]
C

SUM=0.0 
DO 10 1=1,NG 

DO 10 J= 1, NG
SUM=SUM+(I—1)*(J-l)*SP(I,J)

10 CONTINUE
Q

DF1=SUM
C
C...DF2 = SUM(SPX <I)* (1-1) *SUM(SPY(I)*(1-1) )
C

SUM1=0.0 
SUM2=0.0 
DO 20 1=1,NG

SUM1=SUM1+SPX(I)* (I—1)
SUM2=SUM2+SPY(I)*(1-1)

20 CONTINUE
C

DF2=SUM1*SUM2
C
C...DF3=[SUM(SPX(I)*(1-1)* *2) ]-[SUM (SPX(I)-(1-1) } * * 2  
C

SUM1=0.0 
SUM2=0.0 
DO 30 1=1,NG

SUM1 = SUM1+SPX(I)* (I —1>**2
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SUM2=SUM2+SPY(I)* (I —1)
30 CONTINUE
C

DF3=SUM1-SUM2 * *2
C
C...DF4 
C

SUM1=0.0 
SUM2=0.0 
DO 40 1=1,NG

SUM1=SUM1+SPY(I)*(1-1)**2 
SUM2=SUM2+SPY(I)* (I—1)

40 CONTINUE
C

DF4=SUM1-SUM2**2
C
C...SCORRE=(DF1-DF2)/SQRT(DF3*DF4)
C

DFF=SQP.T (DF3*DF4)
IF(DFF.EQ.0) THEN 

SCORRE=l
ELSE

SCORRE=(DF1-DF2)/DFF
ENDIF

C
RETURN
END

C
SUBROUTINE F4(SP,NG,SOS)

,C
C------------------------------------------------------------------------------
C
C THE SUM OF SQUARES: VARIANCE
C SOS=SUM(SUM(I-U)* * 2 *SP(I, J) ) ;
C
C--------- --------------------------------- '----------------------------------
C

DIMENSION SP (32, 32)
C
C...THE MEAN U=SUM(SP{I,J)*(1-1))/R; FOR NORMALIZED SPADEP R=1 
C

SUM=0.0 
DO 10 1=1,NG 

DO 10 J=1,NG
SUM=SUM+SP(I,J)*<1-1)*(J-l)

10 CONTINUE
U=SUM

C
C...SOS 
C

SUM=0.0 
DO 20 1=1,NG 

DO 20 J=1,NG
SUM=SUM+(I-l-U) **2*SP (I; J) ! (I —1) IS. CLASS MARK WHEN THE

C ! FIRST GRAY LEVEL=0
20 CONTINUE
C

SOS=SUM
C

RETURN
END

C
SUBROUTINE F5(SP,NG,SIDM)

C
C ------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------- —

C
C THE INVERSE DIFFERENCE MOMENT.
C
C SIDM=SUM (SUM (SP (I, J) / (1+ (I-J) **2) )
C
C NOTE: THE CONNOTATION OF I AND J IS NOT CLEAR YET.
C THEY WERE TREATED AS CLASS MARK. THUS WHEN THE FIRST
C CRAY LEVEL IS 0, I-I-l,J~J-1. BUT, (1-1)-(J-l)=I-J
C
C-----------------------------------------------------------------------------
C

DIMENSION SP (32, 32)
C

SUM=0.0 
DO 10 1=1,NG 

DO 10 J=1,NG
SUM=SUM+SP(I,J)/(1+(I-J)**2)

10 CONTINUE
C
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SIDM=SUM
RETURN
END
SUBROUTINE F6(SPXY,NG,SUMAVE)

THE SUM AVERAGE.
SUMAVE=SUM(I*SPXY(I); THE FIRST I EQUALS TO (I+J) IN THE 

CALCULATION OF SPXY (I).

DIMENSION SPXY (64)
SUM=0.0
DO 10 1 = 1,2 *NG-1

SUM=SUM+(I+l)*SPXY(I)
10 CONTINUE
*

SUMAVE=SUM
★

RETURN
END

*

■ SUBROUTINE F7(SPXY,NG,SUMETP)
C
c-----------------------------------------------------------------------

SUM ENTROPY.
SUMETP= - SUM (SPXY (I) * LOG(SPXY (I)) ; RANGE: 1 = 1____2*NG-1
SINCE LOG(0) IS UNDEFINED AND SPXY (I)=0 IS POSSIBLE;
THE FORMULA CHANGE TO:
SUMETP= - SUM(SPXY(I) * LOG (SPXY(I)+CONST)
IF SPXY (I) = 0, CONST=l
THE BASE OF LOG IS 2. SINCE LOG HAS BASE OF (E), THUS: 
SUMETP= - SUM(SPXY(I) * LOG(SPXY (I)+CONST)/LOG(2)

C----------------------------------------------------
c

DIMENSION SPXY (64)
*

A=2 .0 
B=ALOG(A)
SUM=0.0
DO 10 1 = 1,2 *NG-1

IF(SPXY(I).EQ.0.0) THEN 
CONST=l.0 

ELSE
CONST=0.0 

ENDIF
SUM=SUM+SPXY (I)* (ALOG(SPXY(I)+CONST)/B) 

10 CONTINUE
*

SUMETP=—SUM
*

RETURN 
' END
SUBROUTINE F8(SPXY,NG,SUMF7,SUMV)

THE SUM VARIANCE.
SUMV = SUM (I-SUMF7)* *2*SPXY(I); I IS THE CLASS MARX, ?
WHEN FIRST GRAY LEVEL=0, 1 = 1+1.' NOTE: TRUE FOR ALL SITUATION ? 
SUMF7 IS THE SUM ENTROPY.
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c
DIMENSION SPXY (64)

C
SUM=0.0
DO 10 1=1, 2*NG-1

SUM=SUM+(I + 1-SUMF7)**2*SPXY (I) 
10 CONTINUE
C

SUMV=SUM
C

RETURN
END
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SUBROUTINE F 9 (SP,NG,ENTRO)
C
C----------------------------------- :---------------------------------
k

* CALCULATE THE ENTROPY.
*

* ENTRO = - SUM [SP(I,J) * LOG(SP{I,J)+CONSTANT)/LOG(2)].
*

* IF SP<r,J)=Of CONSTANT=l.0; ELSE, CONSTANT=0.0.
*

C------------:-------- ------------------------------------------------
c

DIMENSION SP (32, 32)
C

A=2 .0 
B=ALOG(A)
SUM=0.0 
DO 10 1=1,NG 

DO 10 J=1,NG
C

IF(SP(I,J).EQ.0.0) THEN 
CONST=l.0

ELSE
CONST=0.0 

ENDIF
C

SUM=SUM+SP(I,J)* (ALOG(SP(I,J)+CONST)/B)
C •
10 CONTINUE
C

ENTRO= - SUM
C

RETURN
END

C
SUBROUTINE FI0 (SPYX,NG,DIFETP)

C
C-----------------------------------------------------------------*
* DIFFERENCE VARIANCE.★
* DIFETP = - SUM(SPYX(I)* (ALOG[SPYX(I)+CONSTANT/ALOG(2) ];
k

* ARRAY SUBSCRIPT: 1, 2, 3, ... NG.
C-------------------------------------------------------------------
c

DIMENSION SPYX (32)
C

A=2 .0 
B=ALOG(A)
SUM=0.0 
DO 10 1=1,NG

C
IF (SPYX (I) .EQ.0.0) THEN 

CONST=l.0 
ELSE

CONST=0.0 
ENDIF

C
SUM=SUM+SPYX(I)* (ALOG(SPYX(D+CONST)/B)

C
10 CONTINUE
C

DIFETP= - SUM
C

RETURN
END

C
SUBROUTINE Fll (SPYX,NG.DETP.DIFV)

C
C--------------------------------------------------------------------------------------------
w

* DIFFERENCE VARIANCE.*
* F10=DETP (THE DIFFERENCE ENTROPY)
*

* DIFV= SUM ( (I-F10)* *2 *SPYX(I) }. NOTE: THE ALGORITHEM IS
* NOT SURE.*
* WHEN THE FIRST GRAY LEVEL = 0, 1=1-1.
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DIMENSION SPYX (32)
SUM=0.0 
DO 10 1=1,NG

SUM=SUM+(I-l-DETP)**2*SPYX(I)
10 CONTINUE
C

DIFV=SUM
. RETURN 
END

C
SUBROUTINE F12(SP,SPX,SPY,NG,HXY,SIMC1,SIMC2)

CC----------------------------------------------------   :-------------------
c
* INFORMATION.MEASURES OF CORRELATION.W
* SIMCI = (HXY - HXY1) / MAX(HX,HY);*
* SIMC2 = SQRT{ (1-exp[-2.0 (HXY2 - HXY])}.*
* HXY: THE ENTROPY, CACULATED IN F9;
* HX = - SUM [SPX (I) * (LOGtSPX(I)+CONSTANT)/LOG(2)) ];ENTRCPY OF SPX (I)
* HY = - SUM [SPY (I) * (LOG(SPY(I)+CONSTANT)/LOG(2)) ];ENTROPY OF SPY (I)
* HXY1 = - SUM { SP(I,J) *' (LOG[SPX (I)*SPY (I)+CONSTANT]/LOG(2)] };
* HXY2 = - SUM { SPX (I) *SPY(I) * (LOG[SPX(I) *SPY(I)+CONSTANT]/LOG(2)) }.
C----------- :----------------------------------------------- --------------
C

DIMENSION SP (32,32) ,SPX(64) ,SPY (64)
C

A=2 .0 
B=ALOG(A)

C
C...HX, HY 
C

HX = 0 . 0 
UY-0.0

C
DO 10 1=1,NG

C
IF (SPX(I) .EQ. 0.0) THEN 

CONST1=1.0 
ELSE

CONST1=0.0 
ENDIF
IF (SPY (I) .EQ. 0.0) THEN 

CONST2=l.0 
ELSE

CONST2=0.0 
ENDIF

C
HX=HX+SPX(I)*(ALOG(SPX(I)+CONST1)/B)
HY=HY+SPY(I)* (ALOG(SPY(I)+CONST2)/B)

C
10 CONTINUE
C

HX = - HX 
HY = - HY

C
C...HXY1, HXY2 
C

HXY1=0.0 
HXY2=0.0

,C
DO 20 1=1,NG 

DO 20 J=1,NG
C

IF (SPX(I).EQ.0.0 .OR. SPY(J).EQ.0.0) THEN 
CONST=l.0 

ELSE
CONST=0.0 

ENDIF
C

HXY1=HXY1 + SP(I,J) * (ALOG (SPX(I)*SPY(J) + CONST)/B) 
HXY2=HXY2 + SPX (I) * SPY(J)* (ALOG(SPX(I)* SPY(J)+CONST)/B)

C
20 CONTINUE
C

HXY1 = - HXY1 
HXY2 = - HXY2
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u 
u 
u

. . -SIMC1 .
IF (AMAX1(HX,HY).EQ.O) THEN 

SIMC1=0
ELSE

SIMC1 = (HXY - HXY1) / AMAX1 (HX,.HY)
ENDIF 

. . .SIMC2
A= EXP((-2.0)*(HXY2-HXY))

C
SIMC2 = SQRT(l-A)

C
RETURN .
END
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SUBROUTINE F13(SP,SPX,SPY,NG,SUBMCC)

MAXIMAL CORRELATION COEFFICIENT.
SUBMCC = SQRT(SECOND LARGEST EIGENVALUE OF Q)
Q(I,J) = SUM(SP(I,K)*SP(J,K)/SPX(I)*SPY(K)) 
k= 1, 2, 3, ... NG.
PROCEDURE:

1) CREATE Q (I,J);
2) CONVERT Q (I,J) TO HESSENBERG MATRIX;
3) CALCULATE EIGENVALUES OF Q(I,J); (IT IS POSSIBLE TO- 

BUILD THE EIGENVECTOR MATRIX WITH THESE EIGENVALUES) ;.
4) FIND THE SECOND LARGEST EIGENVALUE OF Q(I,J).

THE CRITICAL ALGORITHEMS OF THIS PORTION IS BASED ON THE BASIC 
LANGUAGE PROGRAM DESIGNED BY ZHANG et. al. IN QINGHUA U. CHINA.
NOTE: THE ACCURACY OF COMPUTATION IS INFLUENCED BY THE SIZE 
OF THE ORIGINAL MATRIX, i.e. THE NUMBER OF GRAY LEVEL- WE 
DEAL WITH. THE MEANING OF THIS MAXIMAL CORRELATION COEFFICIENT 
STILL NEEDS TO FIND OUT, SO IS THE GRAPHIC DISPLAY OF THIS 
MEASUREMENT.

DIMENSION SP(32,32),SPX(64),SPY(64),Q(36,36),EIGR(32)
DO 10 1=1,NG 

DO 10 J=1,NG 
SUM=0.0 
DO 20 K=1,NG

IF (SPX.(I) .EQ. 0 .OR. SPY (K) .EQ. 0) GOTO. 2 0 
SUM=SUM+(SP(I,K)*SP(J,K))/(SPX(I)*SPY(K))

20 CONTINUE
Q (I,J)-SUM

10 CONTINUE
C
C...CONVERT Q (I,J) TO HESSENBERG MATRIX 
C

CALL HESSEN(Q,NG)
C
C...CALCULATE EIGENVALUE FOR Q(I,J) CONVERTED TO HESSENBER MATRIX. 
C

CALL EIGEN(Q,NG,EIGR)
C
C...FIND THE SECOND LARGEST EIGENVALUE OF Q(I,J)
C

DO 60 J=1,NG-1
DO 50 1=1,NG-1

IF(EIGR(I).GT.EIGR(1+1)) THEN 
TEMP=EIGR(I)
EIGR(I)=EIGR(1+1)
EIGR(1+1)=TEMP 

END.IF
50 CONTINUE
60 CONTINUE
C

SMAX=EIGR(NG-1)
C

SUBMCC= SQRT(ABS(SMAX))
C

RETURN
END

C
SUBROUTINE HESSEN(HA,SNG)

PROGRAM TO TRANSFOR GENERAL MATRIX TO THE HESSENBERG MATRIX.
THE ALGORITHEM IS DESIGNED BY ZHANG et. al IN QINGHUA U. CHINA.
THE HESSENBERG MATRIX IS TO USED FOR EIGENVALUE CALCULATION WITH 
THE QR METHOD.
A(SN,SN+4); B(SN) ! CURRENTLY A {SN, SN),B(SN);

! SN=<86.

100



c
DIMENSION HA{36,36),B(32)
INTEGER SNG,SN

C
SN=SNG

C
C...INITIALIZE B(I) WITH 1, 2, 3, SN
C

DO 10 1=1,SN 
B (I} =1 

10 CONTINUE
C
C...CORE OF THE PROGRAM 
C

L=SN-1 
DO 20 M=2,L 

I=M 
X=0.0 

DO 30 J=M,SN
IF( ABS(HA(J,M-l)) .LE. ABS(X)) GOTO 30 

X=HA(J,M-l)
I=J .

30 CONTINUE
C

IF( I .EQ. M) GOTO'9999
C

Y=B(M)
B(M)=B (I)
B(I)=Y

C
DO 40 J=M—1, SN

Y=HA(I,J)
HA (I, J) =HA (M, J)
HA (M, J) =Y 

40 CONTINUE
C

DO 50 J=1,SN 
Y = IIA (J, I)
HA (J, I) =HA (J, M)
HA (J, M) =Y 

50 CONTINUE
C
9999 IF ( X .EQ. 0.0) GOTO 20
C

DO 60 I=M+1,. SN 
Y=HA(I,M-l)
IF ( Y .EQ. 0.0) GOTO 60 
Y=Y/X
HA (I, M-l) =Y 
DO 7 0 J=M,SN

HA (I, J) =HA (I, J) -Y*HA (M, J)
70 CONTINUE

DO 8 0 J=1,SN
HA (J, M) =HA (J, M) +Y*HA (j; I)

80 CONTINUE
60 CONTINUE
C
20 CONTINUE
C

DO 90 1=1,SN 
DO 90 J=1,SN

IF( I .LE. 2 .OR. J .GT. 1-2) GOTO 90 
HA(I,J)=0.0 

90 CONTINUE
C

RETURN
END

C
SUBROUTINE ElGEN (A,SNG,DR)

CC    ------------------------------
*

* QR METHOD TO CALCULATE THE EIGENVALUE OF MATRIX,
*

* INPUT MATRIX MUST BE A HESSENGER MATRIX. GENERAL MATRIX CAN
* BE CONVERTED TO A HESSENGER MATRIX BY THE PROGRAM 'UPPERH.FOR'.
*

* THE ALGORITHEM IS DESIGNED BY ZHANG et. al AT QINGHUA U. CHINA.
*

* ARRAY
* A(N+4,N+4).. INPUT HESSENGER MATRIX;
* B (N+4)   RECORD OF SEARCHING TIMES;
* R (N)........ THE REAL PARTS OF THE EIGENVALUE;
* I (N)........ THE IMAGERARY PARTS OF THE EIGENVALUE;
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* N ...........  SIZE OF THE MATRIX;
* E ........... ERROR INDEX, SPECIFIED TO 0.1,
C------------------------------------------ -------------------------------
c

DIMENSION A (3 6, 36) ,B<36) ,DR(32) ,DI(32)
INTEGER SNG

C
N=SNG

C
E=0 .1 
T=0 .0 
T2=N

7160 IF( N .EQ. 0) GOTO 7410
T1=0 
N1=N-1

C
7166 DO 10 L=N,2,-1

IF(ABS(A (L,L—1)) .LE.E* (ABS(A(L-1,L-l))+A3S(A(L,L))))GOTO 7174 
10 CONTINUE
C

L=1
7174 X=A(N,N)
C

IF( L .EQ. N) THEN 
DR(N)=X+T 
DI(N)=0.0 
B(N)=T1 
N=N1
GOTO 7160

ENDIF
Y=A(N1,N1)
W=A (N, N1) *A(N1,N)

IF ( L .EQ. Nl) THEN 
P= (Y-X)/2 
Q=P *P+W 
Y=SQRT(ABS(Q))
B(N)=-Tl 
B(Nl)=T1 
X=X+T
IF ( Q . T.F,. 0) THEN 

UR (Nl ) -X iL'
DR(N)=X+P 
DI (Nl)=Y 
DI(N)=—Y 

ELSEIF ( P .GE. 0) THEN 
Y=P+Y
DR(Nl)=X+Y 
DR(N)=X-W/Y 
DI(Nl)=0 .0 
DI(N)=0.0 ■

ELSE
Y=—Y 
Y=P-t-Y
DR(Nl)=X+Y 
DR (N)=X—W/Y 
DI(Nl)=0.0 
DI(N)=0.0

ENDIF
C

N=N-2
GOTO 7160 ! STARTING AGAIN.

ENDIF
C

IF ( T1 .EQ. 10 .OR. T1 .EQ. 20) THEN 
T=T+X 

DO 20 1=1,N
A (I, I) = A(I,I)-X 

20 CONTINUE
S=ABS(A(N,Nl))+ABS(A(Nl,N-2))
X=0.75*S 
Y=0 .75*S 
W= (-0.4375)*S*S 

ELSEIF( T1 .EQ. 60) THEN
WRITE(7, *) 'EIGENVALUE NOT FOUND ’

RETURN
ENDIF

C
DO 30 M=N-2,L,-1 

Z=A (M, M)
R=X-Z 
S=Y—Z
P=(R* S—W)/A(M+l,M)+A(M,M+l)
Q=A(M+l,M+l)—Z-R-S
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c
30
C
7240
40
C

50
C

7320
70
C

R=A (M+2, M+l)
S=ABS (P)+ABS(Q)+ABS(R)
P=P/S
Q=Q/S
R=R/S
IF( M .EQ. L) GOTO 7240 

U=E*ABS(P) * (ABS(A(M-l,M-l)) +ABS(Z)+ABS(A(M+l,M+l))) 
IF( ABS(A(M,M-1))*(ABS(Q)+ABS(R)) .LE. U) GOTO 7240
CONTINUE
DO 40 I=M+2,N

A ( I ,1— 2)=0.0
CONTINUE
DO 50 I=M+3,N

A(I,1-3)=0.0
CONTINUE
DO 60 K=M,Nl 

IF ( K 
IF ( K

.NE. Nl) N2=l 

.NE. M) THEN 
P=A(K,K-l)
Q=A(K+l,K-l)
R=0 .0
IF (N2 .EQ. 1) R=A (K+2 , K'-l) 
X=ABS (P) +ABS (Q) +ABS (R)
IF( X .EQ. 0) GOTO 60
P=P/X
Q=Q/X
R=R/X

(NEXT K.

ENDIF
S=SQRT(P *P+Q*Q+R*R)
IF{ P .LT. 0) S=-S
IF( K .NE. M) THEN

A(K,K-l)= (—S)*X 
ELSEIF ( L .NE. M) THEN

A (K,K—1)= -A(K,K-l)
ENDIF
P=P+S
X=P/S
Y=Q/S
Z=R/S
Q=Q/P
R=R/P

DO 70 J=K,N
P=A (K, J) +Q*A (K+l, J)
IF( N2 .EQ. 0) GOTO 7 320 
P=P+R*A(K+2,J)
A(K+2,J)=A(K+2,J)-P *Z 
A(K+l,J)=A(K+l,J)-P *Y 
A (K, J) =A(K, J) -P*X

CONTINUE
IF ( K+3 .GE. N) THEN 

j=N
ELSE

J=K+3
ENDIF

7344
80
60
C

C
.7410
7416

DO 80 I=L,J
P=X*A(I,K)+Y*A(I,K+l)
IF ( N2 .EQ. 0) GOTO 7344 
P=P+Z*A(I,K+2)
A (I,K + 2)=A(I,K+2)-P*R 
A (I,K+l)=A (I,K+l)-P*Q 
A (I, K ) =A (I, K) -P

CONTINUE
CONTINUE
T1=T1+1
GOTO 7166
CONTINUE
RETURN
END

LOOP 10.
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cc------------------------------------------------
PROGRAM TXGG3

C
C PROGRAM TO PLOT INDIVIDUAL TEXTURAL MEASURES.
C
C AUG. 9, 1987.
Cc------------------------------------------------c

DIMENSION X (12),Y (12),A(7,7)
CHARACTER*10 INFIL (10),FORM 
DATA FORM/’(’'?'',A)’/
DATA X. / I . 2.,3.,4.,5.,6.,7.f 8.r 9.f10., 0.,0./
DATA Y /.1,.2,.3,.4,.5,.6,.7,.8,.9,1.,0.,0./

C
CALL MPIOPS.

C
C WRITE(7,FORM) 'HOW MANY FILES TO COMPARE : '
C READ(5,M  N

N=10
WRITE (7,*) 'ENTER 10 FILE NAMES : .'
DO 5 1=1,N

READ(5,' (A) ’) INFIL (I)
5 CONTINUE
C

CALL SCALE (X,7.0,10,1)
CALL SCALE (Y,6.0,10,1)

C
WRITE(7,FORM) 'FEATURE YOU WANT TO PLOT : '
READ(5,*) TX
WRITE(7,FORM) '0 (1),90 (2),45 (3),135 (4),RANGE (5),AVERAG (6), 

+VARIANT (7) : *
READ(5,*) IF

C
CALL PLOTS (0,0,0)
CALL PLOT (1.0,1.0,-3)

C
M=0

88 8 M=M+1
C

OPEN (UNlT-l , F I l.F- I NF! I, (M) , STATUS- '01,01 )

READ(1,*) ((A(I,J),J=1,7),1=1,7)
C

TEMP=A(TX,IF)
IF(TX.GE.3.AND.TX.LE.5.AND.IF.NE.5.AND.IF.NE.7) THEN 

TEMP=TEMP/1Q
ELSE

TEMP=SQRT(TEMP)
ENDIF 
Y(M)=TEMP

C
CLOSE (1)
IF(M.EQ.N) GOTO 777 

• GOTO 88 8
C
777 CALL AXIS (0.0,0.0,'TEXTURE MEASURES',-16,7.0,0.0 , X (11), X (12) )

CALL AXIS (0 .0,0 .0, 'VALUE',5,6.0,90.0,Y (11) ,Y (12))
CALL LINE (X,Y,10,1,1,11)

C
STOP
END
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cc----------------------------- ------------------------c
PROGRAM FTXTUR

C
C PERFORMS TWO DIMENSIONAL FFT, THEN CALCULATE. THE REGIONAL ENTROPY.
C THE CURRENT PROGRAM WORK FOR 32X32 SUBIMAGE. USING THE VIRTUAL 
C MEMORY, ANALYSIS CAN BE PERFORMED ON UP TO 128X128 SUBIMAGE.
C
C INPUT DATA IS READ FROM THE PICTURE PLANE ’O', SUBIMAGE AREA IS 
C SELECTED BY POINTING THE CURSOR TO THE LEFT CORNOR OF THE AREA.
C
C OUTPUT UNIT 2 CONTAINS THE OUTPUT FILE OF THE GRAY-LEVEL-SCALED 
C FOURIER SPECTRUM TO BE PLOT BY 'PLOTFF.FOR' AS AN IMAGE OR 'FFT3D.FOR' 
C AS A 3-D PLOT.
C
C THE SIZES OF ENTROPY REGIONS ARE 25 X 25, 17 X 17, 11 X 11, 5 X 5.
C
C THIS ALGORITHM OF REGIONAL ENTROPY ANALYSIS IS PROPOSED BY 
C M.E. JERNIGAN AND F. D'ASTOUS. IN 'ENTROPY-BASED TEXTURE ANALYSIS IN 
C THE SPPATIAL FREQUENCY DOMAIN’, IEEE, TRANSACTIONS ON PATTERN 
C ANALYSIS AND MACHINE INTELLEGENCE, VOL.’PAMI-6, NO. 2, MARCH 1984.
C
C LI BIN, JULY 22, 1987.
C
C----------------- -----------------------------------------------------------------------------
C

DIMENSION H<32,32),B(32),QB(32,32)
COMPLEX B,QB 
REAL K
CHARACTER*10 OUTFL1,OUTFL2,FORM 
DATA FORM/'(' 'S' ’,A) '/

C
CALL MPIOPS 
CALL ERASER 
NN=32

C
WRITE(7, FORM) 'ENTER FILE NAME FOR THE TXTURE MEASURES : '
READ(5,'(A)’) OUTFL2

C
OPEN (UNIT=1,FILE=OUTFL2,STATUS='NEW')

C
C INPUT SECTION 
C
•9899 WRITE(7,FORM) 'ENTER FILE NAME FOR THE FOURIER SPECTRUM : ’

READ (5, ’ (A) ’) OUTFL1
OPEN (UNIT=2,FILE=OUTFLl,STATUS='NEW',FORM='UNFORMATTED’)

C
1 WRITE(7,FORM) 'JOYSTIC (0) OR KEYBORAD (1) COORDINATES ? '

READ(5,*) ISEL
C

IF (ISEL -EQ. 0) THEN
WRITE (7,FORM) 'Hit <BS>'
CALL CURSOR (IX,IY) . '
WRITE(7,*) 'WRITE DOWN THE POSITION : ',IX,IY

ELSE
WRITE (7,FORM) 'ENTER X, Y COORDINATES : '
READ (5,*) IX,IY

ENDIF
C

IXSIZE=NN 
I YSIZE=NN

C
CALL BOXON(IX,IY,IXSIZE,IYSIZE)

C
WRITE(7,FORM) 'IS THIS AREA ACCEPTABLE (1/0) ? '
READ(5,*) RESPONSE
IF ( RESPONSE .EQ. 0) THEN

CALL BOXOFF (IX,IY,IXSIZE,IYSIZE)
GO TO 1

ENDIF
C

CALL PEER(0)
DO 22 IROW=l,IYSIZE 

DO 33 ICOL=l,IXSIZE
CALL GRAFIN(IX+ICOL-1,IY+IROW-1,IZ1)
H(IROW,ICOL)=IZ1 

33 CONTINUE
22 CONTINUE
C
C FFT SECTION 
C
C WRITE(7,*)'ORIGIN CENTERED FFT ? 1/0'
C READ(5,*) OPTION
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OPTION •= 1
WRITE (7,*) 'LOG SCALE? (1=Y,0 = N) '
READ (5,*) SCAL.OG 
IF(SCALOG.EQ.1) THEN

WRITE(7,*) 'ENTER SCALE FACTOR K ’
READ(5,*) K

ENDIF
C WRITE(7,*) ’ENTER GRAY LEVEL'
C READ(5,*) G
C

G=255
C
C TRANSFORM THE ROWS OF H(I,J), STORE IN Q(I,L)
C

T1=SECNDS(0.0)
DO 10 1=1,NN

ICOUNT=0 
DO 20 J=1,NN

ICOUNT-ICOUNTt1
TF (OPTION.EQ.l) IC=(-1)* *(1+J)
IF (OPTION.EQ.O) IC=1 
B(ICOUNT)=H (I,J) *IC 

20 - CONTINUE
•CALL FOUREA (B, NN, -1)
M=0
DO 30 L=1,NN 

M=M+1
QB (I, L) =B (M)

30 CONTINUE
10 CONTINUE
C
C TRANSFORM THE COLUMNS OF QB(I,J>
C

DO 50 J=1,NN
ICOUNT=0 

DO 60 1=1,NN
ICOUNT=ICOUNT+l
B (ICOUNT)=QB(I,J)/NN ! DIVIDED BY 1/N.

60 CONTINUE
CALL FOUREA(B,NN,-1)
M=0
DO 70 L=1,NN 

M=M+1
QB (L, J) =B (M)

70 CONTINUE
50 CONTINUE

TYPE*, 'TIME IN'TRANSFORM = ',SECNDS(T1), ' SECONDS.’
C

U=7
VMIN=1.0E9 
VMAX=-1.0E9 
DO 80 1=1,NN 

DO 80 J=1,NN
PSD=QB(I,J)*CONJG(QB(I,J))
Q B (I,J)=PSD 
H (I, J) =SQRT (PSD)
VMAX=AMAX1(H(I,J),VMAX)
VMIN=AMIN1(H(I,J),VMIN)
IF (SCALOG.NE.1) GOTO 80 
H(I, J) =LOG (1+K*H (I, J) )

80 CONTINUE 
C
C.. SUMS OF 4 REGIONS: 25X25, 17X17, 11X11, 5X5
C

IW1=NN/2+1-12 
IW1l=NN/2+l+12 
SUM1=0.0
DO 81 I=IW1,IW11 

DO 81 J=IW1,IW11
SUM1 = SUM1+QB(I, J)

81 CONTINUE 
IW2=NN/2+l-8 
IW22-HN/2i110 
SUM2=0.0
DO 82 I=IW2,IW22 

DO 82 J=IW2,IW22
SUM2=SUM2+QB(I,J)

82 CONTINUE 
IW3=NN/2+1-5 
IW33=NN/2+l+5 
SUM3=0.0
DO 83 I=IW3,IW33 

DO 83 J=IW3,IW33
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SUM3=SUM3+QB(I,J)
83 CONTINUE 

IW4=NN/2+l-2 
IW44=NN/2+l+2 
SUM4=0.0
DO 84 I=IW4,IW44 

DO 84 J=IW4,IW44
SUM4=SUM4+QB(I,J)

84 CONTINUE 
C
C ENTROPY 
C

AA=2.0
BASE=ALOG(AA)

C
ETP1=0.0
DO 85 I=IW1,IW11 

DO 85 J=IW1,IW11
TEMP1=QB (I, J)/SUM1 
TEMP2=ALOG(TEMPI)
ETP1=ETP1+TEMP1*TEMP2

85 CONTINUE
ETP1=-ETP1/ (ALOG(25.0*25.0)/BASE)

C
ETP2=0.0
DO 86 I=IW2,IW22 

DO 8 6 J=IW2,IW22
TEMP1=QB(I,J)/SUM2 
TEMP2=ALOG(TEMPI)
ETP2=ETP2+TEMP1*TEMP2

86 CONTINUE
ETP2=-ETP2/(ALOG(17.0*17.0)/BASE)

C
ETP3=0.0
DO 87 I=IW3,IW33 

DO 87 J=IW3,IW33
TF.MP1=QB (I, J) /5UM3 
TEMP2=ALOG(TEMPI)
ETP 3=ETP3+TEMP1 *TEMP2

8 7 CONTINUE
ETP3=-ETP3/ (ALOG(11.0*11.0)/BASE)

C
ETP4=0.0
DO 88 I=IW4,IW44 

DO 88 J=IW4,IW44
TEMP1=QB(I,J)/SUM4 
TEMP2=ALOG(TEMPI)
ETP 4 =ETP 4 +TEMP1 * TEMP2

8 8 CONTINUE
ETP4=-ETP4/ (ALOG (5.0 * 5.0)/BASE)

C
C PRINT THE TXTURE MEASURES 

. C
WRITE (7, 7777) 'ETP1 = ' , ETP 1’, ' ETP 2 = ’,ETP2 
WRITE(7,7777) 'ETP3 = ’ ,ETP3, ' ETP4 = ',ETP4 

7777 FORMAT(IX,2 (Ar FI0.5) )
WRITE(1,'(4F15.4)’) ETP1,ETP2,ETP3,ETP4

C
VMAX=-1.0E9 
VMIN=1.0E9 
DO 90 1=1,NN 

DO 90 J=1,NN
IF(I.EQ.NN/2+1. AND.J.EQ.NN/2 + 1) GOTO 90 
VMAX=AMAX1 (H(I,J),VMAX)
VMIN=AMIN1(H(I,J),VMIN)

'90 CONTINUE
C

RANG=VMAX-VMIN
C

DO 95 1=1,NN 
DO' 95 J= 1, NN

H (I, J) = ( (H (I, J) -VMIN)/RANG) *G 
IF(I.EQ.NN/2+1.AND.J.EQ.NN/2+1) H(I,J)=255 

9b CONTINUE
C

DO 100 1 = 1, NN
WRITE(2) (H(I,J),J=1,NN)

100 CONTINUE
C

■ CLOSE (2)
WRITE(7,FORM) ’NEXT FILE ? (1/0) '
READ (5,*) NEXT 
IF (NEXT.EQ.0) GOTO 9090 
GOTO 98 99
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c
9090 CALL OFF < ’G ’)

STOP
END
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c
c-------------- -------------------------------------------------
c
C SUBROUTINE: FOUREA
C PERFORMS COOLEY-TUKEY FAST FOURIER TRANSFORM 
C
C--------------:----------- --------------------------------------c

SUBROUTINE FOUREA(DATA,N,ISI)
C
C THE COOLEY-TUKEY FAST FOURIER TRANSFORM IN ANSI FORTRN 
C
C DATA IS A ONE-DIMENSIONAL COMPLEX ARRAY WHOSE LENGTH, N IS A 
C POWER OF TWO. ISI IS +1 FOR AN INVERSE TRAN5FERM AND -1 FOR A 
C FORWARD TRANSFORM. TRANSFORM VALUES ARE RETURNED IN THE INPUT' 
C ARRAY, REPLACING THE INPUT.
C AFTER PROGRAM BY BRENNER, JUNE 19 67.
C

VIRTUAL DATA(1)
COMPLEX DATA 
COMPLEX TEMP,W
PI = 4.*ATAN (1.)
FN=N

C
C PUT DATA IN BIT-REVERSED ORDER 
C

J=1
DO 80 1 = 1, N

C
C AT THIS POINT, I AND J ARE A BIT REVERSED PAIR (EXCEPT FOR THE 
C DISPLACEMENT OF +1 
C

IF(I-J) 30,40,40
C
C EXCHANGE DATA(I) WITH DATA(J) IF I.LT.J 
C
30 TEMP=DATA(J)

DATA(J)=DATA(I)
DATA{I)=TEMP

C
C IMPLEMENT J=J+1, BIT-REVERSED COUNTER 
C
40 M=N/2
50 IF(J-M) 70,70,60
60 J=J-M

M=(M+l ) 1 2  

GOTO 50 
70 J=J+M
80 CONTINUE
C
C COMPUTE THE BUTTERFLIES 
C

MMAX=1
90 IF(MMAX-N) 100,130,130
100 ISTEP=2 *MMAX

DO 120 M=1,MMAX
THETA=PI*FLOAT (ISI* (M-l) ) /FLOAT.(MMAX)
W=CMPLX(COS(THETA),SIN(THETA))
DO 110 I=M,N,ISTEP 

J=I+MMAX 
TEMP=W*DATA(J)
DATA(J)=DATA(I)-TEMP 
DATA(I)=DATA(I)+TEMP 

110 CONTINUE
120 CONTINUE

MMAX=ISTEP 
GOTO 90

130 IF (ISI) 160,140,140
C
C FOR INVERSE TRANSFORM —  ISI=1 —  MULTIPLY OUTPUT BY 1/N 
C
140 DO 150 1=1,N

DATA(I)=DATA(I)/FN
150 CONTINUE
160 RETURN

END
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$ TY FFT2.FOR
C
C-------------------------------------------------------------- ------
C
C MAIN PROGRAM: FFT2.FOR
C
C PERFORMS TWO DIMENSIONAL FFT, THE OUTPUT FILE IS THE UNSCALED FOURIER
C SPECTRUM WHICH CAN BE DIRECTLY PLOTTED AS 3D SURFACE BY 'FFT3D.FOR'.
C THE CURRENT PROGRAM WORK FOR 32X32 SUBIMAGE. WITH SLIGHT MODIFICATION, 
C ANALYSIS CAN BE PERFORMED ON UP TO 128X128 SUBIMAGE.
C .
C IF THE VIRTUAL MEMEORY IS TO BE USED, CHANGE ALL REGULAR ARRAYS TO
C VIRTUAL ARRAYS (INCLUDING ARRAY IN THE SUBROUTINE 'FOUREA.FOR’), THEN
C LINK THE PROGRAM AS FOLLOWING:
C
C F7 7 FFTXR
C LINK FFTXR/XM,FOUREA/XM,SY:VIRTXM, SY:F7 7LIB
C
C NOTE: SUBROUTINE 'BOXON’ AND 'BOXOFF’ ARE NOT INCLUDED HERE, THEY CAN
C BE FOUND IN 'FTXTUR.FOR'.
C
C LI BIN, JULY 22, 1987.
C
C------------------------------------------------- :-------------- -----
C

DIMENSION H (32,32) ,B(32) ,QB(32,32)
COMPLEX B,QB 
REAL K
CHARACTER*10 OUTFL1,FORM 
DATA FORM/' (’’?'',A)'/

C
CALL MPIOPS 
CALL ERASER 
NN=32

C .
C
C INPUT SECTION 
C
9 8 9 0

C1
C

C

C
c

c

33 
22 
C
C FFT SECTION 
C
C WRITE(7,*)’ORIGIN CENTERED FFT ? I/O'
C READ(5,*) OPTION
C

OPTION = 1
C
C TRANSFORM THE ROWS OF H(I,J), STORE IN Q(I,L) 
C

WRITE (7,-FOUM) 'ENTER FT [.E NAME FOR THE FOURTEU SPECTRUM : ’ 
READ(5, ’ (A) ’) OUTEL1
OPEN (UNIT=2,FILE=0UTFL1,STATUS=’NEW’,FORM=’UNFORMATTED’)
WRITE(7,FORM) ’JOYSTIC (0) OR KEYBORAD (1) COORDINATES ? ’ 
READ(5,*) ISEL
IF (ISEL .EQ. 0) THEN

WRITE (7,FORM) ’Hit <BS>’
CALL CURSOR(IX,IY)
WRITE(7,*) ’WRITE DOWN THE POSITION : ’,IX,IY

ELSE
WRITE (7,FORM) ’ENTER X, Y COORDINATES : ’
READ (5,*) IX, IY

ENDIF
IXSIZE=NN
IYSIZE=NN
CALL BOXON (IX,IY,IXSIZE,IYSIZE)
WRITE(7,FORM) ’IS THIS AREA ACCEPTABLE (1/0) ? ’
READ(5,*) RESPONSE
IF( RESPONSE .EQ. 0) THEN

CALL BOXOFF(IX,IY, IXSIZE,IYSIZE)
GO TO 1

ENDIF
CALL PEER (O')

DO 22 IROW=l,IYSIZE 
DO 33 ICOL=l,IXSIZE

CALL GRAFIN(IX+ICOL-1,IY+IROW-1, IZl)
H (IROW,ICOL)=IZ1 

CONTINUE 
CONTINUE
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T1=SECNDS(0.0)
•DO 10 I=1,NN

ICOUNT=0 
DO 20 J=1,NN

ICOUNT=ICOUNT+l
IF (OPTION.EQ.l) IC=(-1)**(I+J)
IF (OPTION. EQ-0) IC=1.
B(ICOUNT)=H(I,J)*IC 

20 CONTINUE
CALL FOUREA<B,NN,-1)
M=0
DO 30 L=l,NN 

M=M+1
QB(If L)=B (M)

30 CONTINUE
10 CONTINUE
C
C TRANSFORM THE COLUMNS OF QB(I,J)
C

DO 50 J=1,NN
ICOUNT=0 

DO 60 1=1,NN
ICOUNT=ICOUNT+l
B(ICOUNT)=QB(I,J)/NN ! DIVIDED BY 1/N.

60 CONTINUE
CALL FOUREA(B,NN,-1)
M=0
DO 70 L=1,NN 

M=M+1
QB (L, J) =B(M)

70 CONTINUE
50 CONTINUE

TYPE*,'TIME IN TRANSFORM = ',SECNDS(T1),’ SECONDS.’
r■»

U=7
VMIN=1.0E9 
VMAX=-1.0E9 
DO 80 1=1,NN 

DO 80 J=1,NN
PSD=QB(I,J)*CONJG(QB(I,J))
QB(I,J)=PSD . ! QB (I,J) STORES THE POWER SPECTRUM.
H(i,J)=SQRT(PSD) ! H(I,J) STORES THE FOURIER SPECTRUM.
IF (I. EQ. NN/2+1. AND. J.EQ. NN/2 + 1) GOTO 80 '.SKIP D.C.VALUE. 
VMAX=AMAX1(H(I,J),VMAX)
VMIN=AMIN1(H(I,J),VMIN)

80 CONTINUE
C

H(NN/2+1,NN/2+1)=VMAX
C

DO 100 1=1,NN
WRITE(2) (H(I,J),J=1,NN)

100 CONTINUE
C

CLOSE (2)
WRITE(7,FORM) 'NEXT FILE ? (1/0) 1
READ (5,*) NEXT 
IF(NEXT.EQ.0) GOTO 9090 
GOTO 98 99

C
90 90 CALL OFF ('G')

STOP
END
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cc------------------
PROGRAM COMFTX

C
C CALCULATE THE DISTANCE AMONG THE ENTROPY VECTORS
C FOR 10 SUBIMAGES. INPUT FILE SHOULD BE A 10 X 4
C MATRIX (OUTPUT FROM FTXTUR.FOR)
C----------------------------------------------------------
C

DIMENSION A (10,4), DIF(10,10,4),DIS (10,10)
CHARACTER*10 FORM1,FORM2,INFL,OUTFL 
DATA FORM1/' (''$'',A) '/FORM2/’ (A) 1/

C
WRITE(7,FORMl) 'ENTER INPUT FILE NAME : *
READ(3,FORM2) INFL
WRITE(7,FORMl) 'ENTER OUTPUT FILENAME : ’
READ(5,FORM2) OUTFL
WRITE(7,FORMl) 'SELECTION OF OUTPUT DEVICE (2 FOR DISK OUTPUT) : ' 
READ (5,*) U

C
OPEN (UNIT=1,FILE=INFL,STATUS='OLD1)
IF (U.EQ.2) THEN

OPEN (UNIT=2,FILE=OUTFL,STATUS = 'NEW’)
ENDIF

C
READU,*) ( (A(I, J) , J=l,4) , 1 = 1, 10)
WRITE(7, ' (4F12.5) * ) ( (A(I,J),J=1,4),1 = 1, 10)

C
C DISTANCES CALCULATED FROM INDIVIDUAL ENTROPY REGIONS.
C

DO 10 K=l,4 
DO 10 1=1,10 

DO 10 J=l,10
DIF (I, J,K) =ABS (A (I, K) —A (J, K) )

10 CONTINUE
C
c'DISTANCES AMONG SUBIMAGES 
C

DO 500 1=1,10 
DO 500 J=l,10 

SUM=0.0 
DO 600 K=1,4

SUM=SUM+DIF(I,J,K)* *2
60 0 CONTINUE

DIS (I,J)=SQRT(SUM)
500 CONTINUE
C

DO 100 K=l,4
WRITE (U, 200) ( (DIF (I, J,K) , J=l, 10) , 1 = 1, 10)

100 WRITE(U,*)
WRITE (U, 200) ( (DIS(I,J),J=l,10),1 = 1,10)

C
200 FORMAT(10F8.3)

STOP
END
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c
C— --------------- ■-------------------   ;----------
C
C MAIN PROGRAM: FFT.FOR
C
C PERFORMS TWO DIMENSIONAL FFT.
C THIS PROGRAM IS DESIGNED FOR TESTING PURPOSE. THE SUBROUTINE
C IT SHOULD LINK WITH IS FOUREA.FOR WHICK ALSO USES VIRTUAL
C MEMORY. THE TESTING DATA SET CAN BE MADE UP BY THE USER.
C
C H (128, 128) IS THE INPUT MATRIX.
C B (128) STORE ONE ROW (COLUMN) OF H THEN PERFORM FFT ON THIS ARRAY.
C QB (12 8, 128) THE RESULTANT FORWARD FFT MATRIXE, COMPLEX VARIABLE.
C HB (128, 128) THE RESULTANT INVERSE FFT MATRIXE, COMPLEX VARIABLE.
C
•C SINCE H (128, 128) IS REAL, THE REAL PART OF HB (128, 128) SHOULD
C EQUAL TO H (128,.128) .
C

' c  .----------------------------------------------------------
C

VIRTUAL H(128, 128),B(128),QB(128, 128),HB(128, 128),P(128, 128) 
COMPLEX B,QB,HB
CHARACTER*10 INFILE,FORM1,FORM2* 12
FORMl=1(1•$’',A)*
FORM2='(IX,###F7.3)’

99 9 WRITE(7,FORMl) ’INPUT DATA FILE: ’
READ(5, 1 (A) ’) INFILE
OPEN (UNIT=1,FILE=INFILE,STATUS=’OLD’,ERR=999>
WRITE(7,FORMl) ’ENTER SIZE OF MATRIXE (4,8,16,32,64,128): 
READ(5,*) NN
WRITE(FORM2(5:7),’(13)’) NN
WRITE(7,FORM1)’ORIGIN CENTERED FFT (1/0) ? ’
READ (5,*) OPTION

C
C READ IN DATA
C

READ(1,*) ((H(I,J),J=1,NN),1=1,NN)
C
C TRANSFORM THE ROWS OF H(I,J), STORE IN Q(I,L)
C

DO 10 1=1,NN
ICOUNT=0 

DO 20 J=1,NN
ICOUNT=ICOUNT+l
IF (OPTION.EQ.l) IC= (-1)**(I + J)
IF (OPTION.EQ.O) IC=1 
B(ICOUNT)=H(I,J)*IC 

20 CONTINUE
CALL FOUREA(B,NN,-1) •
M=0 •
DO 30 L=1,NN 

M=M+1
QB (I, L) =B (M)

30 CONTINUE
10 CONTINUE
C
C TRANSFORM THE COLUMNS OF QB(I,J)
C

DO 50 J=1,NN
ICOUNT=0 

DO 60 1=1,NN
ICOUNT=ICOUNT+l
B (ICOUNT)=QB(I,J)/NN ! DIVIDED BY 1/N.

60 CONTINUE
CALL FOUREA(B,NN,-1)
M=0
DO 70 L=1,NN 

M=M+1
QB (L, J).=B (M)

70 CONTINUE
50 CONTINUE

DO 80 1=1,NN
WRITE(7,FORM2) (REAL(QB(I,J)) , J=1,NN)
WRITE(7,FORM2) (AIMAG(QB(I,J)),J=1,NN)
WRITE(7,*)

80 CONTINUE
C
C THE FOURIER SPECTRUM
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c
WRITE(7,*) 'THE FOURIER SPECTRUM' 
DO 85 1=1,NN

DO 85 J=1,NN
TEMP=QB(I, J)*CONJG(Q3(I, J))
P(I,J)=SQRT(TEMP)

85 CONTINUE
C

WRITE(7,FORM2) ((P(I,J),J=1,NN),1=1,NN)
C
Cc-------- :-------------   *
C INVERSE TRANSFORM I
C--------------------------------------- *C
C TRANSFORM THE ROWS OF QB(I,J), STORE IN HB(I,L)
C

DO 100 1=1,NN
ICOUNT=0 

DO 200 J=1,NN
ICOUNT=ICOUNT+l 
B (ICOUNT)=QB(I,J)

20 0 CONTINUE
CALL FOUREA(B,NN,1)
M=0
DO 300 L=l, NN 

M=M+1
HB (I, L) =B (M)

30 0 CONTINUE
100 CONTINUE
C
C TRANSFORM THE COLUMNS OF HB(I,J)
C

DO 50 0 J=1,NN
ICOUNT=0 

DO 600 1=1,NN
ICOUNT=ICOUNT+l
B (ICOUNT)=HB(I,J) ! NOT DIVIDED BY 1/N.

60 0 CONTINUE
CALL FOUREA(B,NN,1)
M=0
DO 700 L=1,NN 

M=M+1
IF (OPTION.EQ.l) IC=(-1)**(L+J)
IF (OPTION.EQ.O) IC=1 
HB (L,J)=B(M)*IC*NN !TIMES N

700 CONTINUE
500 CONTINUE

WRITE(7,*) 'THE INVERSE FFT:'
DO 800 1 = 1, NN

WRITE(7,FORM2) (REAL(HB(I,J)),J=i,NN)
WRITE(7,FORM2) (AIMAG(HB(I,J)),J=1,NN)
WRITE(7,*)

80 0 CONTINUE

STOP
END
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c.................................... cc
C PROGRAM TO PLOT THE FOURIER SPECTRUM.
C
C R FORTRA C
C *FFT3 D=FFT 3 D/W/S C
C C
C R LINK C
C *FFT3D=FFT3D,SDCAL(GGCAL),TVLIB/F
C .........       C

PROGRAM FFT3D 
R F A T ,  H ( 7  ? )

INTEGER IZ(32,32)
DATA IZ/1024*0/

C
CALL PLOTS (0,0,0)
CALL NEWPEN (2 5 6)
CALL SYMBOL(1.5,.5,.20,'FOURIER S P E C T R U M 0,16)

C
OPEN(UNIT=2,NAME=’FOR0 02.DAT’,TYPE=’OLD',FORM='UNFORMATTED')
DO 50 1=1,32

READ (2) (H (K),K=1,32)
DO 50 J=1,32

IZ (I, J) =INT (H (J) )
50 CONTINUE

WRITE (5,*) 'INPUT ANGLE OF ROTATION (MULTIPLE OF 90) '
READ(5,*) IROT 
ITRANS=IROT/90
WRITE(5,*)'INPUT AZIMUTH ANGLE '
READ(5,*) ANG
CALL ROTATE(IZ,ITRANS)

C
C

55 YMAX=32.
PI=3.141592654
RANG-* ANG/I 8 0 . "PI
SCALE=.10 j*************
COSY=COS(RANG)*SCALE 
S.INY=SIN (RANG) *SCALE 
ZSCALE=.01 I*************

C
DO 150 IX=1,32 
DO 175 IY=1,32
Y=(FLOAT(IY-l)*SINY+FLOAT(IZ(IX,IY)>*ZSCALE+1)
X= (FLOAT(IX-1)*SCALE+FLOAT(IY—1)*COSY+l)
IF (IY.NE.l) GOTO 75 

C WRITE (5,*) X, Y
CALL PLOT (X,Y,3)
GOTO 17 5 

C WRITE(5,*) X,Y
7 5 CALL PLOT(X,Y,2)

175 CONTINUE
150 CONTINUE

C
C

DO 250 IY=1,32 
DO 275 IX=1,32
Y= (FLOAT (IY—1) *SINY+FLOAT(IZ(IX,IY))"ZSCALE + 1) 
X= (FLOAT (IX-1)*SCALE+FLOAT(IY-1)*COSY + l)
IF (IX.NE.l) GOTO 230 
CALL PLOT(X,Y,3)
GOTO 275 

2 30 CALL PLOT (X,Y,2)
2 75 CONTINUE
2 50 CONTINUE

C
C

Y=1 .0
X= (31.*SCALE+1)
CALL PLOT (X,Y,3)

C
Y= (FLOAT(IZ(32,1)) *ZSCALE+1) 
CALL PLOT (X,Y,2)

C
Y= (FLOAT(IZ (1,1))*ZSCALE+1) 
X=1
CALL PLOT (X,Y,3)

C
CALL PLOT(1.0,1.0,2)
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Y=1.0
X=(31.* SCALE+1) 
CALL PLOT (X, Y,2)

50

1 0 0 .

2 0 0

Y= (31.*SINY+1)
X= (31.*SCALE+31.*COSY+l) 
CALL PLOT(X,Y,2)

Y =(31.*SINY+FLOAT(IZ(32,32)*ZSCALE+1)) 
CALL PLOT(X, Y,2)
STOP
END

SUBROUTINE THAT CALCULATES THE IMAGE ROTATION 
SUBROUTINE ROTATE(IArITIME)

INTEGER IA (32,32),IB(32;32}
IF(ITIME.EQ.0) RETURN
DO 200 IANGL=1,ITIME 

DO 50 IX=1,32 
DO 50 IY=1,32

IB(IY,32-(IX-1))=IA(IX,IY) 
CONTINUE

DO 100 IX=1,32 
DO 100 IY=1,32

IA(IX,IY)=IB(IX, IY) 
CONTINUE 

CONTINUE 
RETURN 
END
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C '
c------ -----------------------------------------------
c

PRGRAM GRPAT.FOR
C
C PLOT THE GRAY SCALED FOURIER POWER SPECTRUM.
C
C------------------------------------------------------------------------
C

REAL F (128)
CHARACTER*10 FILE
CALL MPIOPS

555 WRITE(7,*)'ENTER FFT FILE NAME’
READ(5,' (A) ') FILE
OPEN (UNIT=2,FILE=FILE,STATUS=’OLD',FORM='UNFORMATTED',ERR=555)
.WRITE(7,*) 'ENTER SIZE OF THE IMAGE (N)'
READ(5,*) N
WRITE (7,*) 'SELECTION OF PICTURE PLANE (0,1,2)’
READ (5,*) IP
WRITE (7,*) ’ENTER ORIGIN (IX,IY) FOR DISPLAY <BAS> ’
READ(5,*) IX,IY 

C CALL CURSOR(IX,IY)
CALL OFF(1G 1)
CALL ON ( ’P ’)
CALL PEER(IP)
DO 10 1=1,N

READ (2) (F(J),J=1,N)
DO 20 K=1,N

IZ = NINT (F (K))
CALL GRAFOT(IX+K-1,IY+I-1,IZ)

20 CONTINUE
10 CONTINUE

STOP
END
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cc---- .----------- -----------------------------'--------
c
C MAIN PROGRAM: FFTCOR.FOR 
C
C PERFORMS TWO DIMENSIONAL FFT, AND CROSS CORRELATIONS 
C BETWEEN TWO FUNCTIONS (MUST BE THE SAME SIZE).
C
C---------------------------------------------------------------------c

VIRTUAL HI (64, 64),B1(64),QB1 (64, 64),HB(64, 64)
VIRTUAL H2(64,64),B2(64),QB2(64,64)
COMPLEX B1,QB1,B2,QB2,HB
CHARACTER*10 INFIL1,INFIL2,FORM1,FORM2*12,FORM3*12

C
FORMl='( "  $ " , A)'
FQRM2='(IX,##»F5.1)'
FORM3=' (IX,## #F5.1) '

C
WRITE(7,FORMl) 'OUTPUT DEVICE: '
READ(5,*) U

C
999 WRITE<7,FORM1) 'INPUT DATA FILE #1 : '

READ(5,'(A)') INFIL1
C

OPEN (UNIT=1,FILE=INFIL1,STATUS=’OLD',ERR=999)~
C
888 WRITE(7,FORMl) 'INPUT DATA FILE #2 : ’

READ(5,’(A)') INFIL2 
C . . .

OPEN (UNIT=2,FILE=INFIL2,STATUS='OLD',ERR=888)
C

WRITE(7,FORMl) 'SIZE.OF THE MATRIX (4,8,16,32,64,128) : '
READ(5,*) NN
NNT=2 *NN
WRITE(FORM2 (5:7),' (13) ') NNT 
WRITE (FORM3 (5:7) , • (13) ■) NN

C
C INITIALIZE HI,H2, SO THAT THE INPUT ARRAY HAS LENGTH OF 2N.
C ,

DO 5 1=1,NNT 
DO 5 J=1,NNT

HI (I, J) =0 . 0 
H2 (I, J) =0 . 0 

5 CONTINUE
C
C READ IN DATA
C

READ(1,*) ( (HI (I,J) ,J=1,NN) ,1 = 1,NN)
READ(2,*) ((H2(I,J),J=1,NN),1 = 1, NN)

C
C TRANSFORM THE ROWS OF H(I,J), STORE IN Q(I,L)
C

DO 10 1=1,NNT
ICOUNT=0 

DO 20 J=1,NNT
ICOUNT.= ICOUNT+l 
B1(ICOUNT)=H1(I,J)
B2(ICOUNT)=H2(I,J)

20 CONTINUE
CALL FOUREA(Bl,NNT, -1)
CALL FOUREA(B2,NNT,-1)
M=0
DO 30 L=1,NNT 

M=M+1
QB1 (I, L) =B1 (M)
QB2 (I, L)=B2 (M)

30 CONTINUE
10 CONTINUE
C
C TRANSFORM THE COLUMNS OF QB(I,J)
C

DO 50 J=1,NNT
ICOUNT=0 

DO 60 1=1,NNT
ICOUNT=ICOUNT+l
Bl (ICOUNT)=QB1 (I,J)/NNT ! DIVIDED BY 1/N.
B2 (ICOUNT)=QB2(I,J)/NNT 

60 CONTINUE
CALL FOUREA(Bl,NNT,-1)
CALL FOUREA(B2,NNT,-1)
M=0
DO 70 L-l,NNT
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M=M+1
QB1(L, J)=B1 (M)
QB2(L, J)=B2(M)

70 CONTINUE
50 CONTINUE
CC----------------------------------------*
C INVERSE TRANSFORM IC------------------------------------------*
C
C CALCULATE THE NORMALIZING FACTOR SUM 
C

SUM1=0.0 
SUM2=0.0 
DO 750 1=1,NNT 

DO 750 J=1,NNT
SUM1=SUM1+H1(I,J)*H1(I,J)
SUM2=SUM2+H2(I,J)*H2(I,J)

7 50 CONTINUE
C

SUM1=SQRT(SUM1)
SUM2=SQRT(SUM2)
SUM=SUM1*SUM2

C
C TRANSFORM THE ROWS OF QB (I,J)*CONJG((QB2(I, J) ) , STORE IN HB(I,L) 
C
C EACH ENTRY IS DIVIDED BY THE NORMALIZING FACTOR.
C

DO 100 1=1,NNT
ICOUNT=0 

DO 200 J=1,NNT
ICOUNT=ICOUNT+l
Bl(ICOUNT)= (QB1(I,J)*CONJG(QB2(I,J)))/SUM 

200 CONTINUE
CALL FOUREA (Bl,NNT,1)
M=0
DO 300 L=1,NNT 

M=M+1
HB (I, L) =B1 (M)

30 0 CONTINUE
100 CONTINUE
C
C TRANSFORM THE COLUMNS OF HB(I,J)
C

DO 500 J=1,NNT
ICOUNT=0 

DO 600 1=1,NNT
ICOUNT=ICOUNT+1
Bl (ICOUNT) =HB(I, J) *NNT ! TIMES N ? .

600 CONTINUE
CALL FOUREA(Bl,NNT,1)
M=0
DO 700 L=1,NNT 

M=M+1
IF (OPTION.EQ.l) IC= (-1)** (L+J)
IF (OPTION.EQ.0) IC=1 
HB(L,J)=B1(M)*IC*NNT (TIMES N

700 CONTINUE
500 CONTINUE

WRITE (U, ' (A,F10.5) ’) ' THE LARGEST CORRELATION FUNCTION =
+ REAL (HB (1, 1) )

WRITE(U,*) 'THE CORRELATION FUNCTION: ’
DO 800 1=1,NNT

WRITE(U,FORM2> (REAL(HB(I,J)),J=1,NNT)
WRITE (U,FORM2) (AIMAG(HB(I,J)),J=1,NNT)
WRITE(U,*)

800 CONTINUE
STOP
END
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PROGRAM CROCOR
PERFORMS CROSS CORRELATION BETWEEN TWO FUNCTIONS. 
ONLY ONE FUNCTION IS COMPUTED IN THIS PROGRAM, IT 
IS <N/2,N/2>. THE INPUT MATRICES MUST BE THE SAME 
SIZE.
JULY, 20, 1987.

DIMENSION A1 (30, 30),A2 (30, 30),Bl (30, 30),B2 (30, 30) 
CHARACTER*10 FILEI,FILE2,FORM1,FORM2 
DATA FORM1/’(''$'', A)’/
WRITE(7,FORM1) 'ENTER FILE #1 : '
READ(5,’(A)') FILE1 
WRITE(7,FORM1) 'ENTER FILE #2 : '
READ(5,’(A)'} FILE2
OPEN(UNIT=1,FILE=FILE1,STATUS='OLD*,FORM=’UNFORMATTED' ) 
OPEN(UNIT=2,FILE=FILE2,STATUS=’OLD•,FORM=’UNFORMATTED’)

INPUT DATA
DO 5 1=1,30

READ(1) (A1 (I,J) ,J=l,30)
READ(1) (A2(I,J),J=l,30)
READ(2) (Bl(I,J),J=l,30)
READ (2 ) (B2 (I, J) , J=1, 30)

CONTINUE
SUM

SUM1=0.0 
SUM2=0.0 
SUM3=0.0 
SUM4=0.0 
DO 10 1=1,30 

no 10 J = 1,30
SUM I - SUM I • A I. (1 , J) * A1 ( I, J)
SUM2=SUM2+A2(I,J)*A 2 (I,J)
SUM3=SUM3+B1(I,J)*B1(I,J)
SUM4=SUM4 +B2 (I, J) *B2 (I, J).

10 CONTINUE
C

SUM5=0.0 
SUM6=0.0 
DO 100 1=1,30 

DO 100 J=1,30
SUM5=SUM5+A1(I,J)*B1(I,J)
SUM6=SUM6+A2(I,J)*B2(I, J)

100 ' CONTINUE
C

CORl=SUM5/SQRT(SUM1*SUM3)
COR2=SUM6/SQRT(SUM2*SUM4)

C
TYPE*,COR1,COR2

C
STOP
END
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