Influence of neuromuscular fatigue on the reliability of gait variability measures

Nicholas Reynolds and Vivien Marmelat
University of Nebraska at Omaha, Omaha, NE 68182

INTRODUCTION

• Walking in healthy young adults display an optimal pattern of variability from one stride to the next. (1,2)
• This level ensures that each step taken is not stereotyped but also not completely unpredictable.
• Previous studies have investigated differences in stride-to-stride characteristics comparing groups of young to groups of elderly. (3)
• The first aim of this study is to determine the between day and between trial consistency of gait variability measures in healthy young adults.
• While a decrease of optimal gait variability is evident with aging, the origins of this are unclear.
• It’s possible that impairments of the muscular and neuromuscular systems increasing fatigue causes this inherent decrease in optimal gait variability.
• The second aim of this study is to determine how neuromuscular fatigue will affect stride-to-stride variability.

METHODS

• Fifteen healthy young subjects (age 19 - 35) will participate in a five-day collection (Figure 1).
• Reflective markers will be placed in specific anatomical locations to collect spatiotemporal measures using a 12-camera system (stride time, stride with, stride length & stride speed).
• Lower body fatigue will be induced by asking subjects to perform a squat and calf raise task until they reach exhaustion and can no longer perform the task.
• Detrended fluctuation analysis (DFA) will be applied to spatiotemporal measures to quantify the amount of variability for each series (Figure 2). This will give us a scaling exponent, alpha, which estimates the pattern of variability for a given time series.

METHODS CONT.

• Cronbach’s alpha from Intra-Class correlation will be used to estimate the reliability of alpha.

DISCUSSION

• Aim 1: Determine the reliability of gait variability measures
• Hypothesis 1.1. The between-day intra-class correlation (ICC) will be above 0.7 for measures of gait variability, suggesting a high consistency from day-to-day.
• Hypothesis 1.2. The within-day ICC will be above 0.7 for measures of gait variability, suggesting a high consistency between trials for a given individual.
• Aim 2: Determine the effect of neuromuscular fatigue on stride-to-stride variability
• Hypothesis 2.1. Gait variability will be more random immediately after fatigue protocol
• Hypothesis 2.2. Gait variability will be back to normal values one day after the fatigue protocol.

CONCLUSIONS

• If confirmed, our results would suggest that any changes in DFA values observed for a given individual would likely be the result of experimental constraints, not an artifact from the measurement.

REFERENCES


ACKNOWLEDGEMENTS: This work was supported by the University Committee on Research and Creative Activity of the University of Nebraska at Omaha, and by the Center for Research in Human Movement Variability of the University of Nebraska at Omaha, NIH (P20GM109090).