BACKGROUND

One element of a legally defensible job analysis is the inclusion of a thorough task analysis, or the examination of discrete tasks required of the job (Brown, 1996). However, in today's knowledge economy, how a job analyst gains access to tasks carried out by knowledge workers (e.g., accountants, computer programmers, etc.) is obtained by the constraint that an individual interacting with a computer process. In traditional, manual labor jobs, assessing tasks (history) allowed for recording of observable, discrete units of work such as shopping and lifting. The interface with a worker and his/her computer prohibits a job analyst to get a clear picture of the work for at least three reasons: 1) the speed of the work, 2) integrated systems, and 3) undefined analytical processes. Thus, the goal of the present effort is to evaluate how the use of eye-tracking and screen capture technologies impact observation and analysis of the cognitive tasks conducted by knowledge workers.

RESEARCH QUESTION

How can eye-tracking and screen capture (i.e., oculometrics) technologies impact observation and analysis of the cognitive tasks conducted by knowledge workers?

METHODOLOGY

Phase 1: Survey

- Two portions: (1) prompted, (2) unprompted
 - Participants:
 - Worker preferences, options, and backgrounds
 - Worker perceptions of information and systems required to complete work
 - Purposes:
 - Capture individual differences between worker experience and perceptions
 - Capture individual perceptions of knowledge processes required to complete the work

Phase 2: Scenario Eye-Tracking

- Static images of company systems were organized into a “logical” work process (or scenario)
 - Purposes:
 - Sample a wide array of potential work processes
 - Evaluate visual attention required to complete the tasks
 - Identify specific pieces of information required to solve problems
 - Control environment removed typical work and technological distractions

Phase 3: VPN Eye-Tracking

- Two portions: (1) prompted, (2) unprompted
 - Participants:
 - Capture a range of work processes across a range of worker experience levels
 - Capture individual differences in knowledge processes and task completion in a live, uncontrolled environment

Phase 4: Eye-Tracking Interview

- Semi-structured, 1 on 1 interview conducted while reviewing the VPN eye-tracking recording
 - Purposes:
 - Acquire verbal confirmation of the conclusions drawn from eye-tracking and screen capture recordings
 - Increase researcher understanding of work being completed

DATA AND RESULTS

Phase 1: Survey

“While working in shipment, if I need to go to waybill to make a correction, once the comment box pops open I cannot go back to shipment to get info I may need for the comment. I have to write stuff down before I go there or go out and start over to find that info if I forget.” - Study Participant

Phase 2: Scenario Eye-Tracking

Phase 3: VPN Eye-Tracking

Phase 4: Eye-Tracking Interview

Please refer to the computer screen next to this poster for visualization of the data collected.

CONCLUSIONS

ICIP Model Significance:

- Information Interface
- Information Handling
- Mental Plan and Schedule
- Memory
- Mental Execution
- Monitoring
- Environment
- Communication

Based on our findings, eye-tracking and screen capture technologies can be utilized in this four-phase methodology to accurately extract the knowledge, skills, and abilities required to complete knowledge work. This methodology also goes further to identify specific information needed to complete the work.

RECOMMENDATIONS

- Modify the methodology to the cognitive task being performed
- Begin each eye-tracking cognitive task analysis with a traditional job analytic survey
- Utilize eye-tracking technologies in two stages to capture both controlled and uncontrolled responses

KEY REFERENCES

ACKNOWLEDGEMENTS

- Special thank you to Union Pacific Railroad for their participation with the study and their agreement to release imagery. This project would not have been possible without their support and willingness to participate.
- Thank you to UNO’s College of Business Administration for their support of my Graduate Assistantship and facilitation of the relationship between UNO and UP.

Haley Shelton, Joel Elson, Douglas C. Derrick, Gina Scott Ligon, and Erin Pleggenkuhle-Miles

USING OCULOMETRICS FOR COGNITIVE TASK ANALYSIS