
Extension of the EZSMT System for Non-tight Programs
Yuliya Lierler and Da Shen, University of Nebraska at Omaha

Supported by the 2017 Fund for Undergraduate Scholarly Experiences Grant

Background Technology
Answer Set Programming (ASP):

• A computer programming language in artificial intelligence
• Users state specifications, called programs, for tasks
• No need to worry about how solutions are computed
• Plays a critical role in development of software in science,

humanities, and industry
• Has issues when possible solutions grow quickly over time

Constraint Answer Set Programming (CASP):
• An integration of ASP and constraint processing
• Tackles several issues of ASP
• Solvers such as CLINGCON

Satisfiability Modulo Theories (SMT) solvers:
• High-performance tools stemming from software verification

community

The EZSMT System
• A software system in artificial intelligence
• Automatically finds solutions to CASP problems
• Utilizes SMT solvers for computation
• Often outperforms its peers
• Unable to process a category of important relations called non-tight

e.g. reachability relations between cities on a map shown in the
example marked by blue color

The EZSMT+ System
• We extend EZSMT so that it can take non-tight input. We call the

new system EZSMT+.

• EZSMT+ architecture:

Grounding and Computing Completion

Computing Four Variants
of Level Rankings

EZSMT Transformer

SMT Solver

preprocessed CASP Program

If Non-tight

Completion And Level
Ranking Formulas

SMT Formulas

Solutions

Computing Multiple
Solutions

If Tight

1

• Blue blocks: existing EZSMT system
• Green block: our extension to tackle non-tight input
• EZSMT+ is able to find multiple solutions, which the original

EZSMT is unable to do.

Example: Traveling Salesman Problem
Problem Description We are given a map consisting of cities and roads. Each road directly connects a pair of cities, and cost the salesman some time
to go through. The salesman can pass each city only once. We are asked to find a route for the salesman to visit all the cities before a given deadline.

Encodings Three approaches: ASP, traditional CASP (CLINGCON) and EZSMT+

Approach Line Encoding Meaning

ASP 1 1 { route(X,Y) : road(X,Y), route(X,Y) : road(Y,X) } 1 :- city(X). For each city, we choose one route leaving the city.

2 1 { route(X,Y) : road(X,Y), route(X,Y) : road(Y,X) } 1 :- city(Y). For each city, we choose one route going to the city.

3 reached(X) :- initial(X). The initial city is reached.

4 reached(Y) :- reached(X), route(X,Y). If city X is reached and the route from city X

to city Y is chosen, then city Y is also reached.

5 :- city(X), not reached(X). No city can be not reached.

6 :- W+1 [route(X,Y) : cost(X,Y,C) = C], maxCost(W). The total time cost must be less than maximal value.

CLINGCON 7 the same as line 1-5 Go though all cities once.

8 &sum c(X,Y) = 0 :- cost(X,Y,C), not route(X,Y). Time spent on a road is 0 if the road is not in our route.

9 &sum c(X,Y) = C :- cost(X,Y,C), route(X,Y). Time spent on a road is the cost if the road is in our route.

10 :- &sum c(X,Y) : cost(X,Y,C) > W, maxCost(W). The total time cost must be less than maximal value.

EZSMT+ 11 the same as line 1-5 Go though all cities once.

12 cspvar(c(X,Y),0,C) :- cost(X,Y,C). Declaration of constraint variables.

13 required(c(X,Y) == 0) :- cost(X,Y,C), not route(X,Y). Time spent on a road is 0 if the road is not in our route.

14 required(c(X,Y) == C) :- cost(X,Y,C), route(X,Y). Time spent on a road is the cost if the road is in our route.

15 :- required(sum([c/2], >, W)), maxCost(W). The total time cost must be less than maximal value.

1

• Green lines: linear constraints, where ASP solvers have issues when a large amount of possible results exist
• Blue lines: non-tight relations, which the original EZSMT system can not handle

Experimental Data

Benchmark CLINGCON EZSMT+

RoutingMin(100) 4.68 31.2

RoutingMax(100) 3144 2989
Trav. Sals.(30) 455 3742

Labyrinth∗(22) 3002(1) 5665(2)

1

Conclusion
• Pure ASP programs: solved by ASP solvers or SAT solvers
• CASP programs: traditionally solved by ASP solvers and finite domain constraint solvers;

in EZSMT+ solved by SMT solvers, which are equivalent to SAT solvers
and integer linear constraint solvers

• Experimental analysis shows that EZSMT+ is a viable tool for finding solutions to CASP
programs.

• We believe that, by making clear the translation of arbitrary CASP programs to SMT, our work
will boost the cross-fertilization between the two areas.

