Differences in habenula kisspeptin expression and its effects on stress coping styles in zebrafish, *Danio rerio*

Andrew Wahl and Ryan Wong, PhD
Department of Biology, University of Nebraska at Omaha, Omaha, NE 68182

Background

Stress Coping Styles

<table>
<thead>
<tr>
<th>Proactive</th>
<th>Reactive</th>
</tr>
</thead>
<tbody>
<tr>
<td>Aggressive</td>
<td>Avoidance</td>
</tr>
<tr>
<td>Sociable</td>
<td>Avoidant</td>
</tr>
</tbody>
</table>

Physiological Characteristics

- **Habenu Activity:** Low
- **Raphe Activity:** High
- **Habenu-Raphe Connection:** Weak
- **Neuronal Connectivity:** Few

Results

Hypothalamus

<table>
<thead>
<tr>
<th>Formulation</th>
<th>Hybridization Temp</th>
<th>Blocking Buffer</th>
<th>Antibody</th>
<th>Staining</th>
</tr>
</thead>
<tbody>
<tr>
<td>I</td>
<td>65°C</td>
<td>1X</td>
<td>HRP</td>
<td>Fluorescent/</td>
</tr>
<tr>
<td>II</td>
<td>67°C</td>
<td>1X</td>
<td>Poly-HRP</td>
<td></td>
</tr>
<tr>
<td>III</td>
<td>67°C</td>
<td>0.5X</td>
<td></td>
<td></td>
</tr>
<tr>
<td>IV</td>
<td>67°C</td>
<td>0.25X</td>
<td></td>
<td></td>
</tr>
<tr>
<td>V</td>
<td>67°C</td>
<td>0.1X</td>
<td></td>
<td></td>
</tr>
<tr>
<td>VI</td>
<td>67°C</td>
<td>0.05X</td>
<td></td>
<td></td>
</tr>
<tr>
<td>VII</td>
<td>67°C</td>
<td>X</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Habenu-Raphe Connection

- **Svets (5-hydroxytryptamine, 5-HT)**
- **Kisspeptin expression from the habenula (presynaptic) and raphe (postsynaptic)**
- **Camera lucida drawings**
- **Cytometric analysis**

Materials and Methods

- **Materials:** Probes, 5-HT
- **Methods:** Hybridization

Conclusion and Discussion

- **Proactive and Reactive Zebrafish:**
 - 12 proactive and 12 reactive zebrafish
 - Half male/half female
 - 12 per condition

Acknowledgments

We would like to thank S. Bresnahan, J. Russ, M. Baker, J. Davila, J. Bargstadt, and A. Goodman for providing critical feedback on the FUSE grant proposal and this project in general. This study was funded by a FUSE grant provided by the University of Nebraska-Omaha's Office of Research and Creative Activity to AW. Additional funding was provided by National Institutes of Health (R15MH113074), Nebraska EPSCoR First Award (CITA-1557417), Nebraska Research Initiative, University of Nebraska-Omaha start-up and University Committee on Research and Creative Activity grants to RW.

References

In situ Hybridization

- **Materials:** Probes, 5-HT
- **Methods:** Hybridization

Materials and Methods

- **Materials:** Probes, 5-HT
- **Methods:** Hybridization